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A b s t r a c t  Concurrency control has always been one of the most important issues in the 
design of synchronous groupware systems with fully-replicated architecture. An ideal strate- 
gy should be able to support natural and flexible human-to-computer and human-to-human 
interactions while maintaining the consistency of the system. This paper summarizes previ- 
ous researches on this topic and points out the deficiencies of the existing results. A novel 
semantics-based concurrency control framework, oodOPT, is proposed. The main idea of the 
framework is to resolve conflicts by utilizing semantics of the operations and the accessed data 
objects. With this approach, complexities in concurrency control are shifted completely from 
application developers to the framework. Conflicts among operations on objects with different 
semantics and the strategies resolving these conflicts are analyzed. After describing the algo- 
ri thm in full detail, the discussion ends up with a comparison with other related work and some 
considerations for open problems. 

K e y w o r d s  computer supported cooperative work, groupware, concurrency control, ood- 
OPT, COFFEE,  Cova 

1 I n t r o d u c t i o n  

To suppor t  na tura l ,  flexible and reliable human- to - compu te r  as well as h u m a n - t o - h u m a n  interac-  

tions, synchronous  groupware  systems oRen adopt  the so-called ~fully-replicated'  archi tecture ,  where 

da t a  objects  and user opera t ions  are equally repl icated at all coopera t ive  sites. Whi le  responsiveness 

and rel iabil i ty can be grea t ly  improved with this approach,  consis tency ma in t enance  becomes more  

complex than  t h a t  in central ized and d is t r ibu ted  archi tectures  ill, e.g., DBMSs  and OSs. The  com- 

plexities or iginate  largely from the differences between the concurrency control  f rameworks (CCF) ,  as 
shown in Table 1. 

Table 1. Differences between CCFs in Centralized and Fully-Replicated Architectures 
Centralized Fully-replicated 
�9 One site as the coordinator �9 Multiple peer sites, with no coordinator 

Architecture �9 Multiple threads �9 One thread at each site 
Objects being �9 Simple in structural and operational �9 Complex and diverse in their semantics 
operated semantics, e.g., w/r on a relation or file �9 e.g., set, bag, list, array, tree, graph, etc. 
User interface �9 Loosely coupled �9 Tightly coupled 
vs CGF �9 Operations are often collected first and submi- �9 Operations are submitted to CCF immediately 

tted to CCF in batch mode as a transaction after they are generated 
Goals of CCF �9 Throughput �9 Responsiveness, naturalness, reliability 

�9 Atomic, consistency, isolation, and duration �9 Consistency of causal dependence, operation 
properties of transactions results, and final object states 

From the comparisons,  we can see tha t  issues in main ta in ing  sys tem consistency would be quite  dif- 

ferent in the two dis t inct  architectures.  Tradi t ional  strategies,  such as lock and t imes tamp-based  ones, 
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often lead to sticky and/or  unnaturaI user interfaces when they are explored in real-time groupware 
systems [~1. Therefore, it is natural  and a great challenge to develop more advanced strategies. 

The challenge has a t t racted many research efforts and interests on this topic in the last decade. 
Many approaches were proposed and implemented. The most promising one would be dOPT im- 
plemented in GROVE, a cooperative text editor by Ellis and Gibbs [a]. dOPT increases greatly the 
naturalness and flexibility of interactions by exploring the semantics of the da ta  objects and the 
operations defined on them. 

This paper describes oodOPT, a semantics-based concurrency control framework for fully-replicated 
architectures, oodOPT follows dOPT in the sense tha t  they both take a semantics-based approach. 
I t  generalizes dOPT based on the object model of Cova, a programming language for developing 
cooperative applications[4,sl. Firstly, related work on this topic and their deficiencies are discussed. 
Then it comes to our approach to address this problem. The concurrency control framework will 
then be discussed in detail. Finally we compare oodOPT with other related work and present the 
conclusions. 

2 R e l a t e d  W o r k  

Research on advanced CCF for fully-replicated architecture was motivated by various types of 
co-authoring systems. Due to the differences in application areas and user requirements, strategies for 
controlling concurrent operations vary widely in their complexity and efficiency. What these strategies 
achieve, such as the granularity of concurrency operations, the naturalness and flexibility of interac- 
tions, etc., also vary widely. Greenberg classifies these strategies into two categories: optimistic and 
pessimistic [2]. Generally, pessimistic algorithms lead to sticky and limited user interfaces, while opti- 
mistic algorithms have the user interfaces changed unnaturally. These make them far from supporting 
natural and flexible interactions. 

dOPTexecutes operations immediately at the generating site so that the interface responds quickly. 
They will then be multicast to other cooperative sites so that the cooperators are aware of each other's 
activities. This leads to two problems. The first one is causal violation. Due to unpredictable network 
latency, an operation 02, whose generation depends on another operation Ol, may arrive at a site before 
the arrival of oi. If 02 (the result) is executed prior to ol (the cause), then the causal dependency will 
be violated. 

