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Scalable synthesis of (1-cyclopropyl)cyclo-
propylamine hydrochloride
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Abstract
1-Cyclopropylcyclopropanecarboxylic acid (2), which is accessible on a large scale (900 mmol) from 1-bromo-1-cyclopropylcyclo-

propane (1) in 64% yield (89% on a 12.4 mmol scale), has been subjected to a Curtius degradation employing the Weinstock

protocol to furnish the N-Boc-protected (1-cyclopropyl)cyclopropylamine 3 (76%). Deprotection of 3 with hydrogen chloride in

diethyl ether gave the (1-cyclopropyl)cyclopropylamine hydrochloride (4·HCl) in 87% yield.
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Introduction
Several recent patent applications have stirred an increasing

interest in research departments of pharmaceutical and agro-

chemical companies concerning 1- and 2-substituted 1,1'-bicy-

clopropyl derivatives. Among them, intermediates containing a

(1-cyclopropyl)cyclopropylamine moiety appear to be particu-

larly important and desirable for the preparation of biologically

active and pharmacologically relevant compounds. For

example, a number of derivatives of (1-cyclopropyl)cyclo-

propylamine (4) have been found to be useful variously for the

treatment of hepatitis C [3,4], as pest control agents [5], as

inhibitors of methicillin-resistant Staphylococcus aureus [5], as

pesticides, insecticides and acaricides [7-13] and more. This
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amine has been prepared from cyclopropyl cyanide [3-13] by

application of the Szymoniak–Kulinkovich reductive cyclopro-

panation procedure [14,15]. In our hands, however, this

patented protocol [3-13] provided poor yields (15–20%) of

impure 4 [16], which had to be purified by conversion to the

corresponding tert-butyl carbamate and subsequent column

chromatography. Thus, this procedure was not easily scalable to

10–50 g quantities. To meet such demands, we have developed

an alternative route to 4 from the easily available corres-

ponding carboxylic acid 2 [17,18] by Curtius degradation

[19,20].

Results and Discussion
Preparation of the acid 2 from the known 1-bromo-1-cyclo-

propylcyclopropane (1) [21,22] according to the published

procedure [17] was accomplished on a 100 g scale (Scheme 1).

However, the yield of the carboxylation on a scale of 12.4

mmol, 900 mmol and 1400 mmol, was 89, 64 and 62%, respect-

ively. This is associated with the longer reaction time employed

on a larger scale, during which the intermediate 1-cyclopropyl-

1-lithiocyclopropane may be trapped by the by-product tert-

butyl bromide, leading to isobutene by dehydrobromination

[23,24]. Indeed, the reaction on a 200 mmol scale, but over a

period of 3 h, furnished 2 in 46% yield only. According to

previous experience, this undesired side reaction can be

suppressed by employing two equivalents of tert-butyllithium

[23]. Thus, the yield of 2 may be improved even for large scale

preparation.

Scheme 1: Preparation of 1-(cyclopropyl)cyclopropylamine hydrochlo-
ride (4·HCl).

Curtius degradation of the acid 2 via the corresponding azide,

according to the Weinstock protocol [19,20] as previously

employed in different examples [2,25], furnished the N-Boc-

protected (1-cyclopropyl)cyclopropylamine 3 in 76% yield. It

was essential to carefully dry the solution of the intermediate

azide, otherwise the yield of 3 dropped dramatically, and the

desired product was accompanied by 1,3-di(bicyclopropyl)urea

(5) in up to 50% yield (Scheme 1). The structure of the latter

was confirmed by an X-ray crystal structure analysis (Figure 1)

[26].

Figure 1: Structure of 1,3-di(bicyclopropyl)urea (5) in the crystal [26].

The carbamate 3 was deprotected by treatment with hydrogen

chloride in diethyl ether affording the amine hydrochloride

4·HCl in 87% yield. The latter was thus obtained from 1-bromo-

1-cyclopropylcyclopropane (1) on a scale of 50 g in 42%

overall yield (Scheme 1).

