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Benzenoid and Quinonoid Nitrogen-Containing Heteropentacenes
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Nitrogen-containing heteroacenes are an interesting class
of p-functional materials,[1] but they have been much less
studied than oligoacenes, which are very important building
blocks for organic electronics.[2,3] The recent interest in ni-
trogen-containing heteropentacenes has arisen from the op-
portunities of tuning the electronic structure, stability, solu-
bility, and molecular packing by introducing nitrogen atoms
into the backbone of pentacene.[4] Although some nitrogen-
containing heteropentacenes have been known for over a
century,[5] few of them were fully characterized structurally.
Dihydro-5,7,12,14-tetraazapentacene (DHTAP), also known
as fluorindine, is not only regarded as a small-molecule
model for ladder polymers,[6] but also functions as an organ-
ic semiconductor in organic field effect transistors
(OFETs).[7] The true structure of DHTAP is benzenoid (1 a
in Scheme 1) as determined by 1H NMR spectroscopy.[8]

However in most of the reports on DHTAP until recently, it
was erroneously given a quinonoid structure (1 b in
Scheme 1).[9,10] This quinonoid structure was first proposed
based on a belief that the absorption of DHTAP near
600 nm is not compatible with the benzenoid structure 1 a,[10]

which has two nitrogen atoms connecting a phenazine ring
and a benzene ring.[4a,8a] In connection with the debate on
the structure of DHTAP, we have recently found that meth-
ylation of DHTAP allowed not only N-alkylation but also
C-alkylation, and yielded both benzenoid and quinonoid
heteropentacenes (2 a and 2 b in Scheme 1). This finding led
to an exploratory study on the molecular and electronic
structures, molecular packing, and semiconductor properties

of both benzenoid and quinonoid nitrogen-containing hetero-
pentacenes as detailed below.

The synthesis of 2 a and 2 b is shown in Scheme 2 a. A new
method of condensing o-phenylenediamine and 2,5-dihy-
droxy-1,4-benzoquinone without solvents and acidic cata-
lysts produced DHTAP in a good yield. Deprotonation of
DHTAP with nBuLi followed by treatment with iodome-
thane yielded three products (2 a–c), which were easily iso-
lated by chromatography on silica gel.[11] Unlike the parent
molecule DHTAP, 2 a–c are soluble in organic solvents, pre-
sumably due to the lack of hydrogen bonds in the solid
state, and were completely characterized. The formation of
2 c involves both N- and C-methylation, indicating that the
dianion of DHTAP has negative charges delocalized not
only on nitrogen atoms but also on the neighboring carbon
atoms through a series of resonance forms. The resonance
forms of the DHTAP dianion that lead to 2 a–c are shown in
Scheme 2 b.[12] The intermediate 4, which has a relatively
acidic proton, is further deprotonated and methylated to
yield 2 c.

In the 1H NMR spectra of 2 a (see the Supporting Infor-
mation) the protons of the two terminal benzene rings give
rise to two groups of characteristic AA’XX� patterns,[13]

which are also found in the 1H NMR spectrum of DHTAP
and can be regarded as direct evidence for the benzenoid
structure of 1 a.[8] In contrast, the protons of two terminal
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Scheme 1. Structures of dihydro-5,7,12,14-tetraazapentacene (DHTAP)
and N,N’-dimethyldihydro-5,7,12,14-tetraazapentacenes (DMTAPs).

Chem. Eur. J. 2009, 15, 3965 – 3969 � 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 3965

COMMUNICATION



benzene rings of 2 b give rise to four peaks in the 1H NMR
spectra (see the Supporting Information) corresponding to a
disubstituted benzene ring with two different substituents
ortho to each other. The protons of the central ring of 2 a
and 2 b show single peaks at d=6.67 and 5.97 ppm, respec-
tively, in agreement with the deshielding effect by the ring
current of the benzenoid central ring of 2 a.

