Expanding the chemical space of sp^3 -enriched 4,5-disubstituted oxazoles *via* synthesis of novel building blocks

Evgeniy Y. Slobodyanyuk^{1,2}, Andrii A. Andriienko^{1,3}, Bohdan V. Vashchenko^{1,3}, Dmitriy M. Volochnyuk², Sergey V. Ryabukhin³, Oleksandr O. Grygorenko^{1,3*}

¹ Enamine Ltd.,

78 Chervonotkatska St., Kyiv 02094, Ukraine

² Institute of Organic Chemistry, National Academy of Sciences of Ukraine,

5 Murmanska St., Kyiv 02660, Ukraine

³ Taras Shevchenko National University of Kyiv, 60 Volodymyrska St., Kyiv 01601, Ukraine; e-mail: gregor@univ.kiev.ua

Published in Khimiya Geterotsiklicheskikh Soedinenii, 2019, 55(4/5), 421–434

Submitted February 20, 2019 Accepted March 28, 2019

An efficient approach to the preparation of novel sp^3 -enriched 4,5-disubstituted oxazoles bearing a functional group at the C-4 position is described. The method commenced with synthesis of ethyl oxazole-4-carboxylates (13 examples, 63–99% yield), with subsequent function insertion to the heterocyclic core by late-stage functional group transformation. The LiBH₄-mediated reduction of ethyl oxazole-4-carboxylates was the only method which could be optimized at multigram scale (up to 40 g), and its scope was demonstrated by preparation of 13 alcohols with (cyclo)alkyl, fluoroalkyl, or *N*-Boc-aminoalkyl moiety at the C-5 position (47–89% yield). The utility of these key intermediates was demonstrated by the preparation of chlorides (13 examples, 90–99% yield), azides (13 examples, 83–99% yield), amines (13 examples, 80–98% yield), and sulfonyl chlorides (4 examples, 68–97% yield) – advanced building blocks for synthetic and medicinal chemistry.

Keywords: alcohols, amines, azides, chlorides, esters, oxazoles, sulfonyl chlorides, building blocks.

Oxazoles represent an important class of heterocycles, occurring as the key substructural framework in numerous natural compounds (e.g., marine alkaloids)¹ and synthetic products,² featuring a broad range of biological activities, in particular, anticancer, antifungal, or antibacterial.^{3–5} Whereas aryl-substituted oxazoles are widespread and well-studied, their *sp*³-enriched counterparts have attracted much interest only in recent years (Fig. 1).³ The known oxazoles with aliphatic moieties mainly included 2,4-di-and trisubstituted derivatives, e.g., protein kinase inhibitor mubritinib (1),⁶ antimicrobial phenoxan (2),⁷ peroxisome proliferator-activated receptor agonists muraglitazar (3),⁸ darglitazone (4),⁹ farglitazar (5),^{10,11} or lipid peroxidation inhibitor martefragin A (6).¹²

Less common, but chemically and biologically interesting 4,5-disubstituted oxazoles are represented mainly by aryl-substituted derivatives, e.g., streptochlorin (7),¹³ non-prostanoid partial IP receptor agonist BMY 45778 (8),¹⁴ p38 kinase inhibitor CP-808844 (9).¹⁵

Synthetic approaches and chemical properties of substituted oxazoles are well studied and surveyed in a number of reviews or books.^{1-4,16-18} Most of the literature methods relies on the late-stage oxazole ring construction, which limits the scope of the substituents that can be introduced into the target molecule. This is especially the case for sp^{3} -enriched 4,5-disubstituted derivatives. An alternative approach to such compounds could rely on appropriate oxazole-containing building blocks, which could be used for further functionalization. Recently, it has been pointed out that above-mentioned strategy is often overlooked in synthetic and medicinal chemistry.¹⁹ It should be noted that sp³-enriched low-molecular weight building blocks derived from the 4.5-disubstituted oxazole framework are less known in the literature. Typically, an entry into this chemotype is provided by 5-alkyl-substituted oxazole-4-carboxylates 10, which in turn are obtained by condensation of carboxylic acids 11^{20-29} or their activated derivatives, e.g., acyl chlorides,³⁰⁻³³ anhydrides,³⁴⁻⁴⁵ or

Figure 1. Some important representatives of di- and trisubstituted oxazoles.

methyl selenoates, 46 with alkyl 2-isocyanoacetates **12** (Scheme 1).

In this work, we have aimed at multigram preparation of novel sp^3 -enriched 4,5-disubstituted oxazoles bearing a functional group at the C-4 position, i.e., alcohols **13** (13 examples), chlorides **14** (13 examples), azides **15** (13 examples), amines **16** (13 examples), and sulfonyl chlorides **17** (4 examples) (Fig. 2). All building blocks **13–17** were obtained *via* modification of the key intermediates **10a–m**.

Esters **10a**–**m** were obtained by a CDI-promoted reaction of carboxylic acids **11a**–**m** with ethyl 2-isocyano-acetate **12** in the presence of DBU as a base in THF.²¹ Products **10a**–**m** were isolated in 63–99% yield (Table 1). It is interesting to note that the procedure gave the best results in the case of *N*-Boc-protected amino acids **11h**–I and methoxymethyl derivative **11m** (86–99% yield), good yields (75–89%) – with simple (cyclo)alkyl carboxylic acids **11a–e**, while the corresponding fluoroalkyl-substituted derivatives **10f**,**g** were obtained in moderate yields (63–65%). This might be related to the volatility of the corresponding esters.

Reduction of esters **10** with complex metal hydrides was found to be challenging due to the high hydrophilicity of the target alcohols **13**, which made the isolation of the products extremely complicated. It should be noted that this reaction was described in the literature for compound **10a** at less than 1 g scale; product **13a** was used in the next step without purification.³⁷ In addition to that, several arylsubstituted counterparts were introduced into such transformations.

The reported methods relied on the use of DIBAL,³⁷ LiAlH₄,^{47,48} or NaBH₄,^{49–51} and the corresponding products were obtained in 67–87% yields. We have tested all these methods with compound **10a** at 10 g scale (Table 2, entries 1–5); it was found that although the product was formed, it could not be isolated in pure form with satisfactory yield. The use of LiBH₄ in THF at room temperature (entry 6), as well as changing the solvent to MeOH also appeared to be unfruitful; in the latter case, the corresponding methyl ester was formed as a byproduct. Only when ester **10a** was

Scheme 1. Known approaches to 5-substituted

Figure 2. *sp*³-Enriched 4,5-disubstituted oxazoles 13–17.

	0 R OH ⁺ <u>−</u> 11a–m	OEt 1. CDI, TH 2. DBU 63–99%		1. LiB ∼OEt TH 2. NH R 47 - m	H ₄ , F-MeOH ₄ Cl -89% 13;	/─OH ─R Et₃N a−m ⁹⁰	MsCI , CH ₂ Cl ₂)–99% 14a	←Cl `R - m
Entry	Compound 11	R	Ester 10	Yield, %	Alcohol 13	Yield, %	Chloride 14	Yield, %
1	11a	Ме	10a	75	13a	69	14a	92
2	11b	Me Me	10b	86	13b	60	14b	95
3	11c	Me ——Me Me	10c	89	13c	71	14c	96
4	11d	\neg	10d	86	13d	76	14d	98
5	11e	\rightarrow	10e	78	13e	89	14e	93
6	11f	CF ₃	10f	63	13f	68	14f	90
7	11g	CHF ₂	10g	65	13g	47	14g	92
8	11h	NHBoc	10h	97	13h	62	14h	99
9	11i		10i	95	13i	85	14i	96
10	11j	NHBoc	10j	97	13j	78	14j	97
11	11k	Me ── <mark>│</mark> ─NHBoc Me	10k	86	13k	80	14k	98
12	111		101	99	131	75	141	96
13	11m	OMe	10m	98	13m	72	14m	92

Table 1. Synthesis of esters 10a-m, alcohols 13a-m, and chlorides 14a-m

refluxed with LiBH₄ in THF–MeOH, 2:1 (entry 8), and the reaction mixture was quenched with saturated aq NH₄Cl and then solid NH₄Cl, the target derivative **13a** could be obtained in good yield (69%).

The developed protocol was applied successfully for the preparation of all the target alcohols **13a–m** at up to 40 g scale (47–89% yield, after column chromatography) (Table 1). It should be noted that chromatographic purification of alcohols **13** prior to their use in further transformations is strongly advised in order to ensure high yields and purity of the target products.

In the next step, chlorides **14a–m** were obtained by reaction of alcohols **13a–m** with mesyl chloride and Et_3N (Table 1). Under these reaction conditions, mesylation of compounds **13** was immediately followed by nucleophilic substitution with chlorine anion leading to the target compounds **14a–m** in excellent yields (90–99%). Such reaction outcome is unusual, but not unprecedented for various hetarylmethanols.^{52–54}

Preparation of azides **15a–m** relied on the nucleophilic substitution of compounds **14a–m** with NaN₃ in refluxing

Table 2. Reduction step optimizationfor the preparation of alcohol 13a

Entry	Metal hydride	Conditions	Isolated yield of the target alcohol 13a , %
1	DIBAL	Hexanes, -78°C to 0 °C, 2 h	48
2	$\rm LiAlH_4$	THF	34
3	NaBH_4	THF, reflux	_*
4	NaBH_4	MeOH, reflux	28**
5	NaBH ₄	THF-MeOH (2:1), reflux	45
6	${\rm LiBH_4}$	THF, rt	_*
7	${\rm LiBH_4}$	MeOH, rt	6**
8	${\rm LiBH_4}$	THF-MeOH (2:1), reflux	69

* No reaction was observed.

** The corresponding methyl ester was obtained as byproduct.

		NaN ₃ MeCN, H ₂ O 14a-m	$N \rightarrow R$ $0 \rightarrow R$ 15a-m	1. H ₂ , Pd/C, MeOH 2. HCI–1,4-dioxane 80–98%	NH ₂ HCI 16a,i, 16b-m·HCI	
Entry	Chloride 14	R	Azide 15	Yield, %	Amine 16	Yield, %
1	14a	Ме	15a	86	16a	93*
2	14b	Me Me	15b	96	16b·HCl	90
3	14c	Me ———Me Me	15c	98	16c ·HCl	87
4	14d	$ \rightarrow$	15d	89	16d·HCl	80
5	14e	\rightarrow	15e	98	16e ·HCl	96
6	14f	CF ₃	15f	85	16f ·HCl	83
7	14g	CHF ₂	15g	83	16g ·HCl	81
8	14h	NHBoc	15h	99	16h·HCl	87
9	14i		15i	92	16i	95*
10	14j	NHBoc	15j	94	16j ·HCl	98
11	14k	Me 	15k	95	16k·HCl	95
12	141		151	96	161 ·HCl	95
13	14m	ОМе	15m	98	16m·HCl	92

Table 3. Synthesis of azides 15a–m and amines 16a–m·HCl

* The compound was isolated as a base.

MeCN–H₂O (ca. 70:1). The reaction proceeded smoothly and gave excellent yields (83–99%) of the target building blocks **15a–m** (Table 3). Subsequent catalytic reduction of azides **15a–m** under 1 atm of H₂ in the presence of 10% Pd/C in MeOH, followed by acidification with 10% HCl in 1,4-dioxane (for compounds **16a–g,m**, entries 1–7 and 13) or NH₄Cl in MeOH (for *N*-Boc-monoprotected diamines **16h–l**, entries 8–12) led to the corresponding amines **16a–m**·HCl (80–98% yield).

Chlorides 14a,c,d,f,g were transformed into sulfonyl chlorides 17a,c,d,f,g. The corresponding thioacetates 18 were obtained from compound 14 in 85–98% yields upon treatment with KSAc in EtOH at 55°C (Table 4). Subsequent oxidative chlorination with *N*-chlorosuccinimide in the presence of aq HCl in MeCN–H₂O (10:1) gave the target sulfonyl chlorides 17a,c,d,f,g. It should be noted that most of the synthesized compounds 17 were found to be unstable upon any isolation or storage conditions. This was not the case with derivatives 17f,g bearing electron-withdrawing tri- or difluoromethyl groups, which were

stable and could be isolated in 95–97% yield. Nevertheless, unlike cyclopropyl derivative **17d**, alkyl-substutituted oxazoles **17a,c** were also obtained and characterized (68–72% yield); they should be subjected to further transformations immediately after isolation. It was found that sulfonyl chlorides **17a,c** decomposed to the corresponding chlorides **14a,c**, respectively, at room temperature after 48 h (established by ¹H NMR spectroscopy). When a sample of sulfonyl chloride **17c** had been stored at –24°C for 2 months, the ratio **14c:17c** was found to be 1:3.

