ESTERS OF HETEROCYCLIC  $\gamma$ -AMINO ALCOHOLS VI.\* SYNTHESIS OF SUBSTITUTED cis-3-AMINOMETHYL-4-HYDROXYPIPERIDINES AND THEIR ACYL DERIVATIVES

E. T. Golovin, A. P. Nikiforova, and B. V. Unkovskii UDC 547.823.07:541.634

Reduction of cis-3-cyano-4-hydroxypiperidines with lithium aluminum hydride (LAH) gave cis-3-aminomethyl-4-hydroxypiperidines, which were converted to cis-3-dimethylaminomethyl-4-hydroxypiperidines by methylation with formaldehyde and formic acid. Acylation of the methylated compounds with benzoyl and cinnamoyl chlorides gave the corresponding esters. Condensation of cis-3-aminomethyl-4-hydroxypiperidines with formaldehyde gave perhydropyrido[3,4-e][1,3]oxazines, which were converted to 3-methylaminomethyl-4-hydroxypiperidines by means of LAH. The cis isomers of the corresponding 0,N-diacyl derivatives of these amino alcohols were obtained by acylation with acetic anhydride and benzoyl and cinnamoyl chlorides.

Substances that have high anesthetizing activity have been found among esters of 1,2,5-trimethyl-4-phenyl-5-aminomethyl-4-hydroxypiperidines (for example, see [2]). However, the method previously used for their synthesis leads to the formation of mixtures of structural and spatial isomers, the separation of which presents great difficulties. In this connection it has become necessary to develop a stereospecific method for the preparation of compounds of this type.



 $R^{1}, R^{2} = H, CH_{3}; R^{1} = CH_{3}, C_{6}H_{5}; R^{4} = C_{6}H_{5}, CH = CHC_{6}H_{5}$ 

The above method for the synthesis of esters of  $\gamma$ -amino alcohols of the piperidine series (XI-XX) includes as the initial step the cyclization of methyl- $\beta$ -acylalkyl- $\beta$ -cyanoethylamines, which are readily obtained by the addition of  $\beta$ -methylaminopropionitrile to  $\alpha$ , $\beta$ -unsaturated ketones [3]. It was found that the cyclization of  $\beta$ -keto amino nitriles proceeds regiospecifically and stereospecifically to give, in up to 90% yields, substituted l-methyl- $\beta$ -cyano-4-hydroxypiperidines in only one cis configuration and a predominant conformation in solution with an axial hydroxy group and equatorial cyano group [4]. This makes it possible to accomplish the synthetic conversion from relatively simple and accessible starting compounds to piperidine derivatives with functional groups in the 3 and 4 positions.

\*See [1] for communication V.

M. V. Lomonosov Moscow Institute of Fine Chemical Technology, Moscow 119831. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1363-1368, October, 1978. Original article submitted June 17, 1977; revision submitted February 8, 1978.