To maintain causal dependencies, a state vector V --- <vl, v2,.-., vn} is introduced, where vi is the 
number of executed operations generated at the ith site. For two state vectors VI and V2, V1 is less 
than V2 (denoted as VI < I/2) if each element of VI is not greater than the corresponding element 
of V2 and there exists at least one unequal element. Every site maintains a local state vector (LSV) 
whose initial value is all zeros. After executing an operation from the i-th site, the i-th element of 
the LSV will be increased by one. An operation is multicast together with the LSV of the generating 
site. When an operation is to be executed at a site, the state vector associated with it will be checked 
against the site's LSV. Only operations whose state vector is less than or equal to the LSV can be 
executed. It can be proved that causal dependency can be achieved when operations are executed in 
this way [6] . 

For two operations, if neither one is causally dependent on the other, they are said to be concurrent. 
According to the above scheduling schema, concurrent operations can be executed in any order. This 
leads to the second consistency problem. For example, suppose the initial string is 'abcd'. ol and 02 
are concurrent. Ol inserts a 'I' at the 2nd position and 02 deletes the character at the 3rd position. 
If oi is executed first, the final string becomes 'alcd'. If o2 is executed first, the final string becomes 
'albd'. Since both execution orders are possible, there is no guarantee that the final objects at two 
sites are identical. 

The problem conies from the fact that an operation may make the site object's state different liom 
the state depending on which the concurrent operation was generated. By executing an operation in 
its original form, the effects caused by executed concurrent operations are completely neglected. This 
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is exactly the root of the second type of inconsistency. 
To maintain the consistency, d O P T  transforms the operation to be executed against executed 

concurrent operations with the so-called t ransformation functions (TF). The inputs  to a TF  are two 
concurrent operations, one to be executed and one executed. The return value is a new operation, 
which is obtained by utilizing the semantics of the two input operations and the objects being operated. 
For example, in the case described above, if ol is executed first, then the position parameter  of o2 
will be adjusted to 4, reflecting the fact that  ol has moved the characters following 'a '  one position 
rearwards. 

d O P T  transforms the operation to be executed against each concurrent operat ion in the operation 
log one by one. However, it fails in the case of partial  concurrency, where the operation to be 
transformed and the operation used for t ransformation are not generated according to the same 
object state, which violates the precondition required by the transformation functions. 

To solve the partial  concurrency puzzle, several enhancements of d O P T  were published in the last 
decade. The adOPTed[ zl algorithm proposed by Reseel et el. replaces the linear operation log of d O P T  
with an interaction model, which is a directed graph with the state vectors being its vertices and the 
operations being its edges. Suleiman uses the "forward and backward" transformation functions [61, Sun 
et al. utilizes the "inclusion and exclusion" t ransformation functions Is'g] respectively to ensure that  
the sequence of opera.tiorm for transformation has the same context as the operat ion to be transformed. 

These enhancements differ in time and space complexities. However, all of them are based on 
similar ideas, i.e., to satisfy the pre-conditions required by  the transformation functions that  the 
operation pair supplied to the TF  should be generated from the same object state. 

2.1 Def i c i enc i e s  

The most promising aspect of dOPT lies in its semantics-based approach, which resolves the 
conflicts among concurrent operations with the semantics of the operations and the object being 
operated. Although it is declared that  the algorithms mentioned above could be used as a general 
purpose CCF for fully-replicated architecture, there is much work to approach this goal. The cause 
lies in the specialization of the semantics of the object being operated and the operations defined on 
it. The structure of the object handled by these algorithms is a linear list and there are only two 
operations, i.e., insert and delete defined on them. The reason why these algorithms could not be 
used as a general purpose CCF lies in the following aspects. 

First, a linear list consisting of only simple characters is not enough for practical real-time systems. 
Data  structures with much richer semantics are often required to model the object to be shared in the 
reai-time session. Even for a practical real-time text editor, other structures are required to describe 
the hierarchy of documents, paragraphs, sentences, words, and characters as well as the formats of the 
objects at different levels. 

The second problem rises from the fact that  transformation functions are application-specific and 
should be designed and implemented from scratch for each system. As the complexities of the objects 
and operations increase, this work is by no means an easy task [I~ At the same time, the diversity of 
programming languages and platforms makes it hard to reuse the design and implementation, which 
leads to lots of duplicated work and low efficiency. 

The third one comes from the fact that  user operations are directly mapped  to the primitive 
operations defined on the object. This is rarely the case in practical systems, where user operations 
are often the combination of primitive operations on objects at different levels. For example, a move 
operation may be implemented by deleting the characters first and then inserting them at the new 
position. Since the combinations are usually more complex than primitive operations themselves, it is 
often hard to define TFs  among combined operations. The problem becomes even more serious when 
users are allowed to interact with the system by combining primitive operations in an ad hoe manner. 

These problems urge us to seek a solution able to shift the difficulties in concurrency control from 
groupware developers to the system. Our a t tempts  lead to oodOPT, a semantics-based CCF, which 
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we wili discuss in the following sections, 

3 T o w a r d s  a G e n e r a l  P u r p o s e  F r a m e w o r k  

The first step towards a general-purpose framework is to provide a solid data description mechanism 
that  can be used to model the structural and operational semantics of the artifacts shared in a real- 
time session, oodOPT is based on the Cova Object Description Language (CODL), which implements 
an extended version of the Object Model [11] proposed by ODMG and a self-contained programming 
language for implementing the operations of objects. CODL is a pure object-oriented language with 
its syntax similar to Java. Besides, four additional commands, foreach, insert, delete, and update, are 
implemented for manipulating collection objects. 