Despite numerous literature examples of using alkylsubstituted oxazoles in organic synthesis and drug discovery, their preparation and the scope of the known methods have been largely underrepresented to date, especially for functionalized sp^3 -enriched 4,5-disubstituted derivatives. In this work, general, efficient, and scalable methods for the preparation of novel 4,5-disubstituted oxazoles bearing a functional group at the C-4 position were developed. The synthesized building blocks also

		N R EtOH, 14a,c,d,f,g	55°C 98% N 18a,c,d,f,g	NCS, aq HCI MeCN, H ₂ O 95–97%	► N N R 17a,c,d,f,g	
Entry	Chloride 14	R	Thioacetate 18	Yield, %	Sulfonyl chloride 17	Yield, %
1	14a	Ме	18a	89	17a	72
2	14c	Me ———Me Me	18c	93	17c	68
3	14d	\neg	18d	85	17d	0
4	14f	CF_3	18f	96	17f	97
5	14g	CHF ₂	18g	98	17g	95

Table 4. Synthesis of thioacetates 18 and sulfonyl chlorides 17

contained alkyl, cycloalkyl, di/trifluoromethyl, *N*-Bocaminoalkyl, or methoxymethyl substituent at the C-5 atom of the heteroaromatic ring. The proposed approach commenced from ethyl oxazole-4-carboxylates 10a-m, which were obtained from aliphatic carboxylic acids 11a-m and ethyl isocyanoacetate 12. Reduction of esters 10a-m was challenging in these series due to the high hydrophilicity of the corresponding alcohols 13a-m. It was found that using LiBH₄ in THF–MeOH (2:1) followed by quenching of the reaction mixture with saturated aq NH₄Cl and then solid NH₄Cl was very efficient, and products 13 were obtained in 47-88% yield (13 examples; 12 novel).

The utility of alcohols 13 was demonstrated by the preparation of four other compound classes. In particular, mesylation of alcohols 13 was accompanied by nucleophilic substitution with chlorine anion leading to chlorides 14a-m (90-99% yield). Reaction of compounds 14 with NaN₃ gave azides 15a-m (83-99% yield), which were transformed to amines 16a-m by catalytic reduction (80-98% yield). Alternatively, sulfonyl chlorides 17 were obtained via oxidative chlorination with NCS of the corresponding thioacetates 18 (4 examples, 68-97% yield). These functionalized low-molecular weight hydrophilic oxazole derivatives were prepared on up to 40 g scale; therefore, they can be considered as promising building blocks for organic synthesis and drug discovery, which are readily available to scientific community and can significantly expand the currently accessible lead-like chemical space (Fig. 3).

An efficient approach to the preparation of novel sp^3 -enriched 4,5-disubstituted oxazoles bearing different functional groups at the C-4 position is described, i.e., alcohols, chlorides, azides, amines, and sulfonyl chlorides. All compounds were obtained *via* modification of the key intermediate ethyl oxazole-4-carboxylate.

Experimental

¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker 170 Avance 500 spectrometer (500, 126, and 470 MHz, respectively) and a Varian Unity Plus 400 spectrometer

Figure 3. The simplest derivatives of building blocks 14, 16, and 17 shown in MW (molecular weight) – cLogP (calculated octanol – water partition coefficient logarithm) (black dots within an ellipse). Structures of the derivatives were obtained by *in silico* coupling with dimethylamine (for compounds 14 and 17) or acetyl chloride (for compounds 16); the Boc protective groups were also transformed into acetyl. Dotted lines show limits imposed by Lipinski rule-of-five (light gray)⁵⁶ and criteria for lead-likeness by Churcher et al. (dark gray).⁵⁶ The white arrow shows that there is enough space left for the design of lead-like compounds based on the building blocks synthesized.

(400, 101, and 376 MHz, respectively). TMS or residual solvent peaks used as internal standards (7.26 and 77.2 ppm for ¹H and ¹³C nuclei, respectively, in CDCl₃, 2.50 and 39.5 ppm for ¹H and ¹³C nuclei, respectively, in DMSO- d_6). Mass spectra were recorded on an Agilent 1100 LCMSD SL instrument (chemical ionization (CI), CF₃CO₂H) and an Agilent 5890 Series II 5972 GCMS instrument (electron impact ionization (EI)). Elemental analyses were performed at the Laboratory of Organic Analysis, Department of Chemistry, Taras Shevchenko National University of Kyiv. Melting points were measured on a MPA100 OptiMelt automated melting point system. Analytical TLC was performed using Polychrom SI F254 plates. Column chromatography was performed using silica gel (230-400 mesh) as the stationary phase. Instant JChem version 17.2.27.0 was used for the calculation of physicochemical parameters, Chemaxon, Hungary, www.chemaxon.com.

Solvents were purified according to the standard procedures.⁵⁷ Compounds **11a–m** and **12** were available from Enamine Ltd.

Synthesis of esters 10a–m (General method). The corresponding carboxylic acid 11a–m (0.307 mol) was dissolved in THF (350 ml), and CDI (59.7 g, 0.368 mol) was added in portions to the solution. The resulting mixture was heated at 55°C for 1 h and then cooled to 0°C. Ethyl 2-isocyanoacetate 12 (41.6 g, 0.368 mol) was added in one portion, then DBU (56.0 g, 0.368 mol) was added dropwise at 0°C, and the resulting mixture was stirred at room temperature for 12 h. Then THF was evaporated under reduced pressure, the residue was dissolved in EtOAc (500 ml) and washed with 10% aq solution of citric acid (300 ml), H₂O (500 ml), and brine (300 ml). The organic phase was dried over Na₂SO₄ and evaporated under reduced pressure.

Ethyl 5-methyloxazole-4-carboxylate (10a). Yield 35.7 g (75%), yellowish liquid. For physical and spectral data, see ref.^{25,32,33,36}

Ethyl 5-isopropyloxazole-4-carboxylate (10b).³² Yield 48.4 g (86%), brown oil. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.70 (1H, s, H oxazole); 4.31 (2H, q, *J* = 7.2, OCH₂CH₃); 3.74 (1H, sept, *J* = 7.0, CH(CH₃)₂); 1.33 (3H, t, *J* = 7.2, OCH₂CH₃); 1.23 (6H, d, *J* = 7.0, CH(CH₃)₂). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 164.2; 162.0; 148.6; 125.3; 60.8; 25.9; 20.4; 14.2. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 184 [M+H]⁺ (100). Found, %: C 59.01; H 7.16; N 7.73. C₉H₁₃NO₃. Calculated, %: C 59.00; H 7.15; N 7.65.

Ethyl 5-(*tert*-butyl)oxazole-4-carboxylate (10c).⁵⁸ Yield 53.9 g (89%), brown oil. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.66 (1H, s, H oxazole); 4.32 (2H, q, *J* = 7.1, OCH₂CH₃); 1.40 (9H, s, C(CH₃)₃); 1.35 (3H, t, *J* = 7.1, OCH₂CH₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 165.9; 162.0; 147.2; 125.9; 61.0; 33.2; 28.1; 14.2. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 198 [M+H]⁺ (100). Found, %: C 61.15; H 7.27; N 7.03. C₁₀H₁₅NO₃. Calculated, %: C 60.90; H 7.67; N 7.10.

Ethyl 5-cyclopropyloxazole-4-carboxylate (10d).³¹ Yield 47.8 g (86%), brown oil. ¹H NMR spectrum (500 MHz, CDCl₃), δ, ppm (*J*, Hz): 7.54 (1H, s, H oxazole); 4.30 (2H, q, *J* = 7.1, OC<u>H₂CH₃</u>); 2.68 (1H, tt, *J* = 8.4, *J* = 5.1, CH cyclopropane); 1.31 (3H, t, *J* = 7.1, OCH₂C<u>H₃</u>); 1.07–1.03 (2H, m, CH₂ cyclopropane); 1.00–0.97 (2H, m, CH₂ cyclopropane). ¹³C NMR spectrum (126 MHz, CDCl₃), δ, ppm: 162.3; 160.9; 147.3; 126.6; 60.8; 14.3; 8.9; 7.7. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 182 [M+H]⁺ (42), 136 [M–OEt]⁺ (100). Found, %: C 60.04; H 5.82; N 7.43. C₉H₁₁NO₃. Calculated, %: C 59.66; H 6.12; N 7.73.

Ethyl 5-cyclobutyloxazole-4-carboxylate (10e) was purified by column chromatography on silica gel, eluent hexanes–EtOAc, 2:1, R_f 0.37. Yield 46.7 g (78%), colorless liquid. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.73 (1H s, H oxazole); 4.29 (2H, q, *J* = 7.1, OC<u>H</u>₂CH₃); 4.20 (1H, quintet, *J* = 8.8, CH cyclobutane); 2.35–2.23 (4H, m, 2CH₂ cyclobutane); 2.05–1.94 (1H, m, CH₂ cyclobutane); 1.91–1.83 (1H, m, CH₂ cyclobutane); 1.32 (3H, t, *J* = 7.1, OCH₂C<u>H</u>₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 162.0; 161.4; 148.7; 125.6; 60.8; 30.9; 27.4; 18.3; 14.2. Mass spectrum (CI), m/z (I_{rel} , %): 196 $[M+H]^+$ (50), 150 $[M-OEt]^+$ (100). Found, %: C 61.77; H 6.52; N 7.11. C₁₀H₁₃NO₃. Calculated, %: C 61.53; H 6.71; N 7.18.

Ethyl 5-(trifluoromethyl)oxazole-4-carboxylate (10f) was purified by column chromatography on silica gel, eluent hexanes–EtOAc, 4:1, $R_{\rm f}$ 0.44. Yield 40.4 g (63%), colorless liquid. ¹H NMR spectrum (500 MHz, CDCl₃), δ, ppm (*J*, Hz): 8.02 (1H, s, H oxazole); 4.35 (2H, q, *J* = 7.2, OC<u>H</u>₂CH₃); 1.31 (3H, t, *J* = 7.1, OCH₂C<u>H</u>₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ, ppm (*J*, Hz): 158.8; 150.9; 142.6 (q, *J* = 44.6); 132.1 (q, *J* = 2.3); 118.0 (q, *J* = 270.0); 62.2; 13.7. ¹⁹F NMR spectrum (470 MHz, CDCl₃), δ, ppm: -61.6. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 210 [M+H]⁺ (42), 182 [M–CH₂=CH(CH₃)+H]⁺ (77), 164 [M–OEt]⁺ (100). Found, %: C 40.10; H 2.99; N 7.01. C₇H₆F₃NO₃. Calculated, %: C 40.20; H 2.89; N 6.70.

Ethyl 5-(difluoromethyl)oxazole-4-carboxylate (10g) was purified by column chromatography on silica gel, eluent hexanes–EtOAc, 4:1, $R_{\rm f}$ 0.42. Yield 38.1 g (65%), colorless liquid. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.99 (1H, s, H oxazole); 7.23 (1H, t, *J* = 52.1, CHF₂); 4.40 (2H, q, *J* = 7.2, OCH₂CH₃); 1.37 (3H, t, *J* = 7.2, OCH₂CH₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm (*J*, Hz): 160.0; 151.4; 147.6 (t, *J* = 24.6); 132.1 (t, *J* = 5.8); 106.0 (t, *J* = 238.0); 62.2; 14.0. ¹⁹F NMR spectrum (470 MHz, CDCl₃), δ , ppm (*J*, Hz): -118.1 (d, *J* = 52.1). Mass spectrum (CI), *m/z* (*I*_{rel}, %): 210 [M+H]⁺ (30), 164 [M–CH₂=CH(CH₃)+H]⁺ (29), 146 [M–OEt]⁺ (100). Found, %: C 44.01; H 3.51; N 6.95. C₇H₇F₂NO₃. Calculated, %: C 43.99; H 3.69; N 7.33.