TABLE 1. cis-3-Aminomethy1-4-hydroxypiperidines

| Yield, <sup>d</sup><br>% |                                          | 54                                               | 68      | 74        | 79      | 57                                              | 61     | 59                                              | 8<br>8 | 75                                              |        | -            |
|--------------------------|------------------------------------------|--------------------------------------------------|---------|-----------|---------|-------------------------------------------------|--------|-------------------------------------------------|--------|-------------------------------------------------|--------|--------------|
|                          | z                                        | 12,7                                             |         | 12,0      |         | 17,7                                            |        | 16,3                                            | _      | 16,3                                            |        |              |
| alc., %                  | H                                        | 9,2                                              |         | 9,45      |         | 11,4                                            |        | 11,7                                            |        | 11,7                                            |        | •            |
| C                        | <br>v                                    | 20,9                                             |         | 71,8      |         | 60,7                                            |        | 62,8                                            |        | 62,8                                            |        |              |
| Emnirical                | formula                                  | C <sub>13</sub> H <sub>20</sub> N <sub>2</sub> O |         | C14H22N2O |         | C <sub>8</sub> H <sub>18</sub> N <sub>2</sub> O |        | C <sub>9</sub> H <sub>20</sub> N <sub>2</sub> O |        | C <sub>9</sub> H <sub>20</sub> N <sub>2</sub> O |        |              |
|                          | z                                        | 12,5                                             | 12,4    | 12,0      | 12,1    | 17,8                                            | 17,7   | 16,2                                            | 16,2   | 16,4                                            | 16,5   |              |
| und, %                   | Н                                        | 9,1                                              | 8,9     | 9,6       | 9,3     | 11,6                                            | 11,4   | 11,7                                            | 11.6   | 11,6                                            | 11,5   |              |
| Fc                       | υ                                        | 71,2                                             | 71,0    | 71,7      | 71,8    | 60,8                                            | 60,7   | 62,5                                            | 62,6   | 62,4                                            | 62,6   | 5 L F - 1401 |
|                          | v <sub>N II</sub> .<br>cm <sup>-1</sup>  | 3410                                             |         |           | 3398    |                                                 | 3400   |                                                 | 3400   |                                                 | 3405   |              |
|                          | ν <sub>0 II</sub> .<br>cm <b>-1</b>      | 3305                                             |         |           | 3265    |                                                 | 3330   |                                                 | 3330   |                                                 | 3336   |              |
|                          | R <sub>I</sub> C                         | 0.24                                             | (01:10) | 0.28      | (1:10)  | 0,41                                            | (1:15) | 0,43                                            | (1:15) | 0,39                                            | (1:10) |              |
| mp, *C <sup>b</sup>      |                                          |                                                  | 108-110 |           | 128-130 |                                                 |        |                                                 | 6971   | 68-70                                           |        | -            |
| conditions               | time <b>.</b><br>h                       | 9                                                | 9       | 9         | œ       | 10                                              | 9      | 10                                              | 00     | 10                                              |        |              |
| Reaction c               | amt, of<br>LiAlH4,<br>moles <sup>a</sup> | 3,5                                              | 3,5     | 3,5       | 3,5     | 2,5                                             | 2,5    | 2,5                                             | 2.5    | ŝ                                               |        | н<br>Д       |
| S yn-                    | thetic<br>meth.                          |                                                  | 8       | Ā         | B       | A                                               | В      | Ā                                               | 8      | A                                               |        |              |
|                          |                                          | C <sub>6</sub> H <sub>5</sub>                    | ,       | C,H,      |         | CH3                                             | •      | CH <sub>3</sub>                                 |        | CH <sub>3</sub>                                 | 1      | ہ            |
|                          | R²                                       | Н                                                |         | Η         |         | H                                               |        | H                                               |        | CH,                                             | ?<br>  |              |
|                          | Ā                                        | H                                                |         | CH,       | 2       | H                                               | -      | CFIs                                            | ,      | H                                               | ;      |              |
| Corn -<br>pound          |                                          |                                                  | 1       | II        | ¢       | 111                                             |        | N                                               |        | >                                               | •      | 5            |

<sup>o</sup>From benzene—hexane (1:2). <sup>c</sup>On KSK silica gel in 25% ammonia—96% ethanol systems (their eses). <sup>d</sup>Based on the cyanopiperidol. <sup>e</sup>This compound had bp 105-106°C (0.5 mm). ratios are given in parentheses). 'Fer mole of the nitrile.

TABLE 2. cis-3-Dimethylaminomethy1- and cis-3-Methylaminomethy1-4-hydroxypiperidines