The second step would be identifying the primitive operations defined on different types of objects. 
These operations would be the only operations that could be used to change or retrieve the state of 
objects. In CODL, there are atomic objects and collection objects, i.e., set, bag, list, array, dictionary, 
tree, graph. Operations defined on these objects could be classified into four categories, as listed below. 

�9 A Reference returns a value based on the current state of the referenced objects, or navigates 
through a collection, etc. 

�9 An Update changes the state of an object, e.g., by changing the attribute of an atomic object, 
or replacing the element with a new one at a specific position in a collection. 

�9 An Insert inserts a new element into a collection object. 
�9 A Delete removes a specific element from a collection object. 
Primitive operations may have different forms in CODL. For example, an update may be an 

assignment, or an explicit update command on a collection. Operations on objects are implemented 
by combining primitive operations with flow control statements and other language constructs. User 
operations are translated into operations on objects by user interface modules. Therefore, there are 
few limitations on the operations available to users. New operations can even be defined dynamically. 

An instance of Cova virtual machine (CovaVM) runs at each cooperative site. It maintains an 
internal object space that contains a copy of the artifact being shared. The UI module passes the names 
of operations aiong with the actual parameters to CovaVM, which will decompose the commands of 
the corresponding methods into primitive operations and apply them to the object. Similar to dOPT, 
operations will be transmitted to and executed at other cooperative sites to achieve awareness. 

The third step is then to find a way to execute these primitive operations so that the effects and 
results of a user operation are identical at all sites. This is because that upon the execution of an 
operation, the state of objects might have been changed by other concurrent operations. If operations 
are executed in their original forms, they may produce different results at different sites, as shown in 
Section 2. 

oodOPT is implemented in the Cova virtual machine. Before a primitive operation is executed, it 
will be transformed against other primitive operations that have been executed on the same object. 
The transformation is based on the semantics of the primitive operation itself and the semantics of the 
object it operates. This is feasible because this semantic information is available to CovaVM. If each 
primitive operation produces an identical result at different sites, the results by their combination at 
different sites will also be identical. 

3.1 Formal  Descr ipt ions  

Before going into details on how oodOPT works, we first give several definitions as the formal 
descriptions of a synchronous groupware system and its correctness. 

Def in i t i on  1. A synchronous groupware system G can be formalized as a tupte (O, S}, where 
0 = ( D , M )  and S = { s t , s2 , . . . , s ,~} .  0 is the definition of the shared object, D describes its 
structural semantics and M = {ro t ,m2, . . .  ,m~} is a set of methods defined on D. User operations 
on the object will be translated into calls (denoted as c) to the methods defined on O. The notation c 
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will also be used to refer to the user operation thereinafter. S describes the dynamic properties of G. 
Each sj in S is a quintuple (o,i ,p, V , Q ) ,  representing a cooperative site. i and p are the identifier 
and the priority numbers assigned to sj respectively. They are unique within the scope of So.  The 
site object o is an instance of OG. The state vector V represents the current state of site sj .  The 
request queue Q contains all unexecuted requests received by site sj.  Each request r is a quaternion 
(i, V ,  c,p}, where c is the operation, i and p are the identifier and the priority number of the source 
site where e was generated, and V is the state vector of the source site when c was generated. 

For a groupware system G, the period during which an object is opened for sharing is called a 
session. A session may be divided into multiple stages. A session goes into a different stage when the 
object definition O or the number of sites in S changes. 

D e f i n i t i o n  2 ( C o n s i s t e n c y  M o d e l  o f  a G r o u p w a r e  S y s t e m ) .  I f  the following three conditions 
are always satisfied during each stage of G, G is said to be consistent. 

1. Consistency of Causal Dependency CA: given two operations cl and c2, i f  c2 is generated based 
on the state produced by cl, then the execution order of cl must be before that of c2 at any site. 

2. Consistency of Operation Results CB: for each operation c, the actual results produced by its 
execution at other sites must always be identical to that produced by its local execution. 

3. Consistency of Final States Cc: after the operations generated by all sites are executed at every 
site in G, all site objects must be logically equivalent (see Definition 3 for a formal description). 

W~e name this consistency model as COFFEE, which can be regarded as a coordinator to the 
ACID model that  should be followed by a centralized transaction manager. The COFFEE model is 
defined here to set a goal for oodOPT. In fact, some of the conditions can be relaxed in some cases. For 
example, in a free style brain storming, users may not care whether their final documents are identical. 
However, in some other cases, application specific constraints may be imposed on the shared object. 
These constraints may be violated by concurrent operations, although any operat ion alone does not 
violate them. This is another source leading to inconsistency. However, we will not address this type 
of inconsistency in this paper. 

