View Article Online / Journal Homepage / Table of Contents for this issue

Enzymatic Hydrolysis of 2,6-Diacetoxybicyclo[3.3.1]nonane and 2,6-Diacetoxy-3,3,7,7-tetramethylbicyclo[3.3.1]nonane; a Facile Synthesis of the Optically Active Chiral Subunit for Crown Ethers

Koichiro Naemura,* Takahisa Matsumura, Masanori Komatsu, Yoshiki Hirose, and Hiroaki Chikamatsu Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan

Hydrolysis of 2,6-diacetoxybicyclo[3.3.1]nonane (5) using lipase from *Candida cylindracea* gave (+)-(1S,2R,5S,6R)-(4) [81% enantiomeric excess (e.e.)] and (-)-(1R,2S,5R,6S)-(5) [95% e.e.], and pig liver esterase-catalysed hydrolysis of 2,6-diacetoxy-3,3,7,7-tetramethylbicyclo[3.3.1]nonane (9) gave (-)-(1S,2R,5S,6R)-(7) (96% e.e.) and (+)-(1R,2S,5R,6S)-(9) (86% e.e); the enantiomer recognition behaviour of the crown ethers (-)-(11) and (+)-(12) prepared from (-)-(3) and (+)-(7), respectively, has been examined.

A variety of optically active diols of C_2 symmetry have been employed as a chiral subunit for the synthesis of optically active crown ethers.¹ The use of hydrolytic enzymes as chiral catalysts for enantiomerically selective hydrolysis is well documented² and enantioselective hydrolyses of diacetates of racemic diols have currently received attention.³ Our interest in the preparation of a chiral crown ether⁴ and in enantiomerically selective enzyme-catalysed reactions⁵ prompted us to prepare an optically active C_2 -diol, a chiral subunit for an optically active crown ether, by enantioselective enzymecatalysed hydrolysis of a racemic C_2 -diacetate. We report here enantioselective hydrolyses of C_2 -diacetates (±)-(**5**) and (\pm)-(9) using pig liver esterase (PLE) and lipase from *Candida* cylindracea, and the preparation of chiral crown ethers (-)-(11) and (+)-(12) containing C₂-diols (-)-(3) and (+)-(7) as a chiral centre, respectively, together with their enantiomer recognition behaviour.

Treatment of (\pm) -(1)⁶ with excess of methyl iodide and potassium t-butoxide in Bu¹OH gave (\pm) -(2), b.p. 130-132 °C (7 mmHg),† in 70% yield. Reduction of (\pm) -(2)

 $[\]dagger$ Satisfactory elemental analyses and i.r. and ${}^1\!H$ n.m.r. spectral data were obtained for all new compounds.

Substrate	Enzyme	Reaction time/h	Products and recovered diacetate	% Isolated yield	Specific rotation ^a (% e.e.)
$(\pm)-(5)$	PLE	5.5	(+)- $(1S,2R,5S,6R)$ - (4)	47	$+16.6^{\circ}(30)$
			(-)- $(1R, 2S, 5R, 6S)$ - (5)	43	$-23.0^{\circ}(31)$
$(\pm)-(5)$	Lipase	24	(+)- $(1S,2R,5S,6R)$ - (4)	36	$+45.2^{\circ}(81)$
	-		(-)-(1R,2S,5R,6S)-(5)	46	-70.7° (95)
(±)-(9)	PLE	22	(-)- $(1S,2R,5S,6R)$ - (7)	43	-87.5° (96)
			(+)-(1R,2S,5R,6S)-(9)	46	$+97.0^{\circ}(86)$
$(\pm)-(9)$	Lipase	71	(-)- $(1S,2R,5S,6R)$ - (7)	5	$-60.7^{\circ}(66)$
			(-)-(1S,2R,5S,6R)-(8)	40	$-47.7^{\circ}(55)$
			(+)-(1R,2S,5R,6S)-(9)	40	+59.3° (53)

Table 1. Enzyme-catalysed hydrolysis of (\pm) -(5) and (\pm) -(9).

^a Specific rotation measured in CHCl₃.