|  |           |                     | ►9225-20-49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|--|-----------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|  | %         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
|  |           | z                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ċ          |
|  | o,        | н                   | 9,7<br>11,9<br>11,9<br>11,9<br>11,9<br>11,9<br>11,9<br>11,9<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aner       |
|  | Calc      | c                   | 72,5<br>64,5<br>66,0<br>64,5<br>66,0<br>64,5<br>64,5<br>64,5<br>64,5<br>64,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -hey       |
|  | Empirical | formula             | C C15 H 24 N 20<br>C C15 H 24 N 20<br>C C10 H 26 N 20<br>C C10 H 22 N 20<br>C C11 H 24 N 20<br>C C11 H 24 N 20<br>C C15 H 22 N 20<br>C C15 H 22 N 20<br>C C10 H 22 N 20<br>C C C10 H 22 N 20<br>C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | henzene    |
|  | do        | z                   | 11.5<br>14.9<br>14.9<br>14.1<br>14.1<br>14.1<br>14.1<br>14.1<br>15.1<br>15.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a cu       |
|  | pund,     | Н                   | 9,5<br>9,8<br>9,8<br>9,8<br>11,9<br>11,9<br>11,9<br>11,9<br>11,9<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ų<br>r     |
|  | Fo        | J                   | 72,4<br>65,9<br>65,9<br>65,7<br>72,3<br>72,3<br>64,5<br>64,5<br>64,5<br>64,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 z 0      |
|  |           | cm <sup>-1</sup>    | 3180<br>3170<br>3170<br>3170<br>3235<br>3260<br>32260<br>32260<br>32250<br>32250<br>32250<br>32250<br>32250<br>32250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lla.       |
|  | ٩         | <i>R</i> , <i>c</i> | $0.54 \\ 0.56 \\ 0.56 \\ 0.51 \\ 0.51 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ 0.45 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ta Vr      |
|  |           | ů                   | $\begin{array}{c} -118 \\ -163 \\ -76 \\ -78 \\ -78 \\ -78 \\ -78 \\ -73 \\ -73 \\ -73 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76 \\ -76$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .J. a.r.   |
|  |           | du                  | 733-110-110-110-110-110-110-110-110-110-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 1 0      |
|  |           | R3                  | CH <sup>1</sup><br>CCH <sup>2</sup><br>CCH | X Tel      |
|  |           | <u>م</u>            | сн <sub>з</sub><br>нн<br>нн<br>нн<br>нн<br>сн                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , <b>¦</b> |
|  |           | īz.                 | н<br>ссн <sub>а</sub><br>н<br>ссн <sub>а</sub><br>н<br>ссн <sub>а</sub><br>н<br>ссн <sub>а</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nde        |
|  | Com-      | punod               | IIIA<br>IIIA<br>IIIA<br>IIIA<br>IIIAXX<br>IIIAXX<br>IIIAXX<br>IIIAXX<br>IIIAXX<br>IIIAXX<br>IIIAXX<br>IIIAXX<br>IIIAXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J Compos   |

<sup>a</sup>Compounds VI-X were recrystallized from benzene-hexane (1: 1), and XXVI-XXX were recrystallized from hexane. <sup>b</sup>On KSK silica gel in a 25% ammonia-96% ethanol system (1:1).

| Com   |        |                 |                               | 1                                  |                  |                    | D         | ihyo | lrochloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |     | 12          |
|-------|--------|-----------------|-------------------------------|------------------------------------|------------------|--------------------|-----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|-------------|
| com-  | R١     | R²              | R <sup>3</sup>                | R1                                 | R <sub>j</sub> a | mp, C <sup>b</sup> | four<br>% | d,   | empirical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | calc<br>% | ÷., | pI o        |
| pound |        |                 |                               |                                    |                  |                    | CI        | N    | formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CI        | N   | ۲ <u>نا</u> |
| XI    | Н      | н               | C <sub>6</sub> H <sub>5</sub> |                                    | 0,57             | 210-211            | 16,5      | 6,5  | $C_{22}H_{28}N_2O_2 \cdot 2HCl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16,7      | 6,6 | 7.7         |
| XII   | $CH_3$ | Н               | $C_6H_5$                      |                                    | 0,55             | 227-228            | 16,0      | 6,5  | $C_{23}H_{30}N_2O_2 \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16,1      | 6,3 | 84          |
| XIII  | Н      | н               | CH3                           | }C₀H₅                              | 0,45             | 135—137            | / 19,7    | 7,9  | $^{\cdot 2}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ | 19,5      | 7,7 | 60          |
| XIV   | $CH_3$ | Н               | $CH_3$                        |                                    | 0,49             | 146147             | 18,8      | 7,2  | $C_{18}H_{28}N_2O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18,8      | 7,4 | 54          |
| xv    | Н      | CH <sub>3</sub> | CH3                           |                                    | 0,51             | 224—226            | 6 18,7    | 7,3  | $C_{18}H_{28}N_2O_2 \cdot 2HCl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18,8      | 7,4 | 79          |
| XVI   | Н      | Н               | C <sub>6</sub> H <sub>5</sub> | )                                  | 0,57             | 220—22             | 2 15.5    | 6,4  | $C_{24}H_{30}N_2O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15,7      | 6,2 | 75          |
| XVII  | CH3    | Н               | C <sub>6</sub> H <sub>5</sub> |                                    | 0,57             | 235233             | 7 15,0    | 6,1  | $C_{25}H_{32}N_2O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15,2      | 6,0 | 90          |
| XVIII | н      | н               | CH3                           | CH=CHC <sub>6</sub> H <sub>5</sub> | 0,37             | 150—15             | 1 18,4    | 7,3  | $^{\circ}2HCI$<br>$C_{19}H_{28}N_2O_2 \cdot 2HCI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18,2      | 7,2 | 66          |
| XIX   | CH3    | Н               | СН₃                           |                                    | 0,41             | 14014              | 17,7      | 6,7  | C <sub>20</sub> H <sub>30</sub> N <sub>2</sub> O <sub>2</sub> ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17,6      | 6,9 | 38          |
| XX.   | н      | CH3             | CH3                           | ,                                  | 0,46             | 173—17             | 5 17,5    | 7.0  | $C_{20}H_{30}N_2O_2 \cdot 2HCl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17,6      | 6,9 | 41          |