D e f i n i t i o n  3 (Logic  E q u i v a l e n c e  b e t w e e n  D a t a  O b j e c t s ) .  Given two Cova objects, ol and 
o2, they are said to be logically equivalent iff: 

1. Both Ol and o2 are of the same data type and have an equal value; or, 
2. Both ol and o2 are of the same collection type and each element in one collection has a logi- 

cally equivalent element with a logically equivalent index ( a position or a key, i f  possible) in another 
collection; or, 

3. Both ol and o2 are of the same Cova class type and each attribute of one object is logically 
equivalent with the corresponding attribute of another object. 

In Definition 3, literal values, attributes of objects, elements and indexes of collections are uni- 
formly regarded as objects. To simplify the discussion, an equal-sign (=) is used to denote the logic 
equivalence relationship. When ol is not logically equivalent to o2, we denote it as ol ~ o2. 

According to this definition, it is obvious that  'a '  = 'a', list( 'a ' ,  'b', 'c'} = list( 'a ' ,  'b', 'c'}, while 
list( 'a ' ,  'b', 'c'} ~ set( 'a ' ,  'b', 'c'} because they are not of the same collection type. Similarly, l ist( 'a ' ,  
'b', 'e') ~ l ist( 'a ' ,  'c ' ,  'b'), for the second element of the first list 'b', is not logically equivalent to the 
element 'c ' ,  whose index is equivalent to that  of 'b' in the first list. 

When an operat ion c on an object o is executed, it may cause two different types of effects: 
1. An object is returned to the caller. We use o.c to denote the returned object. 
2. The state of o is changed, o:c is used to denote the modified object. 
D e f i n i t i o n  4 (Conf l i c t  b e t w e e n  O p e r a t i o n s ) .  Given two concurrent operations cl and c2, 

generated by two different sites in the same real-time groupware system G, if  at any site, when cl and 
c2 are executed serially on the site object o in different orders, at least one of the three conditions @ 
(o:  q).c2 r o.c2, or @ (o:  c2).q ~ o.cl, or @ (o:  cl) : c2 ~ (o:  c2) : cl is satisfied, then cl and c2 
are said to be conflicting. 

For two conflicting operations, executing them in their original forms violates the 2nd and 3rd 
consistency conditions given in Definition 2. For example, suppose o = list{'a',  'b'}. Two concurrent 
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operations ct and c 2 insert a 'c '  at the third position and a 'd '  at the first position respectively. 
Condition @ will be satisfied when they are executed serially in different orders. Therefore, the two 
operations conflict. This is exactly one of the cases handled by dOPT and its derivations. 

Based on these definitions, we wiU now discuss in detail the oodOPT framework. 

4 T h e  o o d O P T  F r a m e w o r k  

The name, oodOPT, stands for the combination of the object-oriented (oo) and transformation- 
based (dOPT) natures of the framework. In oodOPT operations are scheduled in a way similar to 
dOPT. It is implemented in CovaVM, which executes the operations by interpreting the statements 
of the corresponding method definition. For each statement, it will be decomposed into a series 
of Cova instructions, which are the minimum executable unit. Primitive operations on objects are 
implemented as Cova instructions. 

This section illustrates how the framework works by discussing the conflicts among primitive 
operations on different types of objects as well as how these conflicts could be resolved with the 
semantics of the operations and the objects. 

4.1 A t o m i c  O b j e c t s  

In Cova, atomic objects are implemented with user-defined classes. Currently, Cova class supports 
only one type of properties, i.e., attributes. Attributes of atomic objects can be of literal types, 
collection object types, or atomic object types. Each attribute is assigned a unique order number as 
its identifier. 

For atomic objects, two primitive operations, i.e., reference and update, are provided. Both of 
them operate on a single attribute of an object. For an attribute of object types, the value returned 
by a reference operation is the identifier of the object referred to by this attribute. Thus, conflict of 
operations on attributes of literal or non-literal types can be handled in the same way. 

Table 1 shows the conflicts among two concurrent 
Table 1. Conflicts among Atomic Operations operations on an atomic object, where x/s ta tes  the 

Rl(i) Ul(i) two operations conflict, • states there is no conflict. 
R2(i) • x/ The parameter i is the order number of the attribute. 
U2(i) ,/  x/ According to Definition 4, it is easy to verify that an 

update witl conflict wi thconcurrent  reference and update operations. 
To resolve these conflicts, oodOPT maintains an operation log (L) for each atomic object. Each 

item in the log is a sextuple ( t ,n ,v , s ,p ,V} ,  where t is the type of the operation; n is the order 
number of the attribute operated; v is the value set by this operation; s is the identifier of the site 
generating the request that  contains this operation; p and V are the priority number and the state 
vector associated with the request respectively. 

For atomic objects, two types of operations are logged. One is normal update, which is actually ex- 
ecuted update operations. The other is pseudo update, which is not executed due to conflict resolution. 
Before an update operation is executed on an atomic object, the operation log is searched backwards 
from the end to the top. If a non-preceding update to the same attribute is found, the algorithm will 
check whether the two updates are from the same request. If so, the log item is refreshed with the new 
value. The state of the attribute will also be refreshed if the log item is a normal update. If the two 
updates are not from the same request, their priorities are checked. If the update to be executed has 
a lower priority than the log item, it will not be executed and only a pseudo update item is appended 
to the tail of the log. 