Crystals of 2 a–c were grown by slow evaporation from
solutions in acetone. X-ray crystallography of these crystals
reveals the structures and assemblies of the three molecules
as shown in Figure 1.[14] The backbone of 2 a bends at the
methylated nitrogen atoms with a bending angle of 1608 as
illustrated in Figure 1 b. The N5�C5a bond (1.38 �) is short-
er than the N5�C4a bond (1.41 �) and the corresponding
N�C bond of N,N’-dimethyldihydrophenazine (1.41 �),[15]

revealing the partial double-bond character of the N5�C5a
bond. The N12�C12a bond (1.34 �) is shorter than the
N12�C11a bond (1.37 �), indicating the former has more
double-bond character than the latter.[16] Therefore 2 a
should be represented by a series of resonance contributors
shown in Scheme 3 rather than a single Kekul� structure.
Molecules of 2 a form infinite stacks in two directions with
the phenazine planes being 3.51 � apart from each other.
Unlike 2 a, 2 b is essentially flat as found in the crystal struc-
tures shown in Figure 1 c and 1d. The N14�C13a bond
(1.33 �) is significantly shorter than the N14�C14a bond

(1.39 �) in agreement with a double bond between the N14
and C13a atoms. The N5�C5a bond (1.38 �) is shorter than
the N5�C4a bond (1.40 �), indicating the former has more
double-bond character than the latter. This can be explained
by the minor resonance contributors of 2 b shown in
Scheme 3. Interestingly, water molecules, which come from
the solvent of wet acetone, are found in the crystal lattice of
2 b. As shown in Figure 1 c, one molecule of 2 b forms hydro-

Scheme 2. a) Synthesis of 2 a–c ; b) proposed mechanism for the forma-
tion of 2a–c.

Figure 1. Crystal structures of 2 a–c showing: a) a single molecule of 2a
with bond lengths highlighted; b) p-stacks and the bending angle of 2 a ;
c) a single molecule of 2b with H-bonds to two water molecules; d) a H-
bonded chain of water molecules between two p-stacks of 2 b (H-bonds
between water molecules are shown as dashed lines); e) top view of a
single molecule of 2c ; f) side view of a stacked dimmer of 2c.

Scheme 3. Resonance structures of 2 a and 2 b.
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gen bonds with two molecules of water. Molecules of 2 b as-
semble into stacks with a p–p distance of 3.42 �, and water
molecules are linked by hydrogen bonds to form a chain be-
tween the neighboring stacks of 2 b. Similar to 2 a, 2 c is also
a bent molecule, and the two adjacent methyl groups are
distorted to avoid steric repulsions. A stacked dimer of 2 c
(Figure 1 f) is the unit of molecular packing in the crystal.

The quinonoid structure was misassigned to DHTAP be-
cause of a lack of knowledge on the electronic structure of
benzenoid and quinonoid nitrogen-containing heteroacenes.
Therefore the electronic structure of 2 a and 2 b was studied
by using both experimental and computational methods.
Both 2 a and 2 b are red in solution. A comparison of the ab-
sorption spectra of 2 a and 2 b is shown in Figure 2 a. In the

visible light range, 2 a exhibits a peak at 498 nm and a
shoulder at 520 nm, whereas 2 b exhibits three peaks at 551,
512, and 479 nm. Although the longest-wavelength absorp-
tion peak of 2 b is red-shifted by about 50 nm in comparison
with that of 2 a, the absorption edges of the two molecules
are close to each other (ca. 565 nm for 2 a and ca. 575 nm
for 2 b). From the absorption edge, the HOMO–LUMO gap
is calculated to be 2.19 eV for 2 a and 2.16 eV for 2 b. The
frontier molecular orbitals of 2 a and 2 b were calculated by
using the hybrid density functional method B3LYP with a 6-
31+G* basis set,[17] and is depicted graphically in Figure 2 b.
Like 2 b, 2 a has a delocalized highest-occupied molecular or-
bital (HOMO). However, the lowest unoccupied molecular
orbital (LUMO) of 2 a mainly resides on the phenazine