TABLE 3. Benzoates and Cinnamates of cis-3-Dimethylaminomethyl-4-hydroxypiperidines

<sup>a</sup>On KSK silica gel in a 25% ammonia-96% ethanol system (1: 10). <sup>b</sup>From ethanol-ethyl acetate.

The corresponding substituted cis-3-aminomethyl-4-hydroxypiperidines (I-V) were obtained in 60-80% yields by reduction of cyanopiperidols (method A) or their acetates (method B) with lithium aluminum hydride (LAH) in ether (Table 1). It is apparent from Table 1 that the reduction of the cyanopiperidols themselves proceeds somewhat less efficiently than the reduction of their acetates and depends on a molar excess of the hydride. A threefold excess of the hydride and refluxing for 6-8 h can be considered as optimum conditions. Amino alcohols I-V are individual substances and have the same cis configuration of the functional groups as the starting cyanopiperidols and a predominant conformation in solution with an axial hydroxy group and an equatorial aminomethyl group. The IR spectra of dilute solutions of amino alcohols I-V contain broad symmetrical absorption bands of a hydroxy group linked by a hydrogen bond with the nitrogen atom of the amino group (v 3265-3336 cm<sup>-1</sup>). The IR spectra also contain absorption bands of stretching vibrations of the N-H bond of a primary amino group (v 3398-3410 cm<sup>-1</sup>). Absorption bands of a free hydroxy group are absent. The primary amino group in amino alcohols I-V was converted to a tertiary group by methylation with formaldehyde and formic acid. cis-3-Dimethylaminomethyl-4-hydroxypiperidines (VI-X, Table 2) are formed in 80-85% yields in this case. The corresponding esters (XI-XX) were obtained by acylation of amino alcohols VI-X with benzoyl and cinnamoyl chlorides (Table 3).

To obtain y-amino alcohols with a secondary amino group, amino alcohols I-V were converted to perhydropyrido[3,4-e][1,3]oxazines XXI-XXV in 58-76% yields by reaction with formaldehyde (Table 4). A characteristic absorption band of stretching vibrations of a C-O-C bond at 1100 cm<sup>-1</sup> is observed in the IR spectra of XXI-XXV. Cyclization with aldehydes and ketones to tetrahydro-1,3-oxazines is one of the convenient methods for the investigation of the configurations of aliphatic  $\gamma$ -amino alcohols [5, 6]. In the case of piperidooxazines XXI-XXV their configurations follow from the three-dimensional structures of starting amino alcohols I-V, which contain axial hydroxy and equatorial aminomethyl groups and in the cyclization of which cis fusion of the piperidine and tetrahydrooxazine rings occurs. Under the influence of LAH the C-O bond of the tetrahydrooxazine ring in the 1 and 2 positions in cis-piperidooxazines XXI-XXV is cleaved to give the corresponding cis-3-methylaminomethyl-4-hydroxypiperidines in up to 90% yields (XXVI-XXX, Table 2). Amino alcohols XXVI-XXX have the same configuration and primary conformation as amino alcohols I-V from which they were obtained. This is confirmed by the presence of absorption bands of a hydroxy group linked by an intramolecular hydrogen bond with the nitrogen atom of the side amino group at 3185-3295 cm<sup>-1</sup> in the IR spectra of dilute solutions of amino alcohols XXVI-XXX.