Conclusion
The newly developed procedure allows the preparation of

1-(cyclopropyl)cyclopropylamine (4) in five steps from

commercially available methyl cyclopropanecarboxylate, repro-

ducibly, on a 50 g and even larger scale. In this respect it is

superior to the previously published and patented access to 4

from cyclopropanecarbonitrile, which in the hands of five

different researchers in our laboratory required chromato-

graphic separation of the intermediately prepared N-Boc deriva-

tive, which involved the rather costly di-tert-butyl pyrocar-

bonate and made that an overall three-step procedure.

Experimental
1H and 13C NMR spectra were recorded at 300 MHz [1H] and

62.9 MHz [13C, additional DEPT (Distortionless Enhancement

by Polarization Transfer)] on Bruker AM 250 and Varian

Mercury Vx300 instruments in CDCl3 and D2O solutions,

CHCl3/CDCl3 and DHO as internal references. EI-MS, ESI-MS

and HRMS spectra were measured with Finnigan MAT 95 (70

eV), Finnigan LCQ and Bruker Daltonic APEX IV 7T FTICR

instruments, respectively. Melting points were determined on a

Büchi 510 capillary melting point apparatus, values are uncor-
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rected. TLC analyses were performed on precoated sheets (0.25

mm Sil G/UV254) from Macherey-Nagel). All chemicals were

used as received. 1-Bromo-1-cyclopropylcyclopropane (1) was

obtained according to the previously published procedure [21].

A 5.0 N solution of HCl in Et2O was prepared by saturation of

anhydrous Et2O with gaseous HCl at 0 °C. Anhydrous diethyl

ether was obtained by distillation from sodium benzophenone

ketyl, acetone by distillation from anhydrous potassium

carbonate. Anhydrous tert-butyl alcohol was obtained

employing molecular sieves (4 Å) [27]. Organic extracts were

dried over MgSO4. All reactions in anhydrous solvents were

carried out under an argon atmosphere in flame-dried glass-

ware.

Synthesis of 1-cyclopropylcyclopropanecar-
boxylic acid (2)
Under mechanical stirring and cooling with pentane/liq. N2, a

solution of t-BuLi (1.7 M in pentane, 560 mL, 952.0 mmol) was

added dropwise to a solution of 1-bromo-1-cyclopropylcyclo-

propane (1) (146.0 g, 907.0 mmol) in anhydrous Et2O (2.2 L) at

−78 °C within 40 min. After stirring at −78 °C for an additional

25 min, an excess of dry ice was added in several portions (T ≤

−70 °C), and the mixture was allowed to slowly warm up to

ambient temperature during a period of 2 h. The reaction was

quenched with an ice-cold solution of KOH (60.0 g, 1.070 mol)

in H2O (1 L), the aqueous layer was washed with ether (3 × 100

mL), and then acidified with conc. aq. HCl solution at 0–5 °C

(ca. 175 mL). The resulting mixture was extracted with ether (4

× 300 mL), the combined organic phases were dried and

concentrated under reduced pressure to give the acid 2 (73.2 g,

64%) as colorless crystals, mp 50–51 °C (lit. [17]: mp: 51–52

°C), which was used in the next step without further purifica-

tion. Its NMR spectra were identical to the published ones [17].

Synthesis of tert-butyl 1-(cyclopropyl)cyclo-
propylcarbamate (3)
To a mechanically stirred solution of the acid 2 (70.60 g, ca.

560.0 mmol) in anhydrous acetone (1.7 L), was added Et3N

(76.2 g, 105.0 mL, 753.0 mmol) dropwise at −5 °C. After add-

itional stirring at this temperature for 15 min, neat ethyl chloro-

formate (103.7 g, 91.0 mL, 956.0 mmol) was added at the same

temperature over a period of 30 min, and the resulting mixture

was stirred at this temperature for an additional 2 h. Then a

solution of NaN3 (75.0 g, 1.0 mol) in H2O (200 mL) was added

over a period of 1.5 h. The reaction mixture was stirred at 0 °C

for 1.5 h, concentrated under reduced pressure at 0 °C to about a

half of the original volume, poured into ice-cold water (2 L),

and the mixture extracted with diethyl ether (4 × 400 ml) and

pentane (2 × 350 ml). The combined organic solutions were

washed with ice-cold water (2 × 400 mL), dried under stirring

with MgSO4 at 0 °C for 1 h and concentrated under reduced

pressure at 0 °C/20–30 Torr. The residue was taken up with

pentane (300 mL), dried and concentrated under the same

conditions. It was then dissolved in anhydrous t-BuOH (200

mL), and this solution was added dropwise to anhydrous

t-BuOH (1300 mL) kept at 80 °C under vigorous stirring over a

period of 2.5 h. The resulting solution was heated under reflux

for an additional 9 h. The main volume of t-BuOH (ca. 1300

mL) was distilled off under ambient pressure in a nitrogen flow.