Table 2. Differential transport of enantiomeric molecules through bulk liquid membranes containing chiral crown ethers.^a

Host	Guest ^b	Time/h	Transport/%	Configuration of dominant enantiomer	Optical purity/%
(-)-(11)	а	2.5	10.7	S	21
	b	25.0	9.9	R	20
(+)-(12)	а	3.0	10.8	S	24
	b	24.0	9.3	R	8

^a Carried out in conventional apparatus which consisted of an outer cylindrical glass vessel (24.5 mm inner diameter) and a central glass tube (15.5 mm inner diameter). An 0.01 M CHCl₃ solution of the host separated the inner aqueous phase (0.01 M HCl) and the outer aqueous phase (0.08 M HCl) which contained LiPF₆ (0.4 M) and the racemic guest (0.08 M). The organic layer was stirred at a constant speed (60 r.p.m.) at 25 °C. ^b a = (\pm)-1,2-diphenylethylamine hydrochloride, b = methyl (\pm)-phenylglycinate hydrochloride.

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} (-) - (1) \ R = H \\ (-) - (2) \ R = Me \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} (-) - (3) \ R^{1} = R^{2} = H \\ (-) - (4) \ R^{1} = COMe_{r} R^{2} = H \\ (-) - (5) \ R^{1} = R^{2} = COMe \\ (6) \ R^{1} = R^{2} = COC_{6}H_{5} \end{array} \end{array} \end{array}$

with LiAlH₄ provided the mixture of two diastereoisomers (95:5 by g.l.c.), which was recrystallised from hexane-ether to furnish the *endo*,*endo*-diol (7) of C_2 symmetry, m.p. 113—115 °C, in 52% yield, but the minor isomer was not isolated. The diol (±)-(7) was acetylated to give (±)-(9)‡ in 81% yield as an oil after chromatography on alumina.

Preparative scale PLE-catalysed hydrolyses of (\pm) -(5), prepared from the *endo*,*endo*-diol (3),⁶ and (\pm) -(9) were performed in phosphate buffer solution (pH 8.0) at 30 °C. The reactions were carried out on a 0.7—1.0 mmol scale (in 300—400 ml of the buffer solution) and terminated at, or close to, the 50%-of-hydrolysis point. All reactions were worked up by extraction with ether and the products purified by chromatography on alumina. Lipase-catalysed hydrolyses of (\pm) -(5) and (\pm) -(9) were carried out on a 0.8—1.2 mmol scale (in 400—500 ml of phosphate buffer solution, pH 7.4) at 30 °C. The results are summarised in Table 1.

Reduction of (+)-(9), $[\alpha]_D$ +97.0°, with LiAlH₄ provided (+)-(7), $[\alpha]_D$ +78.8° (CHCl₃) [86% enantiomeric excess (e.e.) prior to recrystallisation] after chromatography; recrystallisation of this specimen gave optically pure (+)-(7), $[\alpha]_D$ +91.4° (99.7% e.e.), the e.e. value of which was determined by h.p.l.c.§ on the derivative (10). The monoacetate (-)-(8), $[\alpha]_D$ -47.7°, was reduced to give (-)-(7), $[\alpha]_D$ -50.6° (55% e.e. prior to recrystallisation), after chromatography. In order to establish the absolute configurations of tetramethyl derivatives, (+)-(15,5S)-(1), $[\alpha]_D$ + 187.0° (CHCl₃), with known absolute configuration⁶ was converted into (+)-(7), $[\alpha]_D$ +70.7°, *via* (+)-(2), $[\alpha]_D$ + 100.4° (CHCl₃), and this result was

§ The e.e. value was obtained by h.p.l.c. with a column packed with cellulose tris(3,5-dimethylphenylcarbamate) on silica gel.⁷

 $[\]ddagger$ ¹H N.m.r. (CDCl₃) δ 0.99 (6H, s. Me), 1.04 (6H, s. Me), 1.2–1.8 (6H, m, CH₂), 2.05 (6H, s. OCMe), 2.2–2.5 (2H, m, CH), 4.78 (2H, d, J 7 Hz, HCO).

used to assign the 1R,5R and the 1R,2S,5R,6S configuration to (+)-(2) and (+)-(7), respectively. Both enantiomers (-)- and (+)-(7) were easily obtained in high optically pure and moderate chemical yield by the PLE-catalysed hydrolysis.