Ethyl 5-{[(*tert***-butoxycarbonyl)amino]methyl}oxazole-4-carboxylate (10h).³² Yield 80.5 g (97%), beige crystals, mp 63–65°C. ¹H NMR spectrum (500 MHz, CDCl₃), δ, ppm (***J***, Hz): 7.77 (1H, s, H oxazole); 5.34 (1H, br. s, NH); 4.63 (2H, d,** *J* **= 6.2, CH₂NHBoc); 4.34 (2H, q,** *J* **= 7.1, OCH₂CH₃); 1.39 (9H, s, C(CH₃)₃); 1.36 (3H, t,** *J* **= 7.1, OCH₂CH₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ, ppm: 161.7; 156.1; 155.5; 149.4; 128.2; 80.1; 61.4; 35.5; 28.3; 14.2. Mass spectrum (CI),** *m/z* **(***I***_{rel}, %): 215 [M–(H₃C)₂C=CH₂+H]⁺ (68), 171 [M–CO₂–(H₃C)₂C=CH₂+H]⁺ (100). Found, %: C 53.46; H 6.52; N 10.37. C₁₂H₁₈N₂O₅. Calculated, %: C 53.33; H 6.71; N 10.36.**

Ethyl 5-{2-[(*tert***-butoxycarbonyl)amino]ethyl}oxazole-4-carboxylate (10i).⁵⁹ Yield 82.9 g (95%), brown oil. ¹H NMR spectrum (500 MHz, DMSO-***d***₆), δ, ppm (***J***, Hz): 7.78 (1H s, H oxazole); 4.80 (1H, s, NH); 4.36 (2H, q,** *J* **= 7.1, OC<u>H</u>₂CH₃); 3.45 (2H, q,** *J* **= 6.0, CH₂C<u>H</u>₂NHBoc); 3.24 (2H, t,** *J* **= 6.5, C<u>H</u>₂CH₂NHBoc); 1.38 (9H, s, C(C<u>H</u>₃)₃); 1.38 (3H, t,** *J* **= 7.1, CH₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ, ppm: 162.0; 157.3; 155.7; 149.4; 128.3; 79.4; 61.2; 38.7; 28.3; 26.7; 14.3. Mass spectrum (CI),** *m/z* **(***I***_{rel}, %): 307 [M+Na]⁺ (7), 229 [M–(H₃C)₂C=CH₂+H]⁺ (72), 185 [M–CO₂–(H₃C)₂C=CH₂+H]⁺ (100). Found, %: C 55.12; H 7.14; N 9.69. C₁₃H₂₀N₂O₅. Calculated, %: C 54.92; H 7.09; N 9.85.**

Ethyl 5-{3-[(*tert***-butoxycarbonyl)amino]propyl}oxazole-4-carboxylate (10j)** was purified by column chromatography on silica gel, eluent hexanes–EtOAc, 2:1, *R*_f 0.34. Yield 88.8 g (97%), yellowish liquid. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.74 (1H, s, H oxazole); 4.88 (1H, br. s, NH); 4.35 (2H, q, *J* = 7.1, OC<u>H</u>₂CH₃); 3.11 (2H, q, *J* = 6.0, CH₂CH₂C<u>H</u>₂NHBoc); 3.06 (2H, t, *J* = 7.3, C<u>H</u>₂CH₂CH₂NHBoc); 1.85 (2H, quint, *J* = 7.1, CH₂C<u>H</u>₂CH₂NHBoc); 1.40 (9H, s, C(C<u>H</u>₃)₃); 1.37 (3H, t, *J* = 7.1, OCH₂C<u>H</u>₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 162.1; 159.1; 155.9; 149.1; 127.4; 61.1; 39.4; 28.4; 28.0; 27.9; 23.0; 14.3. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 321 [M+Na]⁺ (7), 243 [M–(H₃C)₂C=CH₂+H]⁺ (87), 199 [M–CO₂–(H₃C)₂C=CH₂+H]⁺ (100). Found, %: C 56.16; H 7.09; N 9.17. C₁₄H₂₂N₂O₅. Calculated, %: C 56.36; H 7.43; N 9.39.

Ethyl 5-{2-[(*tert*-butoxycarbonyl)amino]propan-2-yl}oxazole-4-carboxylate (10k).³² Yield 78.8 g (86%), beige crystals, mp 60–62°C. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.70 (1H, s, H oxazole); 5.60 (1H, br. s, NH); 4.33 (2H, q, *J* = 7.2, OC<u>H</u>₂CH₃); 1.68 (6H, s, C(C<u>H</u>₃)₂); 1.35 (3H, t, *J* = 7.1, OCH₂C<u>H</u>₃); 1.27 (9H, s, C(C<u>H</u>₃)₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 163.3; 161.8; 154.9; 147.5; 125.7; 79.5; 61.3; 51.4; 28.2; 26.7; 14.2. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 183 [M–NHCO₂*t*-Bu+H]⁺ (100). Found, %: C 56.21; H 7.08; N 9.32. C₁₄H₂₂N₂O₅. Calculated, %: C 56.36; H 7.43; N 9.39.

Ethyl 5-[1-(*tert***-butoxycarbonyl)azetidin-3-yl]oxazole-4-carboxylate (10l). Yield 90.1 g (99%), brown crystals, mp 78–80°C. ¹H NMR spectrum (500 MHz, CDCl₃), δ, ppm (***J***, Hz): 7.84 (1H, s, H oxazole); 4.49 (1H, tt, J = 8.7, J = 6.3, CH azetidine); 4.35 (2H, q, J = 7.1, OCH₂CH₃); 4.30–4.25 (2H, m, CH₂ azetidine); 4.10 (2H, dd, J = 8.7, J = 6.3, CH₂ azetidine); 1.43 (9H, s, C(CH₃)₃); 1.36 (3H, t, J = 7.1, OCH₂CH₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ, ppm: 161.6; 157.6; 156.1; 149.4; 127.9; 79.9; 61.3; 53.3; 28.3; 25.1; 14.2. Mass spectrum (CI), m/z (I_{rel}, %): 241 [M–(H₃C)₂C=CH₂+H]⁺ (100), 197 [M–CO₂–(H₃C)₂C=CH₂+H]⁺ (27). Found, %: C 57.03; H 7.02; N 9.20. C₁₄H₂₀N₂O₅. Calculated, %: C 56.75; H 6.80; N 9.45.**

Ethyl 5-(methoxymethyl)oxazole-4-carboxylate (10m).⁶⁰ Yield 55.7 g (98%), brown oil. ¹H NMR spectrum (500 MHz, CDCl₃), δ, ppm (*J*, Hz): 7.82 (1H, s, H oxazole); 4.69 (2H, s, CH₂OCH₃); 4.27 (2H, q, *J* = 7.1, OCH₂CH₃); 3.29 (3H, s, OCH₃); 1.28 (3H, t, *J* = 7.1, OCH₂CH₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ, ppm: 161.3; 154.3; 150.4; 129.6; 63.3; 61.3; 58.5; 14.1. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 186 [M+H]⁺ (25), 154 [M–OMe]⁺ (100). Found, %: C 51.56; H 6.24; N 7.47. C₈H₁₁NO₄. Calculated, %: C 51.89; H 5.99; N 7.56.

Synthesis of alcohols 13a–m (General method). The corresponding ester 10a–m (0.194 mol) was dissolved in THF–MeOH (2:1, 450 ml), and LiBH₄ (10.6 g, 0.485 mol) was added in small portions at room temperature. The resulting mixture was heated at 55°C overnight and then cooled to room temperature. Saturated aq NH₄Cl (30 ml) and solid NH₄Cl (30.0 g) were added to the reaction mixture. Then most of the solvent was evaporated under reduced pressure, the residue was diluted with EtOAc (500 ml), and the formed precipitate was filtered off and washed with hot EtOAc (2×100 ml). The filtrate was dried over Na₂SO₄ and evaporated under reduced pressure.

(5-Methyloxazol-4-yl)methanol (13a)³⁷ was purified by column chromatography on silica gel, eluent CHCl₃– MeOH, 25:1, R_f 0.36. Yield 15.1 g (69%), yellowish powder, mp 47–49°C. ¹H NMR spectrum (400 MHz, CDCl₃), δ, ppm: 7.71 (1H, s, H oxazole); 4.48 (2H, s, C<u>H</u>₂OH); 4.20 (1H, br. s, OH); 2.29 (3H, s, CH₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ, ppm: 149.4; 145.4; 133.7; 55.5; 10.0. Mass spectrum (CI), m/z (I_{rel} , %): 114 [M+H]⁺ (58), 96 [M–OH]⁺ (100). Found, %: C 53.11; H 6.32; N 12.28. C₅H₇NO₂. Calculated, %: C 53.09; H 6.24; N 12.38.

(5-Isopropyloxazol-4-yl)methanol (13b) was purified by column chromatography on silica gel, eluent CHCl₃– MeOH, 14:1, R_f 0.40. Yield 16.3 g (60%), colorless liquid. ¹H NMR spectrum (400 MHz, CDCl₃), δ, ppm (*J*, Hz): 7.71 (1H, s, H oxazole); 4.51 (2H, s, CH₂OH); 4.11 (1H, br. s, OH); 3.10 (1H, sept, J = 6.9, CH(CH₃)₂); 1.23 (6H, d, J = 6.9, CH(CH₃)₂). ¹³C NMR spectrum (126 MHz, CDCl₃), δ, ppm: 153.6; 149.2; 132.0; 55.5; 25.2; 21.3. Mass spectrum (CI), m/z (I_{rel} , %): 142 [M+H]⁺ (100), 124 [M–OH]⁺ (86). Found, %: C 59.67; H 8.02; N 10.24. C₇H₁₁NO₂. Calculated, %: C 59.56; H 7.85; N 9.92.

[5-(*tert*-Butyl)oxazol-4-yl]methanol (13c) was triturated with cold pentane. Yield 21.4 g (71%), yellowish crystals, mp 54–56°C. ¹H NMR spectrum (400 MHz, CDCl₃), δ, ppm: 7.68 (1H, s, H oxazole); 4.63–4.59 (2H, m, CH₂OH); 3.81 (1H, br. s, OH); 1.32 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ, ppm: 155.4; 148.4; 131.9; 56.7; 32.6; 29.3. Mass spectrum (CI), *m/z* (I_{rel} , %): 156 [M+H]⁺(32), 138 [M–OH]⁺ (100). Found, %: C 61.73; H 8.72; N 8.66. C₈H₁₃NO₂. Calculated, %: C 61.91; H 8.44; N 9.03.

(5-Cyclopropyloxazol-4-yl)methanol (13d) was purified by column chromatography on silica gel, eluent CHCl₃– MeOH, 10:1, R_f 0.32. Yield 21.5 g (76%), colorless liquid. ¹H NMR spectrum (400 MHz, CDCl₃), δ, ppm (*J*, Hz): 7.62 (1H, s, H oxazole); 4.55 (2H, s, C<u>H</u>₂OH); 4.06 (1H, br. s, OH); 1.90 (1H, tt, *J* = 8.5, *J* = 5.2, CH cyclopropane); 0.95–0.89 (2H, m, CH₂ cyclopropane); 0.87–0.82 (2H, m, CH₂ cyclopropane). ¹³C NMR spectrum (126 MHz, CDCl₃), δ, ppm: 149.8; 148.5; 133.5; 55.5; 6.5; 5.8. Mass spectrum (CI), *m/z* (I_{rel} , %): 140 [M+H]⁺ (34), 122 [M–OH]⁺ (100). Found, %: C 60.69; H 6.75; N 9.95. C₇H₉NO₂. Calculated, %: C 60.42; H 6.52; N 10.07.

(5-Cyclobutyloxazol-4-yl)methanol (13e). Yield 26.4 g (89%), colorless oil. ¹H NMR spectrum (400 MHz, CDCl₃), δ, ppm (*J*, Hz): 7.74 (1H, s, H oxazole); 4.47 (2H, s, CH₂OH); 3.99 (1H, br. s, OH); 3.60 (1H, quint, *J* = 8.8, CH cyclobutane); 2.36–2.23 (4H, m, 2CH₂ cyclobutane); 2.03–1.94 (1H, m, CH₂ cyclobutane); 1.92–1.85 (1H, m, CH₂ cyclobutane). ¹³C NMR spectrum (126 MHz, CDCl₃), δ ppm: 151.2; 149.4; 132.4; 55.5; 30.3; 28.1; 18.6. Mass spectrum (CI), *m/z* (*I*_{reb} %): 154 [M+H]⁺ (23), 136 [M–OH]⁺ (100). Found, %: C 62.62; H 6.91; N 9.38. C₈H₁₁NO₂. Calculated, %: C 62.73; H 7.24; N 9.14.

[5-(Trifluoromethyl)oxazol-4-yl]methanol (13f) was purified by column chromatography on silica gel, eluent CHCl₃-MeOH, 25:1, R_f 0.22. Yield 22.0 g (68%), yellowish liquid. ¹H NMR spectrum (400 MHz, DMSO- d_6), δ , ppm (*J*, Hz): 8.66 (1H, s, H oxazole); 5.49 (1H, t, J = 5.8); 4.46 (2H, d, J = 5.8, CH₂OH). ¹³C NMR spectrum (126 MHz, DMSO- d_6), δ , ppm (*J*, Hz): 153.3; 142.0 (q, J = 2.2); 133.6 (q, J = 42.4); 119.4 (q, J = 267.0); 54.1. ¹⁹F NMR spectrum (376 MHz, DMSO- d_6), δ , ppm: -62.4. Mass spectrum (CI), m/z (I_{rel} , %): 150 [M-F+H]⁺ (100). Found, %: C 35.85; H 2.30; N 8.05. C₅H₄F₃NO₂. Calculated, %: C 35.94; H 2.41; N 8.38.