To retrieve the value of an attribute, the operation log is also searched. If the log is empty, the 
initial value of the attribute will be returned. If a log item from the same request or a preceding 
normal update is found, then the value of the log item will be returned. Otherwise, the value of the 
latest preceding pseudo update will be returned. 
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The  strategies for executing update and  reference operat ions on atomic objects  are depicted by 
Algor i thm 1 and  Algor i thm 2 respectively. 

A l g o r i t h m  1. Execute (o, u, s,p, V )  

i n p u t  o: the atomic object 
u: a tuple (n,v); n: the attribute # ;  v: the new value 
s: identifier of the site that generates the request 
p: priority mlmber of the site 
V: state vector associated with the request 

o u t p u t  none 
b o d y  
{ 

bDuplicated=false; bExecute=true;  
foreach l in  Lo (from tail to head) 
{ 

if  (hi! = n~) 
con t inue ;  

if ( v 2  >_ v ~) 
{ / / l  and u are concurrent 

if (Vz = =  V&&sz = =  s) 
{ / /mul t ip le  updates in the same request 

bDuplicated = true; 
b reak ;  

} else if (pl > p) 
{ bExecute = false; 

b reak ;  
} 

} 
} 
if (bDuplicated) 
{ //refresh the log item 

V l  ~ -  V u  ; 

if (tt = =  NORMAL_UPDATE) 
set the value of the n~-th attribute of o to v; 

} else { 
t = PSEUDO_UPDATE; 
if (bExecute) 
{ 

set the value of the n~-th attribute of o to v; 
t = NORMAL_UPDATE; 

} 
append (t,n~,,v~,, s,p, V) to Lo at its tail; 

} 
} 

A l g o r i t h m  2. Execute  (o, r, s, p, V )  

i n p u t  o: the atomic object 
r: a tuple (n, v) representing the reference 

o u t p u t  Value of the attribute to be retrieved. The value will be stored in v~ too. 
b o d y  
{ 

bFound=false;  bFoundPseudo= false; 
foreach  l in  Lo (from tail to head) 
{ 

if (nil = n~) 
c o n t i n u e ;  
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if (Vz = =  V&&sl = =  s) 
{ bFound=true ;  

b reak ;  
} else 
if (V[ z < V ~l) 
{ 

if (h = =  NORMAL_UPDATE) 
{ bFound=true; 

b reak ;  
} else if  (!bFoundPseudo) 
{ bFoundPseudo=true;  

p v  = vl ; 
} 

} 
} 
if (bFound) 

Yr = Vl ; 

else if (bFoundPseudo) 
vr  = pv ;  

else 
v~ = the value of the n~-th attribute of o; 

r e t u r n  Vr ; 
} 

s=o,p=l,o={1,1} s = l , p = 2 ,  o = { 1 , 1 }  

V = (0, 0) ( MoveTo (2,3) V = (0, 0) 

v = < l , o > ~ "  " " =  : 

, SetX(5) 

*GetSize ( ) 

F i g . 1 .  C o n c u r r e n t  o p e r a t i o n s  o n  a n  a t o m i c  o b j e c t .  

~r will show how Algor i thms 1 and 2 work with  an example.  Suppose  there  are two users 
man ipu la t ing  concurrent ly  a point object  with two a t t r ibu tes ,  i.e., the x and  y coordinates .  As shown 
in Fig . l ,  three me thods  are used, i.e., MoveTo, SetX, GetSize. The  first two are update operat ions ,  
the last one is a reference operat ion.  

According to Algor i thm 1, after  the MoveTo is executed at  site 0, the opera t ion  log of o becomes:  

{<NORMAL_UPDATE, 1,2, 0, 1, (0, 0)), (NORMAL_UPDATE, 2, 3, 0, 1, <0, 0))}. 

o becomes {2, 3}. The  successive GetSize re turns  6, which is the p roduc t  of 2 and  3. At site 1, 
the opera t ion  log becomes {(NORMAL_UPDATE, 1, 5, 1, 2, (0,0})}. o becomes {5, 1}. A successive 
GetSize re turns  5, which is the p roduc t  of 5 and 1. 

W h e n  executing MoveTo(2, 3) at site 1, two pr imi t ive  upda te  opera t ions  will be generated.  One 
of t h e m  is (1,2).  I t  is concurrent  with the one in the log and has a lower priority. Therefore ,  it is 
not  executed. Only  a pseudo upda te  is added to the log. For the second u p d a t e  (2, 3), there  is no 
concurrent  opera t ion  in the log. Therefore  it is executed.  The  log for o at  site I now becomes:  

{<NORMAL_UPDATE, 1, 5, 1, 2, (0, 0)), (PSEUDO_UPDATE, 1, 2, 0, 1, (0, 0)), 

(NORMAL_UPDATE, 2, 3, 0, 1, (0, 0))}. 

o now becomes {5,3}. When  the request  GetSize 0 genera ted  by site 0 is executed  at  site 1, 
according to Algor i thm 2, the log will be  searched. The  reference to x re turns  2, not  the current  value 
5. The  reference to y re turns  3. Therefore,  the result  re turned by this request  is 2 • 3, which is 6. 
This  is exact ly  the value produced  by execut ing it at  site 0. It  is easy to verify t h a t  when the two 
opera t ions  genera ted  at  site 1 are executed at  site 0, the  consistency condit ions C s  and  Cc will also 
be  satisfied. 