|                | Com.        |                   |       |                               |             |                        | ·      | ŀ   | ONTIONING TRA                                                 |           | - Vield |  |
|----------------|-------------|-------------------|-------|-------------------------------|-------------|------------------------|--------|-----|---------------------------------------------------------------|-----------|---------|--|
|                |             | ~                 | R?    | R                             | $R_{f^{a}}$ | d<br>م                 | found. |     | empirical                                                     | calc.     | 200 P   |  |
|                | unod        |                   |       |                               |             | o •d                   | CI     | z   | formula                                                       | CI N      |         |  |
|                | IXX         | H I               | II    | C <sub>6</sub> H <sub>5</sub> | 0,28        | 258260                 | 23,8   | 9,4 | C <sub>14</sub> H <sub>20</sub> N <sub>2</sub> O • 2HCI       | 23,2 9,2  | 58      |  |
|                |             | E<br>E<br>E       | ΞΞ    |                               | 0,30        | 261 - 263<br>221 - 222 | 22.5   | 8.3 | C <sub>15</sub> 11 <sub>22</sub> N2O・211Cl<br>Cal112N0O・211Cl | 22,2 8,8  | 22      |  |
|                | VIXX        | / CH <sub>3</sub> | Η     | CH3                           | 0,31        | 228230                 | 28,0 1 | 0.5 | C <sub>10</sub> 11 <sub>20</sub> N <sub>2</sub> O • 211Cl     | 27,6 10,9 | 26      |  |
|                | VXX         | H                 | CI-I3 | CH                            | 0,31        | 232-234                | 28,2   | 0.5 | C <sub>10</sub> H <sub>20</sub> N <sub>2</sub> O • 211Cl      | 27,6 10,9 | 62      |  |
|                | a<br>0<br>n | KSK (             |       | ca ge                         | 1 in        | a 25%                  | ammon  | ia- | 96% ethanol                                                   | svstem    | :5      |  |
|                | .(01        | ц<br>Б            | щоц   | ethan                         | ol-a        | cetone.                |        |     |                                                               |           | ļ       |  |
| cis-3-Acylamin | 10methy1-4- | acylo             | zxyp  | iperi                         | dine        | ß                      |        |     |                                                               |           |         |  |
|                | _           |                   |       |                               |             |                        | -      |     | 1 do                                                          | _         |         |  |

TABLE 5.

Yield,

calc.,

Dihydrochloride

punod Com-

cis-Perhydropyrido[3,4-e][1,3]oxazines

TABLE 4.

| Viald          | 100 alo           | 68<br>58<br>65<br>65<br>8<br>65                                                                                                                                                                                                                                  | 56<br>56<br>54<br>54                                                                   | 6                   |
|----------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------|
|                | z                 | 8,8<br>8,4<br>10,9<br>10,9                                                                                                                                                                                                                                       | 5,8<br>5,8                                                                             | hvdroch             |
| Calc., %       | II                | 8 8 9 9 9 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                          | 9,7<br>6,2<br>6,4                                                                      | of the 1            |
|                | c                 | 67,9<br>68,6<br>60,9<br>62,2<br>62,2<br>62,2<br>62,2<br>62,2<br>62,2<br>62,2<br>62                                                                                                                                                                               | 69,7<br>69,7<br>72,0                                                                   | e form .            |
| Earni-ical     | formula           | C <sub>18</sub> H <sub>28</sub> N <sub>2</sub> O <sub>3</sub><br>C <sub>19</sub> H <sub>28</sub> N <sub>2</sub> O <sub>3</sub><br>C <sub>13</sub> H <sub>24</sub> N <sub>2</sub> O <sub>3</sub><br>C <sub>14</sub> H <sub>26</sub> N <sub>2</sub> O <sub>3</sub> | C14 <sup>1138</sup> N2O3<br>C271128N2O3 · HCI<br>C281130N2O3 · HCI<br>C31H32N2O3 · HCI | Obtained in the     |
|                | z                 | 9,2<br>8,3<br>10,7                                                                                                                                                                                                                                               | 5,6                                                                                    | 10). <sup>c</sup> ( |
| ound, %        | П                 | စိုင်သူ သ<br>စိုင်သူ သ                                                                                                                                                                                                                                           | 6,6<br>6,5                                                                             | em (1:1             |
| Ы              | υ                 | 68,1<br>61,0<br>61,8<br>61,8                                                                                                                                                                                                                                     | 69,6<br>71,8                                                                           | l syste             |
|                | R, <sup>b</sup>   | 0,41<br>0,49<br>0,62<br>0,62                                                                                                                                                                                                                                     | 0,93<br>0,93<br>0,91                                                                   | ethano              |
|                | mp, <sup>ca</sup> | 80—82<br>85—87<br>97—99<br>99—101                                                                                                                                                                                                                                | 21620<br>216217<br>222223<br>213214                                                    | mmonia-96%          |
| R <sup>4</sup> |                   | ÊÊÊÊÊ                                                                                                                                                                                                                                                            | CII<br>Cells<br>Cell=CIICells                                                          | 1 in a 25% a        |
| R"             |                   | C <sub>6</sub> H5<br>C <sub>6</sub> H5<br>CH3<br>CH3                                                                                                                                                                                                             | CGH5<br>CGH5<br>CGH5<br>CGH5                                                           | ilica ge            |
| R <sup>ª</sup> |                   | тнат                                                                                                                                                                                                                                                             | ернн                                                                                   | n KSK s             |
|                | R                 | H<br>CH <sup>3</sup>                                                                                                                                                                                                                                             | ндн                                                                                    | ne. <sup>b</sup> 0  |
| Compound.      |                   | IXXX<br>IXXX<br>IXXX<br>IXXX<br>VIXXX                                                                                                                                                                                                                            | XXXVIIIc<br>XXXVIIc<br>XXXVIIc                                                         | aFrom hexa          |