[5-(Difluoromethyl)oxazol-4-yl]methanol (13g) was purified by column chromatography on silica gel, eluent CHCl₃–MeOH, 14:1, R_f 0.36. Yield 13.6 g (47%), yellowish liquid. ¹H NMR spectrum (400 MHz, CDCl₃), δ, ppm (*J*, Hz): 7.91 (1H, s, H oxazole); 6.92 (1H, t, *J* = 53.1, CHF₂); 4.76 (2H, s, CH₂OH); 2.53 (1H, s, OH). ¹³C NMR spectrum (126 MHz, CDCl₃), δ, ppm (*J*, Hz): 151.6; 140.0 (t, *J* = 4.4); 139.6 (t, *J* = 28.0); 107.5 (t, *J* = 236.0); 56.6. ¹⁹F NMR spectrum (376 MHz, CDCl₃), δ, ppm: -116.1. Mass spectrum (EI), *m/z* (*I*_{rel}, %): 149 [M]⁺ (21), 119 [M-H₂CO]⁺ (100). Found, %: C 40.67; H 3.52; N 8.99. C₅H₃F₂NO₂. Calculated, %: C 40.28; H 3.38; N 9.39.

tert-Butyl {[4-(hydroxymethyl)oxazol-5-yl]methyl}carbamate (13h) was triturated with cold pentane. Yield 27.5 g (62%), white solid, mp 83–85°C. ¹H NMR spectrum (400 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.73 (1H, s, H oxazole); 5.32 (1H, s, NH); 4.61 (2H, s, CH₂OH); 4.32 (2H, d, *J* = 6.2, CH₂NHBoc); 4.06 (1H, br. s, OH); 1.37 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 156.3; 150.0; 145.1; 136.6; 80.6; 57.0; 34.4; 28.3. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 173 [M–(H₃C)₂C=CH₂+H]⁺ (80), 129 [M–CO₂–(H₃C)₂C=CH₂+H]⁺ (100). Found, %: C 52.37; H 7.15; N 12.62. C₁₀H₁₆N₂O₄. Calculated, %: C 52.62; H 7.07; N 12.27.

tert-Butyl {2-[4-(hydroxymethyl)oxazol-5-yl]ethyl}carbamate (13i). Yield 40.0 g (85%), brownish oil. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.76 (1H, s, H oxazole); 5.03 (1H, s, NH); 4.51 (2H, s, CH₂OH); 3.68 (1H, br. s, OH); 3.35 (2H, t, *J* = 6.6, CH₂CH₂NHBoc); 2.90 (2H, t, *J* = 6.6, CH₂CH₂NHBoc); 1.39 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 155.9; 149.8; 146.7; 135.2; 79.6; 55.8; 39.0; 28.3; 25.4. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 170 [M–Ot-Bu+H]⁺ (47), 143 [M–CO₂–(H₃C)₂C=CH₂+H]⁺ (27), 127 [M–NHCO₂*t*-Bu+H]⁺ (100). Found, %: C 54.89; H 7.35; N 11.34. C₁₁H₁₈N₂O₄. Calculated, %: C 54.53; H 7.49; N 11.56.

tert-Butyl {3-[4-(hydroxymethyl)oxazol-5-yl]propyl}carbamate (13j) was purified by column chromatography on silica gel, eluent CHCl₃–MeOH, 14:1, R_f 0.42. Yield 38.8 g (78%), colorless oil. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.75 (1H, s, H oxazole); 4.92 (1H, s, NH); 4.51 (2H, s, CH₂OH); 3.95 (1H, br. s, OH); 3.09 (2H, q, *J* = 6.7, CH₂CH₂CH₂NHBoc); 2.74 (2H, t, *J* = 7.0, CH₂CH₂CH₂NHBoc); 1.82 (2H, quint, *J* = 6.7, CH₂CH₂CH₂NHBoc); 1.42 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 156.2; 149.6; 148.2; 134.4; 79.4; 55.8; 39.2; 28.4; 28.3; 21.6. Mass spectrum (CI), *m/z* (*I*_{reb} %): 279 [M+Na]⁺ (3), 201 [M–(H₃C)₂C=CH₂+H]⁺ (3), 140 [M–NHCO₂*t*-Bu+H]⁺ (100). Found, %: C 56.60; H 7.66; N 11.09. C₁₂H₂₀N₂O₄. Calculated, %: C 56.24; H 7.87; N 10.93. *tert*-Butyl {2-[4-(hydroxymethyl)oxazol-5-yl]propan-2-yl}carbamate (13k) was triturated with cold hexanes. Yield 39.8 g (80%), yellowish solid, mp 107–109°C. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 7.69 (1H, s, H oxazole); 5.28 (1H, br. s, NH); 4.60 (2H, s, CH₂OH); 3.85 (1H, br. s, OH); 1.64 (6H, s, C(CH₃)₂); 1.32 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 154.4; 150.8; 148.3; 133.6; 79.9; 56.6; 51.1; 28.2; 27.4. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 279 [M+Na]⁺ (3), 257 [M+H]⁺ (40), 201 [M–(H₃C)₂C=CH₂+H]⁺ (30), 183 [M–Ot-Bu]⁺ (100), 142 [M–NHCO₂t-Bu+H]⁺ (7). Found, %: C 55.93; H 7.55; N 11.30. C₁₂H₂₀N₂O₄. Calculated, %: C 56.24; H 7.87; N 10.93.

tert-Butyl 3-[4-(hydroxymethyl)oxazol-5-yl]azetidine-1-carboxylate (13I) was crystallized from hexanes*t*-BuOMe, 50:1. Yield 37.0 g (75%), white solid, mp 136– 138°C. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 7.85 (1H, s, H oxazole); 4.87 (1H, br. s, NH); 4.52 (2H, s, CH₂OH); 4.22–4.17 (2H, m, CH₂ azetidine); 4.08–4.04 (2H, m, CH₂ azetidine); 3.99–3.92 (1H, m, CH azetidine); 1.43 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 156.2; 150.2; 147.2; 134.9; 121.3; 79.9; 55.6; 54.1; 28.3; 24.1. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 199 [M–(H₃C)₂C=CH₂+H]⁺ (10), 155 [M–CO₂–(H₃C)₂C=CH₂+H]⁺ (3), 126 [M–H₂CNHBoc+H]⁺ (21), 108 [M–H₂CNHBoc–OH]⁺ (100). Found, %: C 57.05; H 6.79; N 10.89. C₁₂H₁₈N₂O₄. Calculated, %: C 56.68; H 7.14; N 11.02.

[5-(Methoxymethyl)oxazol-4-yl]methanol (13m) was purified by column chromatography on silica gel, eluent CHCl₃–MeOH, 14:1, R_f 0.30. Yield 20.0 g (72%), yellowish oil. ¹H NMR spectrum (400 MHz, CDCl₃), δ , ppm: 7.82 (1H, s, H oxazole); 4.58 (2H, s) and 4.48 (2H, s, CH₂OCH₃, CH₂OH); 3.73 (1H, s, OH); 3.34 (3H, s, OCH₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 150.8; 144.8; 137.6; 63.2; 58.2; 56.0. Mass spectrum (CI), *m/z* (I_{rel} , %): 144 [M+H]⁺ (100). Found, %: C 50.51; H 6.43; N 10.12. C₆H₉NO₃. Calculated, %: C 50.35; H 6.34; N 9.79.

Synthesis of chlorides 14a–m (General method). The corresponding alcohol 13a–m (0.132 mol) was dissolved in CH_2Cl_2 (250 ml), and Et_3N (27.6 ml, 20.0 g, 0.198 mol) was added. The solution was cooled to 0°C, and MsCl (18.1 g, 0.158 mol) was added dropwise. The resulting mixture was stirred at room temperature overnight, then washed with saturated aq solution of NaHCO₃ (200 ml), H₂O (200 ml), and brine (100 ml). The organic phase was dried over Na₂SO₄ and evaporated under reduced pressure.

4-(Chloromethyl)-5-methyloxazole (14a). Yield 16.0 g (92%), yellowish liquid. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 7.67 (1H, s, H oxazole); 4.42 (2H, s, CH₂Cl); 2.27 (3H, s, CH₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 149.3; 146.7; 131.1; 36.9; 10.0. Mass spectrum (EI), *m/z* (I_{rel} , %): 133 [M]⁺ (9), 131 [M]⁺ (27), 96 [M–Cl]⁺ (100). Found, %: C 45.93; H 4.30; N 11.01; Cl 27.31. C₅H₆CINO. Calculated, %: C 45.65; H 4.60; N 10.65; Cl 26.95.

4-(Chloromethyl)-5-isopropyloxazole (14b). Yield 20.0 g (95%), yellowish liquid. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.74 (1H, s,

H oxazole); 4.54 (2H, s, CH₂Cl); 3.15 (1H, sept, J = 6.9, C<u>H</u>(CH₃)₂); 1.31 (6H, d, J = 6.9, CH(C<u>H</u>₃)₂). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 154.9; 149.1; 129.4; 37.1; 25.5; 21.0. Mass spectrum (EI), m/z (I_{rel} , %): 161 [M]⁺ (12), 159 [M]⁺ (36), 146 [M–CH₃]⁺ (20), 144 [M–CH₃]⁺ (60), 124 [M–Cl]⁺ (100). Found, %: C 52.46; H 5.95; N 8.66; Cl 21.94. C₇H₁₀ClNO. Calculated, %: C 52.68; H 6.32; N 8.78; Cl 22.21.

5-(*tert*-**Butyl**)-4-(chloromethyl)oxazole (14c). Yield 22.0 g (96%), yellowish liquid. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 7.66 (1H, s, H oxazole); 4.58 (2H, s, CH₂Cl); 1.34 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 156.7; 148.4; 129.3; 38.5; 32.8; 29.0. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 176 [M+H]⁺ (33), 174 [M+H]⁺ (100). Found, %: C 55.35; H 6.96; N 7.92; Cl 20.81. C₈H₁₂ClNO. Calculated, %: C 55.34; H 6.97; N 8.07; Cl 20.42.

4-(Chloromethyl)-5-cyclopropyloxazole (14d). Yield 20.4 g (98%), yellowish liquid. ¹H NMR spectrum (400 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.66 (1H, s, H oxazole); 4.55 (2H, s, CH₂Cl); 1.90 (1H, tdd, *J* = 8.4, *J* = 6.8, *J* = 4.2, CH cyclopropane); 1.04–0.95 (2H, m, CH₂ cyclopropane); 0.94–0.86 (2H, m, CH₂ cyclopropane). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 151.2; 148.5; 130.8; 37.0; 6.7; 5.8. Mass spectrum (EI), *m/z* (*I*_{rel}, %): 159 [M]⁺ (12), 157 [M]⁺ (36), 122 [M–Cl]⁺ (100). Found, %: C 53.02; H 5.13; N 8.50; Cl 22.23. C₇H₈CINO. Calculated, %: C 53.35; H 5.12; N 8.89; Cl 22.49.

4-(Chloromethyl)-5-cyclobutyloxazole (14e). Yield 21.1 g (93%), brownish oil. ¹H NMR spectrum (400 MHz, CDCl₃), δ , ppm (*J*, Hz): 8.06 (1H, s, H oxazole); 4.49 (2H, s, CH₂Cl); 3.62 (1H, quint, *J* = 8.7, CH cyclobutane); 2.39–2.28 (4H, m, 2CH₂ cyclobutane); 2.09–2.00 (1H, m, CH₂ cyclobutane); 1.97–1.89 (1H, m, CH₂ cyclobutane). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 153.1; 149.7; 128.8; 36.1; 30.2; 27.8; 18.7. Mass spectrum (EI), *m*/*z* (*I*_{rel}, %): 173 [M]⁺ (3), 171 [M]⁺ (9), 143 [M–H₂C=CH₂]⁺ (73), 136 [M–CI]⁺ (100). Found, %: C 55.78; H 5.97; N 7.96; Cl 20.86. C₈H₁₀ClNO. Calculated, %: C 55.99; H 5.87; N 8.16; Cl 20.66.

4-(Chloromethyl)-5-(trifluoromethyl)oxazole (14f). The CH₂Cl₂ solution of compound was evaporated under reduced pressure. Yield 22.0 g (90%), yellowish liquid. ¹H NMR spectrum (400 MHz, CDCl₃), δ , ppm: 7.95 (1H, s, H oxazole); 4.57 (2H, s, CH₂Cl). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm (*J*, Hz): 151.7; 137. 9; 136.3 (q, *J* = 43.5); 118.8 (q, *J* = 268.0); 34.7. ¹⁹F NMR spectrum (376 MHz, CDCl₃), δ , ppm: -117.1. Mass spectrum (EI), *m/z* (*I*_{rel}, %): 187 [M]⁺ (5), 185 [M]⁺ (15), 150 [M–Cl]⁺ (100). Found, %: C 32.60; H 1.34; N 7.46; Cl 19.17. C₅H₃ClF₃NO. Calculated, %: C 32.37; H 1.63; N 7.55; Cl 19.11.