4.2 Set Objects  

A set object  in Cova is an unordered collection t ha t  contains mult iple m e m b e r  objec ts  of compat ib le  
da t a  types. A set ob jec t  does not allow dupl icated members .  O D M G  defines four teen me thods  in the 
interface of set object .  All these methods  can be expressed by a combinat ion  of 3 pr imi t ive  operat ions:  
navigate, insert, and  delete. A navigate tries to access each element in the set and  does some other  
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calculations according to the current  state of these elements.  The  state  of set objects  may be changed 
by inserts and  deletes. Therefore, they conflict with navigate operat ions.  Conflicts among operat ions 
on set objects are shown in Table 2. 

Table 2. Conflicts among Set Operations 
nl  il dl 

~2 • ~/ ,/  
~2 ~./ X X 

d2 ~/ x x 

To resolve these conflicts, an operat ion log is also ma in ta ined  for each set object.  Only  inserts and  
deletes will be recorded in the log. Each i tem in the log is a qu in tuple  (t, v, s ,p ,  V ) ,  where v is now 
the element inserted or deleted. It can be either a literal value or an object  identifier.  Other  elements 
in the log i tem have the same meaning as those of the log i tem for a tomic objects.  The  strategies to 
execute navigates, inserts, and  deletes on a set  object  are shown as Algor i thms 3, 4, a nd  5. 

A l g o r i t h m  3. Execute (o, n, s ,p ,  V )  

i n p u t  o: the set object 
n: the navigate operation 

o u t p u t  A new set object whose members can be used for further calculation 
b o d y  
{ 

Onew z O; 

foreach l in  Lo 
{ 

i f (V~ z > V ~ &:&st[ = s) 
{ / / l  and u are concurrent 

if (h = =  INSERT) 
remove vt from Onew; 

else 
insert vl into o~w; 

} 
} 
r e t u r n  O,,ew; 

} 

A l g o r i t h m  4. Execute  (o, i, s ,p ,  V )  

i n p u t  o: the set object 
i: the insert operation (I, v), where v is the element to be inserted 

o u t p u t  none 
b o d y  
{ 

foreach e in  o 
{ 

if (e = =  vi) 
/ / v i  is already in the set 
r e t u r n ;  

} 
o +  = vi; 
append ( INSERT,  vi, s,p, V} to Lo at its tail; 
r e t u r n ;  

} 

A l g o r i t h m  5. Execute (o,d, s ,p,  V )  

i n p u t  o: the set object 
d: the delete operation (D, v}, where v is the element to be deleted 

o u t p u t  none 
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body 
{ 

foreach e in o 
{ 

if (e = =  Vd) 
{ 

remove e from o; 
append (DELETE,  vd, s, p, V> 
to Lo at its tail; 
re turn;  

} 
} 

s : O , p = l , o = { p l }  s= l , p=2 ,o={p l}  

~- = <o, o> d(pl ) ~" : <0, 0)~ 

7 

i(P2) 

count(o) 

Fig.2. Concurrent operations on a set object. 

According to Algorithms 4 and 5, it can be seen that inserts and deletes can be executed in normal 
ways, for they will never conflict with other concurrent operations recorded in the log. When a set 
object is navigated through, e.g., to count the members, elements inserted by concurrent inserts will 
be omitted, while elements removed by concurrent deletes will be included. The resulting set object 
used for navigation will then become logically equivalent to the set object navigated by local execution. 

This can be further explained by a simple example. As shown in Fig.2, suppose a set object o 
contains only one point Pl initially, count (o) will return 2 at its local execution. Upon its execution 
at site 0, the set object o contains only p2 inserted by i(P2)- According to Algorithm 3, pz will be 
inserted back into the set object to be navigated, for d(pI) is concurrent with count(o) .  Therefore, 
the resulting object is {Pl,P.@, and count(o) at site 0 will return 2 too. 

4.3 List Objects  

Unlike set objects, a list object is a structured collection whose members can be accessed via 
continuous indices starting from zero. This results in more complex operations. Therefore, conflicts 
among these operations are far more complicated than those for a set object. 

Besides navigate, insert, and delete operations that 
are similar to those on set objects, another primitive 
operation update can be identified, inserts and deletes Table 3. Conflicts among List Operations 

nl i~(i) dl(i) ul(i) 
now take an additional parameter which specifies the ~2 x 4 4 ,/ 
position of the element being operated. An update re- i2(j) ~/ ~/ ~/ ~/ 
places the etement at the specified position with a new d2(j) x/ ~/ ~/ x/ 
element. Conflicts among these operations are shown in us(j) ~/ x/ ~/ (i = J)?x/: x 
Table 3. 

To resolve the conflicts, the operation tog for list objects now contains all the executed inserts, 
deletes and updates. Each item in the log is a sextuple <t, x, v, s,p, V ) ,  where x is the index of the 
element by this operation. Other elements have the same meaning as those of a log item for atomic 
objects. The algorithm to execute inserts and deletes is shown as Algorithm 6. 

