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Abstract: An efficient route to optically pure prostaglandin-J2

compounds has been discovered: ent-PGJ2 is shown to display anti-
viral activity against Sendai virus with a similar potency to the
natural enantiomer.
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There is considerable current interest in the biological ac-
tivity of the cyclopentenone prostaglandins.1 In particular,
prostaglandin-J2 (PGJ2) 1 and D12,14-15-deoxyprosta-
glandin-J2 (15-d-PGJ2) 2 (Figure 1) have been shown to
be potent anti-viral agents.2 The latter molecule has also
attracted interest because of its action as an agonist on the
PPAR-gamma receptor,3 its anti-inflammatory activity4

and its cytoprotective potential.5

Both prostaglandins occur naturally, being derived from
prostaglandin-D2 3 by dehydration.6 The same process
can be mimicked in the laboratory, ultimately generating
15d-PGJ2 2 as a mixture of isomers.7

Some years ago, we developed a synthesis of (±)-PGJ2,
8

starting from 7-chloronorbornadiene 4, which featured a
Meinwald rearrangement of a norbornadiene mono-ep-
oxide (Scheme 1 steps a–d, g–k). The synthesis suffered
from the protracted conversion of the alkyne 5 into the
triene 8. In the first part of this paper, we report a more
convenient method for the production of the PGJ2 inter-
mediate 8 as well as a new method for the preparation of
15-d-PGJ2. In later paragraphs new methods for the prep-
aration of optically active materials are described.

Thus, 7-chloronorbornadiene 4 was converted into the 7-
lithio compound and reacted with trans-oct-2-enal to give
the alcohol 7.9 Rearrangement of this alcohol with
methyltrioxorhenium10 (MTO) and silylation under stan-
dard conditions gave the triene 8. After the prescribed
oxidation and Meinwald rearrangement, the hydroxyalde-
hyde 10 was obtained as a mixture of diastereoisomers.

The efficient preparation of the alcohol 7 is especially
valuable inasmuch as the (E) stereochemistry is estab-
lished for the C14–C15 double bond early in the synthesis
ensuring that the prostaglandin 2 is obtained as a single
geometric isomer. Thus, the alcohol 7 was converted into
the silyl ether and subjected to the oxidative rearrange-
ment and hydrolysis procedure to provide a 2:1 mixture of
hydroxyaldehydes 9.11 Interestingly the pre-existing ste-
reogenic centre seems to influence the sense of the elec-
tron flow on rearrangement of the (protonated)
epoxynorbornene. Wittig reaction, Dess–Martin oxida-
tion and concommitant desilylation/dehydration fur-
nished 15d-PGJ2 2 (Scheme 1).

Acetylation of the mixture of diastereomers 10 using
Pseudomonas cepacia lipase efficiently produced a sepa-
rable mixture of two pairs of diastereoisomers (–)-10
(42%) and (+)-11 (41%); hydrolysis of the acetates (+)-
(11) gave the hydroxyaldehydes (+) 10 (Scheme 2).12 The
diastereomeric pairs were converted into PGJ2 1 and 15-
epi-PGJ2 [from (+)-10], ent-PGJ2 and ent-15-epi-PGJ2

[from (–)-10] which were required for biological evalua-
tion.13

Figure 1
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Scheme 1 Reagents and conditions: a) 3-silyloxyoct-1-yne, EtMgBr, CuI, THF, reflux, 3 h, 66%; b) TBAF, THF, 14 h, 75%; c) LiAlH4, THF,
reflux, 1 h, 64%; d) TBSCl, imidazole, CH2Cl2, 20 h, 90%; e) i. Li, DTBB, THF, 1 h; ii. trans-oct-2-enal, –78 °C–r.t., 1 h, 90%; f) MTO, CH2Cl2,
2 d, 58%; g) i. Oxone, NaHCO3, acetone, H2O, 0 °C 1.5 h; ii. 2 M HCl, CH2Cl2, 5 d, 48%; h) Br–Ph3P