5 ride and recrystallized from alcohol-acetone; the composition was also confirmed by analysis for chlorine.

1110



 $R^{1}, R^{2} = H, CH_{3}; R^{3} = CH_{3}, C_{6}H_{5}; R^{4} = C_{6}H_{5}, CH = CHC_{6}H_{5}$ 

0,N-Diacyl derivatives XXXI-XXXVIII were obtained in 60-70% yields by acylation of amino alcohols XXVI-XXX with acetic anhydride and amino alcohols I-V with benzoyl and cinnamoyl chlorides (Table 5). Two characteristic absorption bands of the stretching vibrations of amide ( $\nu$  1630-1670 cm<sup>-1</sup>) and acyloxy ( $\nu$  1710-1750 cm<sup>-1</sup>) carbonyl groups are observed in their IR spectra.

The anesthetizing activity of the synthesized compounds was found to be low during a pharmacological investigation of the synthesized compounds. The duration of terminal anesthesia reaches 30-60 min/60-90 min (the numerator refers to deep anesthesia, and the denominator pertains to incomplete anesthesia) only in the case of amino ester XVII when applied in a 1% concentration to the mucous membrane of a rabbit's eye, as compared with 15-30 min/30-60 min for XVI. These values do not exceed 10-15 min/15-30 min in the case of all of the remaining amino esters.

## EXPERIMENTAL

The IR spectra of solutions of the compounds in CCl<sub>4</sub> (for amino acid concentrations of  $5 \cdot 10^{-3}$  M, which excludes intermolecular interactions) were recorded with a UR-10 spectrometer with an LiF prism. The degree of completion of the reactions and the individuality of the compounds were monitored by thin-layer chromatography (TLC) on a loose layer of KSK silica gel in a 25% ammonia-96% ethanol system (1:10). The hydrochlorides were obtained by the addition of a saturated solution of dry hydrogen chloride in anhydrous ether to a solution of the base in ether.

<u>cis-1-Methyl-4-phenyl-3-aminomethyl-4-hydroxypiperidine (I)</u>. A) A 47.6-g (0.22 mole) sample of 1-methyl-4-phenyl-3-cyano-4-hydroxypiperidine was added in small portions with stirring to a suspension of 30 g (0.77 mole) of LAH in 1 liter of anhydrous ether at such a rate that the ether boiled evenly, after which the mixture was heated at  $38-40^{\circ}$ C for 6 h. At the end of the reaction, the mixture was cooled with ice water, and 60 ml of water was added dropwise. The precipitated aluminum hydroxide was removed by filtration and washed on the filter with ether. The combined ether solutions were dried with magnesium sulfate, and the ether was removed by distillation to give 26 g (54%) of crystalline amino alcohol I.

B) A solution of 78.5 g (1.0 mole) of acetyl chloride in 50 ml of acetone was added to a solution of 100 g (0.46 mole) of cyanopiperidol in 200 ml of anhydrous acetone in the presence of 1 g of fine magnesium turnings, and the mixture was maintained at room temperature for 2 days. The precipitate was removed by filtration and dissolved in water, and the solution was treated with sodium carbonate and extracted with ether. The ether was removed from the extract by distillation to give 110 g (93%) of cyanopiperidol acetate.

