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Abstract: The triamino steroids 2 are in demand as facial am-
phiphiles and  starting  materials for  supramolecular chemistry. 2
(R = Me) is  now  available  from cholic  acid  1  in  substantial
quantities via a new, high-yielding procedure.
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As part of our programme on cholic acid 1 as a building
block for supramolecular chemistry,1 we have recently be-
come interested in the replacement of -OH with -NH2 at
the steroidal 3, 7 and 12 positions. Amino groups can be
derivatised efficiently in various ways, most of which
give functionality capable of strong and specific non-co-
valent interactions. Aminocholanoates have been used to
synthesize cyclooligomeric hosts,2 and also monomeric
receptors capable of binding inorganic anions,3 amino
acid derivatives4 and DNA.5 They also have potential as
facial amphiphiles,6 and as scaffolds for library synthesis
in combinatorial chemistry.4a,7 

The “virtues” of aminocholanoates are expressed most
fully in compounds 2, containing the tris-deoxa-tris-aza
analogue of the cholic acid nucleus. 2 (R = Me) has been
used to prepare the unusually potent electroneutral anion-
ophore 3,3 and undoubtedly has many other applications
in supramolecular chemistry. However its value to date
has been limited by a lengthy and somewhat unwieldy
synthesis from 1, requiring 17 steps and proceeding in
≤1.4% overall yield.6a We now report an improved proce-
dure which is shorter, more efficient, and allows multi-
gram production of 2 (R = Me) on a routine basis. 

The conversion of hydroxyl to amino groups may be
achieved by nucleophilic displacement, or by oxidation
followed by reductive amination. In our initial synthesis
we used the former strategy where possible, to ensure the
correct stereochemical outcome and minimise the need
for potentially difficult separations of diastereomeric
polyamine derivatives. Unfortunately this required that
each secondary hydroxyl be given individual attention, re-
sulting in a synthesis which was “safe” but impractical for
routine preparation of 2. In subsequent work, we have de-
veloped a reductive amination protocol which is reliable,
high-yielding, and shows excellent selectivity for the a-
product at  both C7 and C12.8 The application of this
method simultaneously to both positions forms the basis
for the new preparation described herein.9

The synthetic route to tris-carbamate 11, immediate pre-
cursor  of  2  (R = Me),  is  summarised  in the Scheme.
Acetoxydiol 4 was available in 83% yield through a one-
pot esterification and selective 3a-acetylation of 1, em-
ploying MeOAc as source of both methoxy and acetyl
groups.10 Oxidation with potassium chromate gave  the
acetoxy-dione 5 in 98% yield.11 Both 4 and 5 could be pu-
rified by crystallisation; alternatively the crystallisation of
4 could be omitted without a drop in overall yield. The
amino groups on C7 and C12 were introduced by
oximation12 to acetoxydioxime 6 (99% yield) followed by
catalytic hydrogenation to give mainly the corresponding
bis-hydroxylamine, and treatment with Zn/AcOH to give
the diamine.8,13 Protection with di-t-butyl dicarbonate,
followed by crystallisation, gave acetoxydicarbamate 7 in
92% yield from 6.13 7 was stereochemically homogeneous
by 1H and 13C NMR,14 and could be prepared in batches of
40 g using normal laboratory equipment.

The  acetoxy  group  on  C3  was  easily  removed with
sodium carbonate to yield 8 in quantitative yield. The
third amino group was  then introduced through double
nucleophilic displacement. A Mitsunobu reaction with
methanesulfonate as nucleophile, employing a modifica-
tion of conditions published earlier from our laboratory,15

gave mesylate 9.16 Treatment of 9 with NaN3 gave azide
10 in 72% yield from 8.16 Finally, reduction/N-protection
with H2/Pd/(Boc)2O

17 gave tris-carbamate 11 in 85% crys-
talline yield, 45% overall from cholic acid. Although
chromatography was required for the purification of 9 and
10, the preparation of 11 could be conducted in 8 gram
batches without inconvenience. Deprotection of 11 with
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TFA in dichloromethane occurs cleanly to give 2 (R =
Me), as its tris-TFA salt, in apparently quantitative yield.

In conclusion, we have presented a new route to the “tria-
za-analogue” of the cholic acid nucleus. This new synthe-
sis is high-yielding and can be performed on a multigram
scale with normal laboratory equipment. Ready access to
2 will allow us to explore further applications in the de-
sign and synthesis of receptors, facial amphiphiles, and
scaffolds for combinatorial chemistry. Intermediate 7,
moreover, is exceptionally convenient to prepare, and
may itself find uses in these areas.
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