4-(Chloromethyl)-5-(difluoromethyl)oxazole (14g). The solution of compound in CH₂Cl₂ was evaporated under reduced pressure. Yield 20.3 g (92%), colorless liquid. ¹H NMR spectrum (400 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.90 (1H, s, H oxazole); 6.81 (1H, t, *J* = 53.4, CHF₂); 4.58 (2H, s, CH₂Cl). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm (*J*, Hz): 151.4; 140.4 (t, *J* = 30.6); 136.8; 107.6 (t, *J* = 237.0); 35.2. ¹⁹F NMR spectrum (376 MHz, CDCl₃),

δ, ppm: -117.1. Mass spectrum (EI), m/z (I_{rel} , %): 169 [M]⁺ (7), 167 [M]⁺ (21), 150 [M–CI]⁺ (100). Found, %: C 35.98; H 2.27; N 8.28; Cl 21.47. C₅H₄ClF₂NO. Calculated, %: C 35.85; H 2.41; N 8.36; Cl 21.16.

tert-Butyl {[4-(chloromethyl)oxazol-5-yl]methyl}carbamate (14h). Yield 32.2 g (99%), white solid, mp 92– 94°C. ¹H NMR spectrum (400 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.75 (1H, s, H oxazole); 5.01 (1H, s, NH); 4.57 (2H, s, CH₂Cl); 4.36 (2H, d, *J* = 6.1, C<u>H₂NHBoc</u>); 1.41 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 155.5; 150.1; 146.6; 133.2; 80.3; 36.4; 34.3; 28.3. Mass spectrum (EI), *m/z* (*I*_{rel}, %): 248 [M]⁺ (<1), 246 [M]⁺ (3), 193 [M–H₂C=C(CH₃)+H]⁺ (20), 191 [M–H₂C=C(CH₃)+H]⁺ (60), 175 [M–O*t*-Bu]⁺ (33), 173 [M–O*t*-Bu]⁺ (100). Found, %: C 48.64; H 6.21; N 11.02; Cl 14.39. C₁₀H₁₅ClN₂O₃. Calculated, %: C 48.69; H 6.13; N 11.36; Cl 14.37.

tert-Butyl {2-[4-(chloromethyl)oxazol-5-yl]ethyl}carbamate (14i). Yield 33.0 g (96%), brown oil. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.75 (1H, s, H oxazole); 4.95 (1H, s, NH); 4.44 (2H, s, CH₂Cl); 3.38– 3.30 (2H, m, CH₂C<u>H₂</u>NHBoc); 2.88 (2H, t, *J* = 6.5, C<u>H₂</u>CH₂NHBoc); 1.37 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 155.7; 150.0; 147.8; 132.7; 79.5; 38.8; 36.6; 28.3; 25.5. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 263 [M+H]⁺ (33), 261 [M+H]⁺ (100). Found, %: C 50.34; H 6.88; N 10.94; Cl 13.29. C₁₁H₁₇ClN₂O₃. Calculated, %: C 50.68; H 6.57; N 10.74; Cl 13.60.

tert-Butyl {3-[4-(chloromethyl)oxazol-5-yl]propyl}carbamate (14j). Yield 35.2 g (97%), brown oil. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.71 (1H, s, H oxazole); 4.87 (1H, s, NH); 4.45 (2H, s, CH₂Cl); 3.13– 3.04 (2H, m, CH₂CH₂C<u>H₂NHBoc</u>); 2.69 (2H, t, *J* = 7.3, CH₂CH₂CH₂NHBoc); 1.80 (2H, quint, *J* = 7.3, CH₂CH₂CH₂NHBoc); 1.37 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 156.0; 149.6; 131.4; 79.2; 39.6; 36.8; 28.3; 28.2; 21.9. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 275 [M+H]⁺ (<1), 219 [M–(H₃C)₂C=CH₂+H]⁺ (100), 219 [M–(H₃C)₂C=CH₂+H]⁺ (33). Found, %: C 52.61; H 7.02; N 10.15; Cl 12.71. C₁₂H₁₉ClN₂O₃. Calculated, %: C 52.46; H 6.97; N 10.20; Cl 12.90.

tert-Butyl {2-[4-(chloromethyl)oxazol-5-yl]propan-2-yl}carbamate (14k). Yield 35.5 g (98%), yellowish solid, mp 119–121°C. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 7.71 (1H, s, H oxazole); 5.10 (1H, br. s, NH); 4.61 (2H, s, CH₂Cl); 1.65 (6H, s, C(CH₃)₂); 1.35 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 154.0; 152.5; 148.3; 130.2; 79.9; 51.3; 37.7; 28.2; 27.5. Mass spectrum (CI), *m*/*z* (*I*_{rel}, %): 277 [M+H]⁺ (33), 275 [M+H]⁺ (100). Found, %: C 52.41; H 6.58; N 10.37; Cl 13.24. C₁₂H₁₉ClN₂O₃. Calculated, %: C 52.46; H 6.97; N 10.20; Cl 12.90.

tert-Butyl 3-[4-(chloromethyl)oxazol-5-yl]azetidine-1-carboxylate (14l). Yield 34.6 g (96%), white solid, mp 67– 69°C. ¹H NMR spectrum (400 MHz, CDCl₃), δ, ppm: 7.81 (1H, s, H oxazole); 4.45 (2H, s, CH₂Cl); 4.26–4.21 (2H, m, CH₂ azetidine); 4.10–4.06 (2H, m, CH₂ azetidine); 3.93– 3.87 (1H, m, CH azetidine); 1.43 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ, ppm: 156.1; 150.0; 148.4; 132.4; 80.0; 53.9; 36.4; 28.3; 24.2. Mass spectrum (CI), m/z (I_{rel} , %): 275 [M+H]⁺ (11), 273 [M+H]⁺ (33), 219 [M-H₂C=C(CH₃)+H]⁺ (33), 217 [M-H₂C=C(CH₃)+H]⁺ (100). Found, %: C 53.16; H 6.32; N 10.58; Cl 13.00. C₁₂H₁₇ClN₂O₃. Calculated, %: C 52.85; H 6.28; N 10.27; Cl 13.00.

4-(Chloromethyl)-5-(methoxymethyl)oxazole (14m). Yield 19.6 g (92%), brown oil. ¹H NMR spectrum (400 MHz, CDCl₃), δ , ppm: 7.83 (1H, s, H oxazole); 4.55 (2H, s, C<u>H</u>₂OCH₃); 4.50 (2H, s, CH₂Cl); 3.38 (3H, s, OCH₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 150.8; 145.9; 134.6; 63.1; 58.4; 36.2. Mass spectrum (CI), *m/z* (I_{rel} , %): 164 [M+H]⁺ (33), 162 [M+H]⁺ (100). Found, %: C 44.26; H 4.76; N 8.92; Cl 21.69. C₆H₈CINO₂. Calculated, %: C 44.60; H 4.99; N 8.67; Cl 21.94.

Synthesis of azides 15a–m (General method). The corresponding chloride 14a–m (0.119 mol) and NaN₃ (38.6 g, 0.594 mol) were dissolved in MeCN (250 ml) with H₂O (3.50 ml). The resulting mixture was refluxed overnight, then cooled to room temperature, and the precipitate was filtered off and washed with EtOAc (100 ml). The filtrate was evaporated under reduced pressure, the residue was dissolved in EtOAc (200 ml), washed with H₂O (100 ml) and brine (100 ml). The organic phase was dried over Na₂SO₄ and evaporated under reduced pressure.

4-(Azidomethyl)-5-methyloxazole (15a). Yield 14.1 g (86%), brown liquid. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 7.75 (1H, s, H oxazole); 4.21 (2H, s, CH₂N₃); 2.34 (3H, s, CH₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 149.6; 146.7; 129.5; 45.6; 10.0. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 96 [M–HN₃]⁺ (100). Found, %: C 43.75; H 4.17; N 40.81. C₃H₆N₄O. Calculated, %: C 43.48; H 4.38; N 40.56.

4-(Azidomethyl)-5-isopropyloxazole (15b). Yield 19.0 g (96%), yellowish liquid. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.75 (1H, s, H oxazole); 4.23 (2H, s, CH₂N₃); 3.09 (1H, hept, *J* = 7.0, C<u>H</u>(CH₃)₂); 1.28 (6H, d, *J* = 7.0, CH(C<u>H₃)₂). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 155.1; 149.4; 127.4; 45.6; 25.3; 21.4. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 124 [M–HN₃]⁺ (100). Found, %: C 50.54; H 6.23; N 33.84. C₇H₁₀N₄O. Calculated, %: C 50.59; H 6.07; N 33.71.</u>

4-(Azidomethyl)-5-(*tert***-butyl)oxazole** (15c). Yield 21.0 g (98%), yellowish liquid. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 7.69 (1H, s, H oxazole); 4.30 (2H, s, CH₂N₃); 1.33 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 157.0; 148.6; 127.2; 46.7; 32.6; 29.3. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 138 [M–HN₃]⁺ (100). Found, %: C 53.08; H 6.92; N 31.40. C₈H₁₂N₄O. Calculated, %: C 53.32; H 6.71; N 31.09.

4-(Azidomethyl)-5-cyclopropyloxazole (15d). Yield 17.4 g (89%), yellowish liquid. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.66 (1H, s, H oxazole); 4.29 (2H, s, CH₂N₃); 1.90 (1H, tdd, *J* = 13.4, *J* = 8.4, *J* = 5.0, CH cyclopropane); 1.03–0.97 (2H, m, CH₂ cyclopropane); 0.93–0.87 (2H, m, CH₂ cyclopropane). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 151.2; 148.6; 129.2; 45.6; 6.8; 5.7. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 122 [M–HN₃]⁺ (100). Found, %: C 50.97; H 5.26; N 33.79. C₇H₈N₄O. Calculated, %: C 51.21; H 4.91; N 34.13. **4-(Azidomethyl)-5-cyclobutyloxazole (15e).** Yield 20.8 g (98%), brown liquid. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.76 (1H, s, H oxazole); 4.16 (2H, s, CH₂N₃); 3.57 (1H, quint, *J* = 8.8, CH cyclobutane); 2.37 –2.29 (2H, m, CH₂ cyclobutane); 2.28–2.23 (2H, m, CH₂ cyclobutane); 2.06–1.95 (1H, m, CH₂ cyclobutane); 1.94–1.87 (1H, m, CH₂ cyclobutane). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 152.6; 149.6; 127.8; 45.6; 30.2; 28.2; 18.5. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 151 [M–N₂+H]⁺ (5), 136 [M–HN₃]⁺ (3). Found, %: C 54.10; H 5.89; N 31.38. C₈H₁₀N₄O. Calculated, %: C 53.92; H 5.66; N 31.44.

4-(Azidomethyl)-5-(trifluoromethyl)oxazole (15f). Yield 19.4 g (85%), colorless liquid. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 8.00 (1H, s, H oxazole); 4.38 (2H, s, CH₂N₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm (*J*, Hz): 151.8; 136.6 (q, *J* = 43.5); 136.5 (q, *J* = 1.6); 118.9 (q, *J* = 268.0); 44.6. ¹⁹F NMR spectrum (470 MHz, CDCl₃), δ , ppm: -61.9. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 150 [M–HN₃]⁺ (100). Found, %: C 31.61; H 1.96; N 28.99. C₅H₃F₃N₄O. Calculated, %: C 31.26; H 1.57; N 29.17.

4-(Azidomethyl)-5-(difluoromethyl)oxazole (15g). Yield 17.2 g (83%), colorless liquid. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.93 (1H, s, H oxazole); 6.84 (1H, t, *J* = 53.3, CHF₂); 4.40 (2H, s, CH₂N₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm (*J*, Hz): 151.7; 140.6 (t, *J* = 30.1); 135.4; 107.6 (t, *J* = 237.0); 45.3. ¹⁹F NMR spectrum (470 MHz, CDCl₃), δ , ppm: –115.7; –115.8. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 147 [M–N₂+H]⁺ (100). Found, %: C 34.31; H 1.96; N 31.99. C₅H₄F₂N₄O. Calculated, %: C 34.49; H 2.32; N 32.18.

tert-Butyl {[4-(azidomethyl)oxazol-5-yl]methyl}carbamate (15h). Yield 29.8 g (99%), yellow solid. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 7.79 (1H, s, H oxazole); 5.10 (1H, s, NH); 4.35 (2H, s, CH₂NH); 4.33 (2H, s, CH₂N₃); 1.41 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 155.4; 150.4; 146.9; 131.4; 80.2; 45.3; 34.2; 28.3. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 226 [M–N₂+H]⁺ (25), 170 [M–N₂–H₂C=C(CH₃)+H]⁺ (30), 123 [M–N₂–NHBoc]⁺ (100). Found, %: C 47.76; H 6.20; N 27.69. C₁₀H₁₅N₅O₃. Calculated, %: C 47.43; H 5.97; N 27.65.

tert-Butyl {2-[4-(azidomethyl)oxazol-5-yl]ethyl}carbamate (15i). Yield 29.3 g (92%), yellow oil. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.79 (1H, s, H oxazole); 4.85 (1H, s, NH); 4.21 (2H, s, CH₂N₃); 3.36 (2H, q, *J* = 6.6, CH₂C<u>H₂</u>NHBoc); 2.89 (2H, t, *J* = 6.6, C<u>H₂CH₂NHBoc); 1.40 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 155.7; 150.1; 147.8; 130.9; 79.6; 45.4; 39.0; 28.3; 25.3. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 226 [M–N₂+H]⁺ (25), 166 [M–N₂–O*t*-Bu+H]⁺ (25), 109 [M–N₂+H]⁺ (100). Found, %: C 49.81; H 6.81; N 25.85. C₁₁H₁₇N₅O₃. Calculated, %: C 49.43; H 6.41; N 26.20.</u>

tert-Butyl {3-[4-(azidomethyl)oxazol-5-yl]propyl}carbamate (15j). Yield 31.5 g (94%), yellowish oil. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.74 (1H, s, H oxazole); 4.82 (1H, s, NH); 4.19 (2H, s, CH₂N₃); 3.10 (2H, d, *J* = 7.0, CH₂CH₂CH₂NHBoc); 2.74–2.63 (2H, m, CH₂CH₂CH₂.NHBoc); 1.79 (2H, quint, *J* = 7.0, CH₂CH₂CH₂NHBoc); 1.39 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 156.0; 149.8; 149.7; 129.6; 79.2; 45.5; 39.6; 28.6; 28.3; 21.8. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 254 [M–N₂+H]⁺ (17), 139 [M–N₂–NBoc+H]⁺ (100). Found, %: C 51.32; H 7.06; N 24.95. C₁₂H₁₉N₅O₃. Calculated, %: C 51.23; H 6.81; N 24.90.