A 56.8-g (0.22 mole) sample of cyanopiperidol acetate was added to a suspension of 30 g (0.77 mole) of LAH in 1 liter of ether, and the mixture was treated as in method A. Workup gave 35.5 g (68% based on the cyanopiperidol and 74% based on its acetate) of amino alcohol I.

Amino alcohols II-V were similarly obtained (Table 1).

<u>cis-1-Methyl-4-phenyl-3-dimethylaminomethyl-4-hydroxypiperidine (VI)</u>. An 11-g (0.05 mole) sample of amino alcohol I was added in portions with stirring to a mixture of 12 ml (0.12 mole) of 30% formalin and 12 ml (0.25 mole) of 85% formic acid, during which the mixture became warmer. It was then refluxed for 8 h, after which it was cooled and made alkaline with 40% NaOH solution. The base was extracted with ether, and the extract was dried with potassium carbonate. The ether was removed by distillation, and the residue was recrystallized from benzene-hexane (1:1) to give 10.8 g (87%) of amino alcohol VI.

The same method was used to obtain amino alcohols VII-X (Table 2).

<u>cis-1-Methyl-4-phenyl-3-dimethylaminomethyl-4-hydroxypiperidine Benzoate (XI)</u>. A solution of 5 g (0.02 mole) of amino alcohol VI and 7 g (0.05 mole) of benzoyl chloride in 30 ml of benzene was refluxed in the presence of 0.3 g of magnesium turnings for 1 h (or was maintained at room temperature for 2 days), after which 30 ml of dilute (1:1) hydrochloric acid was added, and the organic layer was separated. The aqueous layer was washed with ether, cooled with ice water, and saturated with sodium carbonate. The base was extracted repeatedly with ether, and the extract was dried with magnesium sulfate and filtered. The base was converted to 6.5 g (77%) of the dihydrochloride of benzoate XI.

Amino esters XII-XX were obtained in the same way as benzoate XI (Table 3), except that in the case of cinnamates XVI-XX equimolar ratios of amino alcohols VI-X and cinnamoyl chloride were used.

<u>cis-7-Methyl-10-phenylperhydropyrido[3,4-e][1,3]oxazine (XXI)</u>. A mixture of 22 g (0.1 mole) of amino alcohol I, 50 ml (0.5 mole) of 30% formalin, 150 ml of ethanol, and 14 g (0.1 mole) of potassium carbonate was heated on a boiling-water bath for 10 h. At the end of the reaction, the alcohol and excess formalin were removed by vacuum distillation, and the condensation product was extracted with ether. The ether extracts were washed with a saturated solution of sodium bisulfite and filtered. The ether was removed by distillation, and the residue crystallized to give 13.5 g (58%) of piperidooxazine XXI.

Piperidooxazines XXII-XXV were similarly obtained (Table 4).

cis-l-Methyl-4-phenyl-3-methylaminomethyl-4-hydroxypiperidine (XXVI). A solution of 10 g (0.04 mole) of piperidooxazine XXI in 20 ml of dry ether was added dropwise to a suspension of 8 g (0.2 mole) of LAH in 200 ml of dry ether, and the mixture was refluxed for 7 h. Water (16 ml) was then added with stirring and cooling (with ice water), and the precipitate was removed by filtration and washed with ether. The combined ether solutions were dried with magnesium sulfate, and the ether was removed by distillation to give 9.2 g (92%) of amino alcohol XXVI.

Amino alcohols XXVII-XXX were obtained by the method used to prepare amino alcohol XXVI (Table 2).

<u>cis-1-Methyl-4-phenyl-3-methylacetamidomethyl-4-acetoxypiperidine (XXXI)</u>. Acetic anhydride [4 ml (0.04 mole)] was added to a solution of 3.4 g (0.015 mole) of amino alcohol XXVI in 10 ml of dry benzene, and the mixture was refluxed for 3 h. The benzene and excess acetic anhydride were removed by vacuum distillation, and the residue was dissolved in water. The cooled aqueous solution was saturated with sodium carbonate in the presence of ether, and the base was extracted with ether. The extract was dried with magnesium sulfate, and the ether was removed by distillation to give 3.3 g (68%) of amido ester XXXI.

Amido esters XXXII-XXXV were similarly obtained (Table 5). In the preparation of benzoates XXXVI and XXXVII and cinnamate XXXVIII the acylation of amino alcohols I and II was carried out in benzene in the presence of benzoyl and cinnamoyl chlorides in a three-fold molar excess with respect to the amino alcohols.