Reduction of (-)-(5), $[\alpha]_D -70.7^\circ$, with LiAlH₄ gave (-)-(3), $[\alpha]_D -56.8^\circ$ (EtOH) (95% e.e.), which was recrystallised from ethyl acetate to provide an optically pure specimen, $[\alpha]_D -59.4^\circ$ (99.2% e.e.). The e.e. value of (3) was also determined by h.p.l.c. of the derivative (6), and the absolute configuration of (3) has been described by Gerlach.⁶ The monoacetate (+)-(4), $[\alpha]_D +45.2^\circ$, was converted into (+)-(3), $[\alpha]_D +48.5^\circ$ (81% e.e. prior to recrystallisation) with LiAlH₄. As described above, the optically pure (3) was prepared more simply and in higher yield with the enzymatic method than with the chemical method.⁶

Next we turned our attention to the preparation of the optically active crown ethers (11) and (12) using the C_2 -diols and (3) and (7), respectively, as a chiral centre. High dilution condensation of (-)-(3), $[\alpha]_D$ -59.4°, and (+)-(7), $[\alpha]_D$ +91.4°, with pentaethylene glycol ditosylate in the presence of NaH in dry tetrahydrofuran under reflux followed by alumina chromatography provided (-)-(11) {oil, 24% yield, $[\alpha]_D$ -30.3° (CHCl₃)} and (+)-(12) {oil, 19%, $[\alpha]_D$ +53.2° (CHCl₃)}, respectively. Table 2 lists the enantiomer recognition behaviour of these crown ethers. The noteworthy feature of the results is that the crown ethers (-)-(11) and (+)-(12), with opposite chiralities to each other, preferentially transferred the guest molecule of the same configuration. These selectivities are rationalised by assuming that, in the case of (-)-(11), two *endo*-hydrogen atoms at C-4 and C-8 of the

241

chiral subunit act as a 'chiral steric barrier' and, in the case of (+)-(12), the two *endo*-methyl groups at C-3 and C-7 of the chiral subunit are a chiral steric barrier.

Received, 10th August 1987; Com. 1171

References

- G. W. Gokel and S. H. Korezeniowski, 'Macrocyclic Polyether Syntheses,' Springer-Verlag, Berlin, Heidelberg and New York, 1982.
- 2 M. F. Findeis and G. M. Whitesides, Annu. Rep. Med. Chem., 1984, 19, 263; G. M. Whitesides and C.-H. Wang, Angew. Chem., Int. Ed. Engl., 1985, 24, 617; R. Porter and S. Clark, 'Enzymes in Organic Synthesis,' Pitman, London, 1985; M. P. Schneider, 'Enzymes as Catalysts in Organic Synthesis,' Reidel, Dordrecht, 1986; J. B. Jones, Tetrahedron, 1986, 42, 3351.
- 3 D. H. G. Crout, V. S. B. Gaudet, K. Laumen, and M. P. Schneider, J. Chem. Soc., Chem. Commun., 1986, 808; Z.-F. Xie, H. Suemune, and K. Sakai, *ibid.*, 1987, 838.
- 4 K. Naemura, I. Ebashi, and M. Nakazaki, Bull. Chem. Soc. Jpn., 1985, 58, 767; K. Naemura and R. Fukunaga, Chem. Lett., 1985, 1651; K. Naemura, R. Fukunaga, and M. Yamanaka, J. Chem. Soc., Chem. Commun., 1985, 1560; K. Naemura, I. Ebashi, A. Matsuda, and H. Chikamatsu, ibid., 1986, 667; K. Naemura, M. Komatsu, K. Adachi, and H. Chikamatsu, ibid., p. 1667.
- 5 M. Nakazaki, H. Chikamatsu, K. Naemura, and M. Asao, J. Org. Chem., 1980, 45, 4432; K. Naemura, T. Fujii, and H. Chikamatsu, Chem. Lett., 1986, 923.
- 6 H. Gerlach, Helv. Chim. Acta, 1978, 61, 2773.
- 7 Y. Okamoto, M. Kawashima, and K. Hatada, J. Chromatogr., 1986, 363, 173.