moiety. Cyclic voltammograms (CVs) of 2 a and 2 b (see the
Supporting Information) in DMF exhibit one reversible oxi-
dation wave and one reversible reduction wave. The half-
wave oxidation potential versus ferrocenium/ferrocene is
0.21 V for 2 a and �0.01 V for 2 b, from which the HOMO
energy levels of 2 a and 2 b are estimated as �5.01 eV and
�4.79 eV, respectively.[18] The half-wave reduction potentials
versus ferrocenium/ferrocene is �1.91 V for 2 a and �1.84 V
for 2 b, from which the LUMO energy levels of 2 a and 2 b
are estimated to be �2.89 eV and �2.96 eV, respectively.
The HOMO and LUMO energy levels of 2 a obtained from
CVs are in good agreement with the optical gap calculated
from the absorption edge. However the electrochemical
HOMO–LUMO gap of 2 b is about 0.3 eV smaller than its
optical gap. The HOMO energy levels of 2 a and 2 b ob-
tained from CVs correspond with the computed ones,
whereas the LUMO energy levels obtained from CVs are
lower than the computed ones. The above studies on the
electronic structure of 2 a indicate that the N5 and N14
atoms have the lone pairs of electrons in effective conjuga-
tion with the adjacent phenazine ring although the molecule
is bent at the two N atoms. Such conjugation leads to the
HOMO and LUMO energy levels that are close to those of
2 b, and is consistent with bond lengths found in crystal
structures. This finding appears an amendment to the previ-
ous understanding that the two NH units in nitrogen-con-
taining heteropentacenes break the delocalization of the p

system in the pentacene skeleton.[4a,8a,19]

The studies on the crystal and electronic structure of 2 a
and 2 b indicate that both the molecules self-assemble into
stacks with intermolecular p-orbital overlap, and have delo-
calized HOMOs with energy levels accessible for charge in-
jection, suggesting that 2 a and 2 b can function as p-type or-
ganic semiconductors.[20] Therefore, the two molecules were
tested in organic field effect transistors (OFETs).[21] Flake-
or needle-shaped thin crystals of 2 a and 2 b were grown by
physical vapor transport (PVT),[22] and were placed on a
SiO2/Si substrate with pre-deposited drain and source elec-
trodes of gold.[23] The resulting devices were bottom-contact
OFETs with highly n-doped silicon as a gate electrode, a
300 nm thick layer of SiO2 as dielectrics, and the semicon-
ductor channel length in a range of 50 mm to 150 mm. A mi-
crograph of such a type of device is shown in Figure 3 a. It is

Figure 2. a) Absorption of 2a and 2b (3 � 10�6
m in THF); b) frontier mo-

lecular orbitals of 2a and 2b.

Figure 3. a) A micrograph of an OFET fabricated from a very thin crystal
of 2b ; b) drain current versus drain voltage for the OFET of 2 a with an
active channel of L=150 mm, W =365 mm.
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found that both 2 a and 2 b behave as p-type semiconductors
in OFETs. The typical I–V curves for the OFETs of 2 a are
shown in Figure 3 b, from which a field-effect mobility of 5 �
10�4 cm2 V�1 s�1 was measured in the saturation regime using
the equation: IDS = (mWCi /2 L) ACHTUNGTRENNUNG(VG�VT)2, where IDS is the
drain current, m is the field effect mobility, W is the channel
width, L is the channel length, VG is the gate voltage, VT is
the threshold voltage, and Ci is the capacitance per unit area
(11 nFcm�2 for 300 nm SiO2). In comparison, 2 b shows a
lower field effect mobility of 1 � 10�4 cm2 V�1 s�1. The mobili-
ties of 2 a and 2 b measured in this study appear lower than
the one reported for DHTAP.[24] The low mobilities of 2 a
and 2 b might be not intrinsic of the materials but limited by
the poor contacts in the devices.

In summary, benzenoid and quinonoid nitrogen-contain-
ing heteropentacenes were successfully isolated and investi-
gated. The complete characterization of 2 a and 2 b revealed
p-electron delocalization in these polynuclear heterocycles
and p-stacks in their molecular assemblies. These findings
led to a better understanding of the electronic structures
and clearly supported the benzenoid structure of DHTAP,
which has been debated. It is found that both benzenoid
and quinonoid nitrogen-containing heteropentacenes can
function as p-type organic semiconductors. Furthermore, be-
cause the parent molecule DHTAP was regarded as a small-
molecule model for a series of ladder polymers,[6] the find-
ings presented in this report may also have implications for
interesting ladder polymers.
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