After cooling, the residue mixture was dried at 20 °C/0.1 Torr

to give essentially pure carbamate 3 (84.0 g, 76%) as a color-

less solid, mp 69–70 °C, Rf 0.38 (hexane/Et2O 5:1), which was

used in the next step without further purification. 1H NMR (300

MHz, CDCl3) δ 4.91 (br s, 1H, NH), 1.39 (s, 9H, 3 CH3),

1.30–1.20 (br m, 1H, cPr-H), 0.64–0.57 (br m, 2H, cPr-H),

0.52–0.45 (br m, 2H, cPr-H), 0.37–0.31 (m, 2H, cPr-H),

0.09–0.04 (m, 2H, cPr-H); 13C NMR (62.9 MHz, CDCl3) δ

155.2 (C), 79.0 (C), 34.1 (C), 28.3 (3 CH3), 15.6 (CH), 11.9 (2

CH2), 2.6 (2 CH2); EIMS (70 eV) m/z: 141 (M+ − C4H8), 126,

96, 82, 58, 57, 43; HRMS–ESI (m/z): calcd for C11H19NNaO2,

220.1308; found, 220.1314.

Synthesis of (1-cyclopropyl)cyclopropyl-
amine hydrochloride (4·HCl)
Under stirring, a solution of the carbamate 3 (84.0 g, 425.8

mmol) in Et2O (100 mL) was added to a ca. 5.0 N HCl solution

in Et2O (700 mL) in one portion at 0 °C. The reaction mixture

was stirred at 0 °C for 4 h and at ambient temperature for 20 h.

The formed precipitate was filtered off, washed with Et2O (200

mL) and dried in a vacuum desiccator over P4O10 overnight to

give 4·HCl (49.7 g, 87%) as a colorless powder, which slowly

decomposes above ca. 135 °C and melts at 196–198 °C (dec.);
1H NMR (300 MHz, D2O) δ 1.30–1.26 (m, 1H, cPr-H),

0.71–0.60 and 0.60–0.55 (m AA'BB', 4H, cPr-H), 0.49–0.42

and 0.13–0.08 (m AA'BB', 4H, cPr-H).

When a solution of the intermediate azide in the preparation of

3 was not sufficiently dried, the thermolysis in t-BuOH along

with tert-butylcarbamate 3 gave the 1,3-di(bicyclopropyl)urea

(5) in up to 50% yield. Compound 5 was isolated as a colorless

solid after deprotection of 3 with HCl/Et2O by evaporation of

the mother liquor followed by recrystallization of the residue

from hexane/CHCl3; mp 159–161 °C. The structure of 5 was

confirmed by X-ray crystal structure analysis [26]. 5: 1H NMR

(300 MHz, CDCl3) δ 5.21 (br s, 2H, NH), 1.28–1.16 (m, 2H, 2

CH cPr-H), 0.73–0.61 (m AA'BB', 8H, 4 CH2, cPr-H),

0.44–0.41 and 0.17–0.13 (m AA'BB', 8H, 4 CH2, cPr-H); 13C

NMR (62.9 MHz, CDCl3) δ 158.8 (C), 33.9 (2 C), 15.5 (2 CH),

12.6 (2 CH2), 2.8 (6 CH2); EIMS (70 eV) m/z: 219 (M+ − H),

205 (M+ − H−CH2), 191 (M+ − H−C2H4), 124 (M+ −

H−NC6H9 ) ,  96  (M+  −  H−NC6H9−CO),  82  (M+  −

H−NC6H9−CH2−CO).
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