tert-Butyl {2-[4-(azidomethyl)oxazol-5-yl]propan-2-yl}carbamate (15k). Yield 31.8 g (95%), yellow solid. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 7.72 (1H, s, H oxazole); 5.08 (1H, br. s, NH); 4.33 (2H, s, CH₂N₃); 1.63 (6H, s, C(CH₃)₂); 1.35 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 154.0; 152.7; 148.4; 128.6; 79.9; 51.2; 46.2; 28.2; 27.9. Mass spectrum (CI), *m*/*z* (*I*_{rel}, %): 254 [M–N₂+H]⁺ (31), 138 [M–N₂–NHBoc]⁺ (50), 123 [M–N₂–CH₃–NHBoc]⁺ (100). Found, %: C 50.97; H 7.06; N 24.61. C₁₂H₁₉N₅O₃. Calculated, %: C 51.23; H 6.81; N 24.90.

tert-Butyl 3-[4-(azidomethyl)oxazol-5-yl]azetidine-1-carboxylate (15I). Yield 31.9 g (96%), white solid. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 7.85 (1H, s, H oxazole); 4.28–4.15 (4H, m, CH₂N₃, CH₂ azetidine); 4.11–4.03 (2H, m, CH₂ azetidine); 3.92–3.85 (1H, m, CH azetidine); 1.43 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 156.1; 150.3; 148.4; 130.6; 79.9; 54.0; 45.5; 28.3; 24.2. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 252 [M–N₂+H]⁺ (5), 108 [M–N₂–CH₂CH₂NHBoc+H]⁺ (100). Found, %: C 51.49; H 6.16; N 25.00. C₁₂H₁₇N₅O₃. Calculated, %: C 51.60; H 6.14; N 25.08.

4-(Azidomethyl)-5-(methoxymethyl)oxazole (15m). Yield 19.6 g (98%), yellow liquid. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 7.82 (1H, s, H oxazole); 4.44 (2H, s, CH₂OCH₃); 4.26 (2H, s, CH₂N₃); 3.32 (3H, s, OCH₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 150.9; 146.1; 133.0; 63.1; 58.3; 45.3. Mass spectrum (CI), *m/z* (I_{rel} , %): 141 [M–N₂+H]⁺ (8), 109 [M–N₂–OMe]⁺ (58), 96 [M–N₂–CH₂OMe+H]⁺ (100). Found, %: C 43.11; H 4.73; N 33.03. C₆H₈N₄O₂. Calculated, %: C 42.86; H 4.80; N 33.32.

Synthesis of amines 16a–m (General method). The corresponding azide 15a–m (0.101 mol) and 10% Pd/C (2.00 g) were placed in MeOH (200 ml) under H₂ (1 atm). After the reaction was complete (monitored by ¹H NMR spectroscopy, ca. 12 h), the precipitate was filtered off and carefully washed with MeOH (50 ml). The filtrate was evaporated under reduced pressure, and the residue was dissolved in 1,4-dioxane (200 ml). The resulting solution was cooled to 15°C, and NH₄Cl (5.13 g, 960 mmol) in MeOH (100 ml) (for *N*-Boc amines 16h–I) or 10% HCl in 1,4-dioxane (20 ml) (for the rest of the compounds) was added, the precipitate formed was filtered off and dried under reduced pressure.

(5-Methyloxazol-4-yl)methanamine (16a). Yield 10.5 g (93%), yellowish liquid. ¹H NMR spectrum (400 MHz, CDCl₃), δ , ppm: 7.64 (1H, s, H oxazole); 3.61 (2H, s, CH₂NH₂); 2.23 (3H, s, CH₃); 1.62 (2H, br. s, NH₂). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 149.2; 143.4; 135.2; 37.2; 9.9. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 113 [M+H]⁺ (100). Found, %: C 53.83; H 7.14; N 24.84. C₅H₈N₂O. Calculated, %: C 53.56; H 7.19; N 24.98.

(5-Isopropyloxazol-4-yl)methanamine hydrochloride (16b·HCl). Yield 16.1 g (90%), beige solid, mp 184–186°C. ¹H NMR spectrum (400 MHz, DMSO- d_6), δ , ppm (*J*, Hz): 8.54 (3H, s, NH₂·HCl); 8.34 (1H, s, H oxazole); 3.87 (2H, d, *J* = 5.9, CH₂NH₂); 3.25 (1H, sept, *J* = 6.8, CH(CH₃)₂); 1.20 (6H, d, *J* = 6.8, CH(CH₃)₂). ¹³C NMR spectrum (126 MHz, DMSO- d_6), δ , ppm: 154.9; 151.0; 126.1; 33.9; 24.6; 21.6. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 141 [M+H–HCl]⁺ (100). Calculated, %: C₇H₁₃ClN₂O: C 47.60; H 7.42; N 15.86; Cl 20.07. Found, %: C 47.32; H 7.28; N 15.98; Cl 20.37.

[5-(*tert*-Butyl)oxazol-4-yl]methanamine hydrochloride (16c·HCl). Yield 16.8 g (87%), white crystals, mp 216– 218°C. ¹H NMR spectrum (500 MHz, DMSO- d_6), δ , ppm: 8.62 (3H, s, NH₂·HCl); 8.34 (1H s, H oxazole); 3.95 (2H, s, CH₂NH₂); 1.31 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, DMSO- d_6), δ , ppm: 155.8; 150.5; 125.8; 35.2; 32.7; 29.3. Mass spectrum (Cl), m/z (I_{rel} , %): 155 [M+H–HCl]⁺ (16), 136 [M+H–NH₄Cl]⁺ (100). Found, %: C 50.39; H 8.13; N 15.03; Cl 18.21. C₈H₁₅ClN₂O. Calculated, %: C 50.39; H 7.93; N 14.69; Cl 18.59.

(5-Cyclopropyloxazol-4-yl)methanamine hydrochloride (16d·HCl). The hydrogenation was performed in an autoclave under 40 atm of H₂. Yield 14.1 g (80%), white crystals, mp 197–199°C. ¹H NMR spectrum (400 MHz, DMSO-*d*₆), δ, ppm (*J*, Hz): 8.54 (3H, br. s, NH₂·HCl); 8.25 (1H, s, H oxazole); 3.92 (2H, s, CH₂NH₂); 2.19 (1H, tt, *J* = 8.6, *J* = 5.1, CH isopropane); 1.01–0.94 (2H, m, CH₂ cyclopropane); 0.86–0.78 (2H, m, CH₂ cyclopropane). ¹³C NMR spectrum (126 MHz, DMSO-*d*₆), δ, ppm: 151.0; 150.3; 127.7; 34.0; 7.1; 5.9. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 139 [M+H–HCl]⁺ (3), 122 [M+H–NH₄Cl]⁺ (100). Found, %: C 48.01; H 6.18; N 15.76; Cl 20.45. C₇H₁₁ClN₂O. Calculated, %: C 48.15; H 6.35; N 16.04; Cl 20.30.

(5-Cyclobutyloxazol-4-yl)methanamine hydrochloride (16e·HCl). Yield 18.3 g (96%), beige solid, mp 175–177°C. ¹H NMR spectrum (500 MHz, DMSO-*d*₆), δ , ppm: 8.49 (3H, s, NH₂·HCl); 8.37 (1H, s, H oxazole); 3.86–3.75 (3H, m, CH₂NH₂, CH cyclobutane); 2.27–2.16 (4H, m, 2CH₂ cyclobutane); 1.99–1.93 (1H, m, CH₂ cyclobutane); 1.87– 1.81 (1H, m, CH₂ cyclobutane). ¹³C NMR spectrum (126 MHz, DMSO-*d*₆), δ , ppm: 152.4; 151.3; 126.7; 33.9; 29.6; 28.0; 18.5. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 153 [M+H–HCl]⁺ (9), 136 [M+H–NH₄Cl]⁺ (100). Found, %: C 50.85; H 7.25; N 15.19; Cl 18.62. C₈H₁₃ClN₂O. Calculated, %: C 50.93; H 6.95; N 14.85; Cl 18.79.

[5-(Trifluoromethyl)oxazol-4-yl]methanamine hydrochloride (16f·HCl). Yield 17.0 g (83%), white solid, mp 171–173°C. ¹H NMR spectrum (400 MHz, DMSO-*d*₆), δ , ppm: 8.92 (1H, s, H oxazole); 8.83 (3H, s, NH₂·HCl); 4.08 (2H, s, CH₂NH₂). ¹³C NMR spectrum (126 MHz, DMSO-*d*₆), δ , ppm (*J*, Hz): 154.8; 135.8 (q, *J* = 1.7); 134.9 (q, *J* = 42.6); 119.4 (q, *J* = 268.0); 33.7. ¹⁹F NMR spectrum (376 MHz, DMSO-*d*₆), δ , ppm: -61.6. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 167 [M+H–HCl]⁺ (100). Found, %: C 30.05; H 2.80; N 14.03; Cl 17.58. C₅H₆ClF₃N₂O. Calculated, %: C 29.65; H 2.99; N 13.83; Cl 17.50.

[5-(Difluoromethyl)oxazol-4-yl]methanamine hydrochloride (16g·HCl). Yield 15.1 g (81%), beige solid, mp 157–159°C. ¹H NMR spectrum (400 MHz, DMSO- d_6), δ, ppm (*J*, Hz): 8.73 (1H, s, H oxazole); 8.24 (3H, br. s, NH₂·HCl); 7.48 (1H, t, J = 51.3, CHF₂); 4.11 (2H, s, CH₂NH₂). ¹³C NMR spectrum (126 MHz, DMSO-*d*₆), δ, ppm (*J*, Hz): 154.1; 140.5 (t, J = 25.6); 134.6 (t, J = 5.5); 107.6 (t, J = 233.0); 33.4. ¹⁹F NMR spectrum (376 MHz, DMSO-*d*₆), δ, ppm: -116.6. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 149 [M+H–HCl]⁺ (100). Found, %: C 32.75; H 3.86; N 15.38; Cl 19.52. C₅H₇ClF₂N₂O. Calculated, %: C 32.54; H 3.82; N 15.18; Cl 19.21.

tert-Butyl {[4-(aminomethyl)oxazol-5-yl]methyl}carbamate hydrochloride (16h·HCl). Yield 20.0 g (87%), white solid, mp 204–206°C. ¹H NMR spectrum (500 MHz, DMSO- d_6), δ , ppm: 8.38 (4H, br. s, NH₂·HCl, H oxazole); 7.43 (1H, s, NHBoc); 4.24 (2H, s, CH₂NHBoc); 3.93 (2H, s, CH₂NH₂); 1.36 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, DMSO- d_6), δ , ppm: 155.9; 151.8; 148.0; 129.9; 78.8; 34.0; 33.9; 28.6. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 228 [M+H–HCl]⁺ (42), 172 [M–H₂C=C(CH₃)₂–HCl+H]⁺ (100). Found, %: C 45.81; H 7.05; N 16.21; Cl 13.45. C₁₀H₁₈ClN₃O₃. Calculated, %: C 45.54; H 6.88; N 15.93; Cl 13.44.

tert-Butyl {2-[4-(aminomethyl)oxazol-5-yl]ethyl}carbamate (16i). Yield 26.7 g (95%), brown oil. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 7.71 (1H, s, H oxazole); 5.10 (1H, br. s, NHBoc); 4.61 (2H, s, CH₂NH₂); 1.78–1.52 (6H, m, 2CH₂, NH₂); 1.35 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 154.0; 152.5; 148.3; 130.2; 79.9; 51.3; 37.7; 28.2; 27.5. Mass spectrum (CI), *m/z* (I_{reb} , %): 242 [M+H–HCl]⁺ (50), 186 [M–H₂C=C(CH₃)₂–HCl+H]⁺ (100). Found, %: C 54.88; H 8.15; N 17.73. C₁₁H₁₉N₃O₃. Calculated, %: C 54.76; H 7.94; N 17.42.