The basic ideas of the algorithm are similar to that proposed by Suleiman in [6]. When executing 
an operation on a list, operations in the log that conflict with it are extracted out to form a special 
sub-log. At the same time, items in the sub-log will be reordered into two parts. The first part 
contains all the operations that precede the operation to be executed, while all concurrent operations 
are in the second part. Then the operation to be executed is transformed against the operations in 
the second part one by one. Finally, the transformed operation is executed. 

A l g o r i t h m  6. Tfd (t, x ,p ,  t I, x ' ,p ' )  

input t, x,p: type, index, and priority of the operation to be transformed 
{ ,  xl,p~: type, index, and priority of the transforming operation 

ou tpu t  New index of the operation to be transformed after transposition 
body  
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if  (t' = =  UPDATE) return x; 
sw i t ch ( t ) (  
ca se  INSERT: 

sw i t ch  (t) 
( case  INSERT: 

r e t u r n  

(~ =: w)?((p > p')7~ : = + n: 
((x > x ' )? (x  + 1) : x); 

case  DELETE: 
r e t u r n  (x > x ' )? (x  -- 1 :  x); 

} 
case  DELETE or  UPDATE: 

s w i t c h  (t) 
{ case  INSERT: 

r e t u r n  (~ < x')?r : ~ + 1); 
case  DELETE: 

return (x = :  x ')?(--1):  
((= < ~ : ' ) ~  : ~ - i ) ;  

} 
} 

} 

A l g o r i t h m  7 is ano the r  imp lemen ta t i on  of the  backward  t r anspos i t i on  funct ions  in [6]. The  inpu t  
to this a lgo r i thm is also a pa i r  of ope ra t ions  @1, c~), where cl is executed  before  c2. I t  is p rov ided  
for reorder ing  the  o p e r a t i o a s  in the  sub-log,  so tha t  the  execut ion order  of the  two ope ra t ions  can be  
exchanged wi thou t  v io la t ing  C B  and C c  defined in Defini t ion 2. Af ter  t r ans fo rma t ion ,  a new pa i r  of 

! ! 
opera t ions ,  (c~, c~), wilI be genera ted  which satisfies o : c 2 : c 1 = o : ci : c2. 

A l g o r i t h m  7. T b k  (t, x , p ,  t ' ,  x ' , p ' )  

i n p u t  t, x, p: type, index and priority of one operation 
6, x ' ,p ' :  type, index and priority or" another operation 

o u t p u t  An index pair (:c,x') 
b o d y  
{ 

s w i t c h  (t){ 
case  INSERT: 

s w i t c h  (t) 
( ca se  INSERT: 

r e t u r n  
((x' > x ) ? x : x - - 1 ,  (x' > m)?x '--  l : x ' ) ;  

ca se  DELETE: 
r e t u r n  (x' : =  x ) ? ( - 1 , - 1 ) :  
((x '  > x )?x  : x - 1, (x '  > x )?x '  - 1: x'); 

} 
c a s e  DELETE 

s w i t c h  (t) 
{ c a se  INSERT: 

r e t u r n  (x' = =  x ) ? ( - 1 , - 1 )  : 
((x'  > x ) ? x :  x + 1, (x '  > x )?x '  + 1: x');  

c a s e  DELETE: 
r e t u r n  
((x > x ' )?z  + t :  x' ,  (x > x ' )?x : x '  + 1); 

} 
} 
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Algor i thm 8 provides the steps to extract  concurrent  conflicting opera t ions  from the log and  to 
reorder them into two separate parts  with Algor i thm 7. The  length  of the first par t  is also re tu rned  to 
facilitate the forward t ranspos i t ion  in Algor i thm 9. Due to l imited space, there will be no examples to 
show how the algori thm works. Interested readers can refer to [6] to find some in teres t ing  examples. 

A l g o r i t h m  8. Separate (o, s ,p ,  V ,  L ' ,  n)  

i n p u t  o: the list object 
s,p, V:  the same as defined in Algorithm 1 

o u t p u t  L': a special sublist of o containing only inserts and deletes. All items precede V at the head. 
Operations concurrent with V are placed at the tail. 

n: the number of items that precede V 
b o d y  
{ 

L' = 9; n = 0; 
foreach l in Lo (from head to tail) 
{ 

if (h = =  UPDATE) con t inue ;  
i f (V~ ~ _> V ~' &&sl! : s) 

I l l  is concurrent with V 
append l to L' at its tail; 

else 
for (i = l e n g t h  (L') - 1; i _> n; i + +) 
{ 

l' = L'[i]; 
(xz,, xz) = Tbk(h,,  xz,,pz,, h, xl, p~); 

} 
insert l into L ~ at n; 

) 
n-t-+; 

} 
Based on Algor i thms 6 - 8, Algor i thm 9 depicts how an inser t  or delete opera t ion  is executed. 

The  a lgor i thm first splits the opera t ion log into two parts.  T h e n  the opera t ion  to be executed will 
be t ransformed against  all the concurrent  operat ions.  Finally,  the t ransformed opera t ion  is executed 
and  added to the opera t ion  log. 