+(CH2)4CO2H, NaHMDS, THF, 1.5 h,
79%; i) Dess–Martin periodinane, CH2Cl2, 1 h, 90%; j) TFA, CH2Cl2, 3 h, 48%; k) HF (aq), MeCN, 1 h, 1 (21%) and 15-epi-1 (25%); l) 1 M
HCl, THF, reflux, 20 min, 14%.
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Scheme 2 Reagents and conditions: a) Ps. cepacia lipase, vinyl acetate, PhMe, 20 h, 10 (42%) and 11 (41%); b). K2CO3, H2O, MeOH, 3 h,
79%.
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Interestingly, the mirror image of the natural prostaglan-
din ent-1 was almost equi-active to PGJ2 1 as an anti-viral
agent, exhibiting an IC50 of 4 mM against Sendai virus.
The compound was also an effective inhibitor of NF-kB.
The epi-prostaglandins exhibited slightly less activity. To
our knowledge this is the first time that enantiomerically
enriched samples of these non-natural cyclopentenone
prostaglandins have been made available for biological
testing.

Two strategies were evaluated to access optically active
15-d-PGJ2. First, treatment of the aldehydes 9 with No-
vozym 435TM (CaB) and vinyl acetate in toluene led to the
acetylation of only one of the four stereoisomers to afford
acetate (+)-13.12 Hydrolysis furnished hydroxyaldehyde
(+)-9 which was converted into naturally occurring (+)-
15-d-PGJ2, (+)-(2) as prescribed in Scheme 1 therefore
establishing the (S)-stereochemistry at C-8 (PG number-
ing).14

Secondly, in order to provide access to non-natural (–)-
15-d-PGJ2, (–)-(2), alcohol (7) was acetylated using Can-
dida antarctica A lipase (Scheme 3) as the catalyst, to fur-
nish (+)-7 and acetate (–)-12. Simple hydrolysis of the
latter compound gave (–)-7.15 Oxidative rearrangement of
(–)-7 gave hydroxyaldehyde 9 as two diastereomers in a
2:1 ratio. CaB-catalysed acetylation removed (+)-9 as the
acetate (+)-13 leaving (–)-9 in an optically pure state.12

Conversion of (–)-9 into (–)-2 followed the established
routine. The remaining stereochemical assignments of
(+)-9, in relation to the known stereochemistry at C-8,
were found to be 11R, 12S, 13R (PG numbering) by X-ray
analysis of the di-p-bromobenzoate ester 14 (Figure 2).16

Obviously, this new route to cyclopentenone prostaglan-
dins can be modified to provide a range of prostanoids.
For example, reaction of lithionorbornadiene with octanal
gave the alcohol 15, which was converted smoothly and
efficiently into 15-deoxy-PGJ2 16 (Figure 2).

Figure 2
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Scheme 3 Reagents and conditions: a) Candida antarctica A lipase, vinyl acetate, toluene, 2 d, 7 (41%) and 12 (41%); b) K2CO3, H2O,
MeOH, 3 h, 83%; c) Candida antarctica B lipase, vinyl acetate, PhMe, 24 h, 9 (24%) and 13 (57%); d) 3 steps (See Scheme 1).
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(1:10) as eluent to afford the alcohol (–)-7 (0.67 g, 83%) as 
a clear colourless oil; [a]D –21.2 (c 1.5, CHCl3). 
Enantiomeric excesses were determined to be >99% by 
synthesis and analysis of the Mosher ester derivatives of 
aldehydes 9.

(16) Crystal data (Figure 3). C29H32Br2O5, M = 620.37, T = 
100(2)K, crystal dimensions = 0.25 × 0.05 × 0.02 mm, 
Spacegroup P21, a = 5.0940(11), b = 16.480(3), c = 

16.695(3) Å, b = 98.689(4)°, U = 1385.4(5) Å3, m(Mo-Ka) = 
1.487 mm–1, 5565 reflections measured, 3004 unique (Rint = 
0.0413). R1 = 0.1634, wR2 = 0.4116 (all data); Crystals 
consisted of fine hairy needles of low scattering power and 
high mosaicity, which contributed to the high R-value. 
However, the model refined well and allowed the 
determination of the molecular connectivity. The absolute 
configuration could not be determined.

Figure 3
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