tert-Butyl {3-[4-(aminomethyl)oxazol-5-yl]propyl}carbamate hydrochloride (16j·HCl). Yield 28.9 g (98%), white solid, mp 157–459°C. ¹H NMR spectrum (500 MHz, DMSO- d_6), δ , ppm (*J*, Hz): 8.56 (3H, s, NH₂·HCl); 8.33 (1H, s, H oxazole); 6.90 (1H, s, NHBoc); 3.86 (2H, s, CH₂NH₂); 2.92 (2H, q, *J* = 6.5, CH₂CH₂CH₂NHBoc); 2.70 (2H, t, *J* = 7.4, CH₂CH₂CH₂CH₂NHBoc); 1.68 (2H, quint, *J* = 7.4, CH₂CH₂CH₂CH₂NHBoc); 1.68 (2H, quint, *J* = 7.4, CH₂CH₂CH₂NHBoc); 1.35 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, DMSO- d_6), δ , ppm: 156.1; 151.3; 150.4; 128.0; 78.0; 39.7; 33.9; 28.7; 28.1; 21.7. Mass spectrum (CI), *m*/*z* (*I*_{rel}, %): 256 [M+H–HCl]⁺ (66), 200 [M–H₂C=C(CH₃)₂–HCl+H]⁺ (100). Found, %: C 49.45; H 7.41; N 14.28; Cl 12.11. C₁₂H₂₂ClN₃O₃. Calculated, %: C 49.40; H 7.60; N 14.40; Cl 12.15.

tert-Butyl {2-[4-(aminomethyl)oxazol-5-yl]propan-2-yl}carbamate hydrochloride (16k·HCl). Yield 28.0 g (95%), white solid, mp 189–191°C. ¹H NMR spectrum (500 MHz, DMSO- d_6), δ , ppm: 8.41 (3H, br. s, NH₂·HCl); 8.34 (1H, s, H oxazole); 7.41 (1H, s, NHBoc); 3.89 (2H, s, CH₂NH₂); 1.53 (6H, s, C(CH₃)₂); 1.32 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, DMSO- d_6), δ , ppm: 154.6; 150.1; 126.4; 78.6; 50.9; 39.5; 34.8; 28.6; 27.6. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 256 [M+H–HCl]⁺ (60), 200 [M–H₂C=C(CH₃)₂–HCl+H]⁺ (100). Found, %: C 49.01; H 8.00; N 14.35; Cl 11.97. C₁₂H₂₂ClN₃O₃. Calculated, %: C 49.40; H 7.60; N 14.40; Cl 12.15.

tert-Butyl 3-[4-(aminomethyl)oxazol-5-yl]azetidine-1-carboxylate hydrochloride (16l·HCl). Yield 27.8 g (95%), gray solid, mp 175–177°C. ¹H NMR spectrum (400 MHz, DMSO- d_6), δ , ppm: 8.49 (3H, s, NH₂·HCl); 8.47 (1H, s, H oxazole); 4.27–4.07 (3H, m, CH₂NH₂, CH azetidine); 3.87 (4H, s, 2CH₂ azetidine); 1.39 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, DMSO- d_6), δ , ppm: 155.9; 152.0; 149.4; 129.0; 79.4; 54.3; 33.8; 28.5; 23.9. Mass spectrum (CI), *m/z* (I_{rel} , %): 254 [M+H–HCl]⁺ (20), 198 [M–H₂C=C(CH₃)₂–HCl+H]⁺ (100). Found, %: C 49.38; H 6.94; N 14.73; CI 12.31. C₁₂H₂₀ClN₃O₃. Calculated, %: C 49.74; H 6.96; N 14.50; CI 12.23.

[5-(Methoxymethyl)oxazol-4-yl]methanamine hydrochloride (16m·HCl). Yield 16.6 g (92%), beige solid, mp 125–127°C. ¹H NMR spectrum (500 MHz, DMSO-*d*₆), δ , ppm (*J*, Hz): 8.65 (3H, s, NH₂·HCl); 8.48 (1H, s, H oxazole); 4.53 (2H, s, CH₂OCH₃); 3.95 (2H, q, *J* = 5.6, CH₂NH₂); 3.25 (3H, s, OCH₃). ¹³C NMR spectrum (126 MHz, DMSO-*d*₆), δ , ppm: 152.7; 146.7; 131.5; 62.4; 57.9; 33.7. Mass spectrum (CI), *m/z* (*I*_{reb} %): 143 [M+H–HCl]⁺ (100). Found, %: C 40.43; H 5.85; N 15.66; Cl 19.48. C₆H₁₁ClN₂O₂. Calculated, %: C 40.35; H 6.21; N 15.68; Cl 19.85.

Synthesis of thioacetates 18a,c,d,f,g (General method). The corresponding chloride 14 (0.119 mol) and KSAc (20.4 g, 0.179 mol) were added to EtOH (250 ml), and the resulting mixture was heated at 55°C overnight. Then the reaction mixture was cooled to room temperature, the solvent was evaporated under reduced pressure. The residue was dissolved in CH_2Cl_2 (200 ml), washed with H_2O (100 ml) and brine (100 ml). The organic phase was dried over Na_2SO_4 and evaporated under reduced pressure.

S-[(5-Methyloxazol-4-yl)methyl]ethanethioate (18a). Yield 18.1 g (89%), brown oil. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 7.65 (1H, s, H oxazole); 3.93 (2H, s, CH₂SAc); 2.32 (3H, s, CH₃CO); 2.29 (3H, s, CH₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 195.0; 149.2; 145.4; 130.4; 30.3; 24.5; 10.0. Mass spectrum (CI), *m/z* (I_{rel} , %): 172 [M+H]⁺ (17), 130 [M–COCH₂+H]⁺ (58), 96 [M–SAc]⁺ (100). Found, %: C 48.84; H 5.52; N 8.50; S 18.96. C₇H₉NO₂S. Calculated, %: C 49.11; H 5.30; N 8.18; S 18.73.

S-{[5-(*tert*-Butyl)oxazol-4-yl]methyl}ethanethioate (18c). Yield 23.6 g (93%), brown oil. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 7.64 (1H, s, H oxazole); 4.14 (2H, s, CH₂SAc); 2.31 (3H, s, CH₃CO); 1.33 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 194.9; 155.1; 148.4; 127.5; 32.5; 30.2; 29.2; 26.1. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 214 [M+H]⁺ (100), 172 [M–COCH₂+H]⁺ (50), 138 [M–SAc]⁺ (28). Found, %: C 56.51; H 7.11; N 6.97; S 15.04. C₁₀H₁₅NO₂S. Calculated, %: C 56.31; H 7.09; N 6.57; S 15.03.

S-[(5-Cyclopropyloxazol-4-yl)methyl]ethanethioate (18d). Yield 20.0 g (85%), brown oil. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.57 (1H, s, H oxazole); 4.06 (2H, s, CH₂SAc); 2.33 (3H, s, CH₃CO); 2.01 (1H, ttd, *J* = 9.8, *J* = 6.6, *J* = 3.4, CH cyclopropane); 0.98–0.94 (2H, m, CH₂ cyclopropane); 0.87–0.83 (2H, m, CH₂ cyclopropane). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 195.0; 149.6; 148.2; 130.0; 30.3; 24.6; 6.6; 5.8. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 198 [M+H]⁺ (50), 156 [M–COCH₂+H]⁺ (67), 122 $[M-SAc]^+$ (28). Found, %: C 54.51; H 5.45; N 6.73; S 16.43. C₉H₁₁NO₂S. Calculated, %: C 54.80; H 5.62; N 7.10; S 16.25.

S-{[5-(Trifluoromethyl)oxazol-4-yl]methyl}ethanethioate (18f). Yield 25.7 g (96%), brown oil. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 7.90 (1H, s, H oxazole); 4.16 (2H, s, CH₂SAc); 2.36 (3H, s, CH₃CO). ¹³C NMR spectrum (101 MHz, CDCl₃), δ , ppm (*J*, Hz): 193.6; 151.5; 137.7; 135.6 (q, *J* = 43.2); 119.1 (q, *J* = 268.0); 30.1; 23.7. ¹⁹F NMR spectrum (376 MHz, CDCl₃), δ , ppm: -62.5. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 224 [M+H]⁺ (6), 184 [M-COCH₂+H]⁺ (100), 150 [M-SAc]⁺ (67). Found, %: C 37.08; H 2.64; N 6.14; S 14.62. C₇H₆F₃NO₂S. Calculated, %: C 37.34; H 2.69; N 6.22; S 14.24.

S-{[**5**-(**Difluoromethyl**)**oxazol-4-yl**]**methyl**}**ethanethioate** (**18g**). Yield 24.2 g (98%), brown oil. ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm (*J*, Hz): 7.87 (1H, s, H oxazole); 6.99 (1H, t, *J* = 52.7, CHF₂); 4.05 (2H, s, CH₂SAc); 2.33 (3H, s, CH₃CO). ¹³C NMR spectrum (101 MHz, CDCl₃), δ , ppm (*J*, Hz): 194.6; 151.5; 139.6 (t, *J* = 27.0); 136.9 (t, *J* = 5.0); 107.1 (t, *J* = 236.0); 30.2; 23.8. ¹⁹F NMR spectrum (376 MHz, CDCl₃), δ , ppm: –116.6. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 224 [M+H]⁺ (11), 166 [M–COCH₂+H]⁺ (100), 132 [M–SAc]⁺ (78). Found, %: C 40.20; H 3.64; N 6.61; S 15.14. C₇H₇F₂NO₂S. Calculated, %: C 40.58; H 3.41; N 6.76; S 15.47.

Synthesis of sulfonyl chlorides 17a,c,f,g (General method). NCS (102 g, 0.764 mol) was dissolved in MeCN (430 ml) with H₂O (43.0 ml), and saturated aq HCl (10.8 ml) was added. The solution was cooled to 10°C, and the corresponding thioacetate **18** (0.191 mol) was added in portions. Then the resulting mixture was stirred at 10 to 20°C for 1 h, the solvent was evaporated under reduced pressure. The residue was dissolved in *t*-BuOMe (450 ml), washed with H₂O (200 ml) and brine (100 ml). The organic phase was dried over Na₂SO₄ and evaporated under reduced pressure.

(5-Methyloxazol-4-yl)methanesulfonyl chloride (17a). Yield 26.9 g (72%), yellowish oil. ¹H NMR spectrum (400 MHz, CDCl₃), δ , ppm: 8.10 (1H, s, H oxazole); 4.51 (2H, s, CH₂SO₂Cl); 2.35 (3H, s, CH₃). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm: 150.0; 147.5; 130.1; 35.9; 10.2. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 196 [M+H]⁺ (100), 198 [M+H]⁺ (100). Found, %: C 30.65; H 2.91; N 7.54; S 16.56; Cl 17.91. C₅H₆CINO₃S. Calculated, %: C 30.70; H 3.09; N 7.16; S 16.39; Cl 18.12.

[5-(*tert*-Butyl)oxazol-4-yl]methanesulfonyl chloride (17c). Yield 30.9 g (68%), yellowish oil. ¹H NMR spectrum (500 MHz, CDCl₃), δ, ppm: 7.83 (1H, s, H oxazole); 5.02 (2H, s, CH₂SO₂Cl); 1.41 (9H, s, C(CH₃)₃). ¹³C NMR spectrum (101 MHz, CDCl₃), δ, ppm: 160.6; 149.3; 119.8; 63.9; 33.3; 28.8. Mass spectrum (CI), m/z (I_{rel} , %): 238 [M+H]⁺ (100), 240 [M+H]⁺ (100). Found, %: C 40.62; H 4.88; N 5.86; S 13.17; Cl 14.54. C₈H₁₂ClNO₃S. Calculated, %: C 40.42; H 5.09; N 5.89; S 13.49; Cl 14.91.

[5-(Trifluoromethyl)oxazol-4-yl]methanesulfonyl chloride (17f). Yield 46.2 g (97%), yellow crystals, mp 50–52°C. ¹H NMR spectrum (400 MHz, CDCl₃), δ , ppm: 8.07 (1H, s, H oxazole); 4.97 (2H, s, CH₂SO₂Cl). ¹³C NMR spectrum (126 MHz, CDCl₃), δ , ppm (*J*, Hz): 152.2; 140.1 (q, J = 43.8); 128.8; 118.4 (q, J = 269.0); 60.8. ¹⁹F NMR spectrum (376 MHz, CDCl₃), δ , ppm: -63.0. Mass spectrum (CI), *m/z* (*I*_{rel}, %): 252 [M+H]⁺ (22), 250 [M+H]⁺ (67), 150 [M-SO₂Cl]+ (100). Found, %: C 24.21; H 0.89; N 5.89; S 12.47; Cl 14.46. C₅H₃ClF₃NO₃S. Calculated, %: C 24.06; H 1.21; N 5.61; S 12.85; Cl 14.20.

[5-(Difluoromethyl)oxazol-4-yl]methanesulfonyl chloride (17g). Yield 42.0 g (95%), brownish oil. ¹H NMR spectrum (400 MHz, CDCl₃), δ, ppm (*J*, Hz): 8.02 (1H, s, H oxazole); 6.86 (1H, t, J = 53.6, CHF₂); 4.98 (2H, s, CH₂SO₂Cl). ¹³C NMR spectrum (126 MHz, CDCl₃), δ, ppm (*J*, Hz): 152.0, 144.2 (t, J = 31.2); 127.4; 107.7 (t, J = 239.0); 61.1. ¹⁹F NMR spectrum (376 MHz, CDCl₃), δ, ppm: -118.6. Mass spectrum (CI), m/z (I_{rel} , %): 234 [M+H]⁺ (10), 232 [M+H]⁺ (30), 214 [M–F]⁺ (25), 212 [M–F]⁺ (75), 132 [M–SO₂Cl]⁺ (100). Found, %: C 26.10; H 1.67; N 5.76; S 13.45; Cl 15.70. C₅H₄ClF₂NO₃S. Calculated, %: C 25.93; H 1.74; N 6.05; S 13.84; Cl 15.31.