A l g o r i t h m  9. Execute  (o ,m,  s ,p ,  V )  

i n p u t  o: the list object 
m: the insert (t, x, v}, or delete (t, x), where t is the type of the operation, v is the element to be 

inserted, x specifies the index of the element 
s,p, V:  the same as defined in Algorithm 1 

o u t p u t  none 
b o d y  
{ 

Separate(o, s,p,  V ,  L', n); 
for (i = n; i < length(L'); i + + )  
{ 

l' = n'[i]; 
xm = Tfd( t ,~ ,x i ,p ,  tt , ,xl, ,pz,); 

} 
if  (tin = =  INSERT) 

in se r t  vi i n t o  o at xm; 
else 

de le t e  the x~- th  element of o; 
append (tm, X~,~, (tin = INSERT?vr,~ : nul l ) ,  s,p, V )  to Lo at  its tail; 
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Algori thms to execute navigates and  updates are similar  to Algor i thm 3 and  Algor i thm 1. They  
are not discussed here due to l imited space. Algori thms to resolve conflicts among operat ions defined 
on other collection objects  can be obta ined  in similar ways and  are not  discussed either. 

5 Comparison and Conclusion 

oodOPT is implemented  in the Cova run t ime  system[ll] ,  which aims at providing a novel develo- 
pment  p la t form for groupware developers. We have also developed CoveClient, a c o m m a n d  line tool 
that  can be used to create, open, and operate Cova objects.  W h e n  an  object  is opened, it will be 
replicated from CovaServer to CovaClient. Users operate  a Cova object  by typ ing  the name of one of 
its methods  and  required parameters ,  oodOPT funct ions when an object  is be ing opera ted  by mult iple  
users. 

oodOPT outperforms other related work by overcoming deficiencies based on the Cova object  
model and  its semant ics-based approach. Compared  with other  CCFs  for repl icated architecture,  
such as the lock-based one implemented  in Suite [121, oodOPT is fully opt imist ic  and  avoids the stick- 
yness or unna tura lness .  Our  semantics-based approach also seems to be applicable to other fields, 
such as consistency ma in tenance  for da ta  repl icat ion in d i s t r ibu ted  da tabase  systems. Future  work 
includes generalizing the concepts of cooperative t ransact ions  and in t roduc ing  rollback facilities into 
the framework to make it more complete. 

R e f e r e n c e s  

[t] Ellis C A, Gibbs S J, Rein G L. Groupware: Some issues and experiences. Communication of ACM, 1991, 34(1): 
39-58. 

[2] Greenberg S, Marwood D. P~eal time groupware as a distributed system: Concurrency control and its effect on the 
interface. In Proc. ACId[ Conf. CSCW, Chapel Hill, 1994, pp.207-217. 

[3] Ellis C A, Gibbs S J. Concurrency control in groupware systems. In Proc. ACM SIGMOD Conf. Mgmt of Data, 
Seattle, 1989, pp.399-407. 

[4] Yang Guangxin. Research on meta-groupware - -  The Cova programming language and system [dissertation]. 
Tsinghua University, Beijing, 2000. 

[5] Yang Guangxin, Shi Meilin. Cova: A programming language for cooperative applications. Science in China, Series 
F, 2001, 44(1): 73-80. 

[6] Suieiman M, Cart M, Ferrie J. Serialization of concurrent operations in a distributed collaborative environment. In 
Proc. ACM SIGGROUP Conf. Supporting Group Work, Phoenix, 1997, pp.435-445. 

[7] Ressel M, Nitsche-Ruhland D, Gunzenhauser R. An integrating, transformation-oriented approach to concurrency 
control and undo in group editors. In Proc. ACM Conf. CSCW, Cambridge, 1996, pp.288-297. 

[8] Sun C Z, Ellis C. Operational transformation in real-time group editors: Issues, algorithms, and achievements. In 
Proc. ACM Conf. CSCW, Seattle, 1998, pp.59-68. 

[9] Sun C Z, Jia X H, Zhang Y C et al. A generic operation transformation scheme for consistency maintenance in 
real-time cooperative editing systems. In Proc. ACM SIGGROUP Conf. S~pportin 9 Group Work, Phoenix, 1997, 
pp.425-434. 

[10] Palmer C R, Cormack G V. Operation transforms for a distributed shared spreadsheet. In Proc. ACM Conf. 
CSC~'V, Seattle, 1998, pp.69-78. 

[11] Cattell R G G, Barry D, Bartels D et al. The object database standard: ODMG 2.0. San Mateo: Morgan Kaufmann 
Publishers, 1997. 

[12] Muson J, Dewan P. A concurrency control framework for collaborative systems. In Proc. ACM Conf. CSCW, 
Cambridge, 19967 pp.278-287. 

Y A N G  G u a n g x i n  was born in 1973 and got his B.S., M.S., and Ph.D. degrees in computer science from 
Tsinghua University in 1996, 1998, 2000 respectively. His major research interests focus on CSCW, groupware, 
workflow management, etc. He is currently a technical staff member at Bell-Labs Research China. 

SHI  M e i l i n  was born in 1938 and got his B.S. degree in computer science in 1962 from Tsinghua Univer- 
sity. His major research interests focus on computer network and CSCW. He is currently a professor at the 
Department of Computer Science and Technology of Tsinghua University. 