## LITERATURE CITED

- 1. E. T. Golovin, L. S. Pomogaeva, V. K. Muratov, S. N. Nilovskaya, and D. A. Kharkevich, Khim.-Farm. Zh., No. 10, 21 (1976).
- 2. E. T. Golovin, A. P. Nikiforova, L. G. Komarova, A. A. Myazdrikova, S. N. Nilovskaya, and D. A. Kharkevich, Khim.-Farm. Zh., No. 2, 3 (1972).
- 3. E. T. Golovin, E. P. Badosov, A. P. Nikiforova, and B. V. Unkovskii, Zh. Org. Khim., <u>10</u>, 706 (1974).
- 4. E. T. Golovin, E. P. Badosov, A. P. Nikiforova, A. B. Khasirdzhev, and B. V. Unkovskii, Zh. Org. Khim., <u>10</u>, 1265 (1974).

- 5. G. Drefahl and H.-H. Hörhold, Chem. Ber., <u>94</u>, 1657 (1961).
- 6. T. A. Crabb and E. R. Jones, Tetrahedron, 26, 1217 (1970).

REACTION OF ISOPROPYLIDENE MALONATE WITH N-ARYLIDENE-1(OR 2)-NAPHTHYLAMINES

UDC 547.841'832.2:542.954

Ya. A. Strods, V. P. Tsiekure, V. É. Kampars, I. É. Lielbriedis, and O. Ya. Neiland

The initial step in the reaction of isopropylidene malonate with N-arylidenel(or 2)-naphthylamines is cleavage of the latter. The reaction gives isopropylidene 2-arylidene malonates, which subsequently react with  $\alpha(\text{or }\beta)$ -naphthylamines to give 4-aryl-2-oxo-1,2,3,4-tetrahydro-7,8(or 5,6)-benzoquinolines. The latter are also obtained in the reaction of arylbis(isopropylidenemalonatyl)methanes with  $\alpha(\text{or }\beta)$ -naphthylamines. Indane-1,3-dione and dimedone also cleave N-arylidene-1(or 2)-naphthylamines, and 2-arylideneindane-1,3-diones or arylbis(dimedonyl)methanes are obtained.

The reaction of isopropylidene malonate (I) with N-arylidene-1(or 2)-naphthylamines (II or III) gives [1, 2] 4-aryl-2-oxo-1,2,3,4-tetrahydro-7,8(or 5,6)-benzoquinolines (VI or VII).

When a mixture of isopropylidene malonate (I) was refluxed with arylidenenaphthylamines IIa or IIIa in ethanol for 1 h, the reaction product was unexpectedly isopropylidene 2-(4-N,N-dimethylaminobenzylidene)malonate (IVa). An increase in the reaction time to 12 h led to benzoquinolines VIa or VIIa. The latter were also obtained by reaction of isopropylidene arylidenemalonate IVa with  $\alpha$ (or  $\beta$ )-naphthylamines. This indicates that the initial step is cleavage of amines IIa or IIIa to give IVa, which subsequently reacts with naphthylamines to give VIa or VIIa. It was felt that it was necessary to ascertain whether this sort of reaction occurs in all of the investigated cases.



Cleavage products IV are isolated in good yields in the reaction of arylidenenaphthylamines II or III with electron-donor substituents. The absorption of arylidenenaphthylamine IId vanishes in the UV spectrum of the reaction mixture of isopropylidene malonate (I) with N-(4-methoxybenzylidene)-1(or 2)-naphthylamine (IId), and absorption characteristic for isopropylidene arylidenemalonate IVd appears; the spectrum contains two isobestic points (255 and 330 nm) in which the sum of the extinction coefficients of starting I and IId is equal to the sum of the extinction coefficients of products IVd and  $\alpha$ -naphthylamine. This indicates that the cleavage reaction takes place exclusively. The UV spectrum of the reaction mixture of I and IIId does not contain isobestic points, but a decrease in the intensity of the absorption of product IVd is observed, and this indicates the occurrence of a subsequent reaction. Overlapping of the absorption bands of the starting compounds and the cleavage products is observed for the reaction mixtures of other arylidenenaphthylamines II or III

Riga Polytechnic Institute, Riga 226828. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1369-1372, October, 1978. Original article submitted May 23, 1977; revision submitted February 27, 1978.

1113