Supplementary information file containing ¹H, ¹³C and ¹⁹F NMR spectra of the synthesized compounds is available at the journal website at http://link.springer.com/journal/10593.

References

- Zhang, H.-Z.; Zhao, Z.-L.; Zhou, C.-H. Eur. J. Med. Chem. 2018, 144, 444.
- 2. Turchi, I. J. Ind. Eng. Chem. Prod. Res. Dev. 1981, 20, 32.
- Palmer, D. C.; Venkatraman, S. In Oxazoles: Synthesis, Reactions, and Spectroscopy; John Wiley & Sons, Inc., 2003, Vol. 60.
- 4. Swellmeen, L. Der Pharma Chem. 2016, 8, 269.
- Zhang, M. Z.; Chen, Q.; Mulholland, N.; Beattie, D.; Irwin, D.; Gu, Y. C.; Yang, G. F.; Clough, J. *Eur. J. Med. Chem.* 2012, 53, 283.
- Zoller, K. E.; MacNeil, I. A.; Brugge, J. S. J. Immunol. 1997, 158, 1650.
- 7. Ishibashi, Y.; Ohba, S.; Nishiyama, S.; Yamamura, S. *Tetrahedron Lett.* **1996**, *37*, 2997.
- Devasthale, P. V.; Chen, S.; Jeon, Y.; Qu, F.; Shao, C.; Wang, W.; Zhang, H.; Cap, M.; Farrelly, D.; Golla, R.; Grover, G.; Harrity, T.; Ma, Z.; Moore, L.; Ren, J.; Seethala, R.; Cheng, L.; Sleph, P.; Sun, W.; Tieman, A.; Wetterau, J. R.; Doweyko, A.; Chandrasena, G.; Chang, S. Y.; Humphreys, W. G.; Sasseville, V. G.; Biller, S. A.; Ryono, D. E.; Selan, F. ; Hariharan, N.; Cheng, P. T. W. J. Med. Chem. 2005, 48, 2248.
- Hulin, B.; Clark, D. A.; Goldstein, S. W.; McDermott, R. E.; Dambek, P. J.; Kappeler, W. H.; Lamphere, C. H.; Lewis, D. M.; Rizzi, J. P. *J. Med. Chem.* **1992**, *35*, 1853.
- Henke, B. R.; Blanchard, S. G.; Brackeen, M. F.; Brown, K. K.; Cobb, J. E.; Collins, J. L.; Harrington, W. W.; Hashim, M. A.; Hull-Ryde, E. A.; Kaldor, I.; Kliewer, S. A.; Lake, D. H.; Leesnitzer, L. M.; Lehmann, J. M.; Lenhard, J. M.; Orband-Miller, L. A.; Miller, J. F.; Mook, R. A.; Noble, S. A.; Oliver, W.; Parks, D. J.; Plunket, K. D.; Szewczyk, J. R.; Willson, T. M. *J. Med. Chem.* **1998**, *41*, 5020.
- Collins, J. L.; Blanchard, S. G.; Boswell, G. E.; Charifson, P. S.; Cobb, J. E.; Henke, B. R.; Hull-Ryde, E. A.; Kazmierski, W. M.; Lake, D. H.; Leesnitzer, L. M.; Lehmann, J.; Lenhard, J. M.; Orband-Miller, L. A.; Gray-Nunez, Y.; Parks, D. J.; Plunkett, K. D.; Tong, W.-Q. J. Med. Chem. 1998, 41, 5037.
- Davies, J. R.; Kane, P. D.; Moody, C. J.; Slawin, A. M. Z. J. Org. Chem. 2005, 70, 5840.

- Jia, C.-Y.; Xu, L.-Y.; Yu, X.; Ding, Y.-B.; Jin, B.; Zhang, M.-Z.; Zhang, W.-H.; Yang, G.-F. *Fitoterapia* **2018**, *125*, 106.
- 14. Chow, K. B. S.; Wong, Y. H.; Wise, H. Br. J. Pharmacol. 2001, 1301, 1375.
- McClure, K. F.; Letavic, M. A.; Kalgutkar, A. S.; Gabel, C. A.; Audoly, L.; Barberia, J. T.; Braganza, J. F.; Carter, D.; Carty, T. J.; Cortina, S. R.; Dombroski, M. A.; Donahue, K. M.; Elliott, N. C.; Gibbons, C. P.; Jordan, C. K.; Kuperman, A. V.; Labasi, J. M.; LaLiberte, R. E.; McCoy, J. M.; Naiman, B. M.; Nelson, K. L.; Nguyen, H. T.; Peese, K. M.; Sweeney, F. J.; Taylor, T. J.; Trebino, C. E.; Abramov, Y. A.; Laird, E. R.; Volberg, W. A.; Zhou, J.; Bach, J.; Lombardo, F. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 4339.
- 16. Turchi, I. J.; Dewar, M. J. S. Chem. Rev. 1975, 75, 389.
- Dinda, M.; Samanta, S.; Eringathodi, S.; Ghosh, P. K. *RSC Adv.* 2014, 4, 12252.
- Linkova, E. I.; Grinev, V. S.; Egorova, A. Yu. Chem. Heterocycl. Compd. 2018, 54, 1023. [Khim. Geterotsikl. Soedin. 2018, 54, 1023.]
- Goldberg, F. W.; Kettle, J. G.; Kogej, T.; Perry, M. W. D.; Tomkinson, N. P. Drug Discovery Today 2015, 20, 11.
- 20. Hamada, Y.; Shioiri, T. Tetrahedron Lett. 1982, 23, 235.
- Artamonov, O. S.; Bulda, T.; Fam, T. K.; Slobodyanyuk, E. Y.; Volochnyuk, D. M.; Grygorenko, O. O. *Heterocycl. Commun.* 2015, 21, 391.
- Senwar, K. R.; Sharma, P.; Nekkanti, S.; Sathish, M.; Kamal, A.; Sridhar, B.; Shankaraiah, N. New J. Chem. 2015, 39, 3973.
- Kamal, A.; Sathish, M.; Srinivasulu, V.; Chetna, J.; Shekar, K. C.; Nekkanti, S.; Tangella, Y.; Shankaraiah, N. Org. Biomol. Chem. 2014, 12, 8008.
- 24. Boeckman, R. K., Jr.; Perni, R. B. J. Org. Chem. 1986, 51, 5489.
- Ma, Y.; Yan, Z.; Bian, C.; Li, K.; Zhang, X.; Wang, M.; Gao, X.; Zhang, H.; Lei, A. *Chem. Commun.* **2015**, *51*, 10524.
- 26. Hamada, Y.; Shiori, T. Tetrahedron Lett. 1982, 23, 1193.
- Hamada, Y.; Kawai, A.; Shioiri, T. *Tetrahedron Lett.* 1984, 25, 5409.
- Hamada, Y.; Kawai, A.; Matsui, T.; Hara, O.; Shioiri, T. *Tetrahedron* 1990, 46, 4823.
- Kawai, A.; Hara, O.; Hamada, Y.; Shioiri, T. *Tetrahedron Lett.* **1988**, 29, 6331.
- Henneke, K.-W.; Schöllkopf, U.; Neudecker, T. Liebigs Ann. Chem. 1979, 1370.
- Baumann, M.; Baxendale, I. R.; Ley, S. V.; Smith, C. D.; Tranmer, G. K. Org. Lett. 2006, 8, 5231.
- Tormyshev, V. M.; Mikhalina, T. V.; Rogozhnikova, O. Yu.; Troitskaya, T. I.; Trukhin, D. V. *Russ. J. Org. Chem.* 2006, 42, 1031. [*Zh. Org. Khim.* 2006, 42, 1049.]
- Théveau, L.; Verrier, C.; Lassalas, P.; Martin, T.; Dupas, G.; Querolle, O.; Van Hijfte, L.; Marsais, F.; Hoarau, C. *Chem.– Eur. J.* 2011, 17, 14450.
- 34. Yang, K.; Zhang, C.; Wang, P.; Zhang, Y.; Ge, H. Chem.-Eur. J. 2014, 20, 7241.
- 35. Yang, K.; Wang, P.; Zhang, C.; Kadi, A. A.; Fun, H.-K.; Zhang, Y.; Lu, H. *Eur. J. Org. Chem.* **2014**, *2014*, 7586.

- Armarego, W. L. F.; Taguchi, H.; Cotton, R. G. H.; Battiston, S.; Leong, L. Eur. J. Med. Chem. 1987, 22, 283.
- 37. Meng, L.; Kamada, Y.; Muto, K.; Yamaguchi, J.; Itami, K. *Angew. Chem.*, *Int. Ed.* **2013**, *52*, 10048.
- Muto, K.; Yamaguchi, J.; Itami, K. J. Am. Chem. Soc. 2012, 134, 169.
- 39. Doss, R. M.; Marques, M. A.; Foister, S.; Chenoweth, D. M.; Dervan, P. B. J. Am. Chem. Soc. 2006, 128, 9074.
- Makino, K.; Goto, T.; Ohtaka, J.; Hamada, Y. *Heterocycles* 2009, 77, 629.
- 41. Makino, K.; Goto, T.; Hiroki, Y.; Hamada, Y. Tetrahedron: Asymmetry 2008, 19, 2816.
- 42. Makino, K.; Okamoto, N.; Hara, O.; Hamada, Y. *Tetrahedron: Asymmetry* **2001**, *12*, 1757.
- 43. Hoppe, I.; Schöllkopf, U. Liebigs Ann. Chem. 1980, 819.
- 44. Suzuki, M.; Nunami, K.; Matsumoto, K.; Yoneda, N.; Miyoshi, M. Synthesis 1978, 461.
- 45. Suzuki, M.; Iwasaki, T.; Miyoshi, M.; Okumura, K.; Matsumoto, K. J. Org. Chem 1973, 38, 3571.
- 46. Kozikowski, A. P.; Ames, A. J. Am. Chem. Soc. 1980, 102, 860.
- 47. Brun, P.; Dean, A.; Di Marco, V.; Surajit, P.; Castagliuolo, I.; Carta, D.; Ferlin, M. G. *Eur. J. Med. Chem.* **2013**, *62*, 486.
- 48. Meibom, D.; Albrecht-Küpper, B.; Diedrichs, N.; Hübsch, W.; Kast, R.; Krämer, T.; Krenz, U.; Lerchen, H.-G.; Mittendorf, J.; Nell, P. G.; Süssmeier, F.; Vakalopoulos, A.; Zimmermann, K. *ChemMedChem* **2017**, *12*, 728.
- 49. Chittari, P.; Hamada, Y.; Shioiri, T. Synlett 1998, 1022.
- Théveau, L.; Schneider, C.; Querolle, O.; Meerpoel, L.; Levacher, V.; Hoarau, C. Org. Biomol. Chem. 2016, 14, 3459.
- Subramanyam, C.; Noguchi, M.; Weinreb, S. M. J. Org. Chem. 1989, 54, 5580.
- Burkholder, T. P.; Cunningham, B. E.; Clayton, J. R.; Lander, P. A.; Brown, M. L.; Doti, R. A.; Durst, G. L.; Montrose-Rafizadeh, C.; King, C.; Osborne, H. E.; Amos, R. M.; Zink, R. W.; Stramm, L. E.; Burris, T. P.; Cardona, G.; Konkol, D. L.; Reidy, C.; Christe, M. E.; Genin, M. J. *Bioorg. Med. Chem. Lett.* **2015**, *25*, 1377.
- 53. Shtyrlin, N. V.; Pavelyev, R. S.; Pugachev, M. V.; Sysoeva, L. P.; Musin, R. Z.; Shtyrlin, Y. G. *Tetrahedron Lett.* 2012, 53, 3967.
- 54. Quallich, G. J.; Makowski, T. W.; Sanders, A. F.; Urban, F. J.; Vazquez, E. J. Org. Chem. **1998**, 63, 4116.
- 55. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Adv. Drug Delivery Rev. **1997**, 23, 3.
- Nadin, A.; Hattotuwagama, C.; Churcher, I. Angew. Chem., Int. Ed. 2012, 51, 1114.
- 57. Armarego, W. L. F.; Chai, C. Purification of Laboratory Chemicals; Elsevier: Oxford, 2003.
- Yamazaki, Y.; Kohno, K.; Yasui, H.; Kiso, Y.; Akamatsu, M.; Nicholson, B.; Deyanat-Yazdi, G.; Neuteboom, S.; Potts, B.; Lloyd, G. K.; Hayashi, Y. *ChemBioChem* 2008, *9*, 3074.
- 59. Blankson, G.; Rzuczek, S. G.; Bishop, C.; Pilch, D. S.; Liu, A.; Liu, L.; LaVoie, E. J.; Rice, J. E. *Molecules* **2013**, *18*, 11938.
- 60. Tiwari, D. K.; Pogula, J.; Tiwari, D. K. RSC Adv. 2015, 5, 53111.