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Abstract: A series of novel sulfonylurea benzothiazolines was designed by splicing active groups
and bioisosterism. A solvent-free synthetic route was developed for the sulfonylurea benzothiazoline
derivatives via the cyclization and carbamylation. All compounds were characterized by IR, 1H-NMR,
13C-NMR, HRMS. The biological activity tests indicated the compounds could protect maize against
the injury caused by chlorsulfuron to some extent. The molecular docking result showed that the
new compound competed with chlorsulfuron to bind with the herbicide target enzyme active site to
attain detoxification.
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1. Introduction

Sulfur and nitrogen-containing heterocyclic compounds play a key role in the pharmaceutical
and chemical industries [1,2]. In particular, sulfur-containing heterocyclic compounds are widely used
in the agricultural field. Several new benzothiazole compounds have been synthesized as potential
antimicrobial and antiparasitic agents [3]. 1,2-Benzisothiazolin-3-one, used as a fungicide, shows good
sterilization and anti-corrosion performance [4]. Thiazole compounds are also reported to be herbicide
safeners [5].

Some bioactive compounds have been discovered by combining active subunits of known active
molecules. For example, new triketone derivatives with better herbicidal activity have been designed
by splicing active group alloxydim-sodium into quizalofop-ethyl (Scheme 1) [6]. Many successful
cases have been reported in recent years [7,8].
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Herbicides and safeners may share common molecular characteristics, depending on the
structure-activity relationships (SAR) and the mechanisms of the safeners [9]. A systematic review
of the chemical characteristics and SAR of herbicide safeners indicated that there are closely similar
structural features between herbicides and safeners [10]. For example, sulfamide compounds may be
an antidote to protect plants from the injury caused by sulfonylurea herbicides.

According to the facts mentioned above, and continuing on from our previous research, a series
of sulfonylurea substituted benzothiazoline compounds 3a–3m was designed based on active subunit
combination, bioisosteric replacement, and SAR; the sulfur- and nitrogen-containing heterocyclic was
retained and modified on the sulfonylurea functional groups (Scheme 2) [11–13].
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Scheme 2. The design of the target compounds.

A number of synthetic routes for benzothiazoline have been reported. The most common
method is the condensation of o-aminothiophenol with carbonyl compounds in the presence of
p-toluenesulfonic acid with Ga(OTf)3 as catalyst [14,15]. Other methods include the reaction of
2,2’-dinitrodiphenyl disulfide with ketones in the presence of TiCl4/Sm and SmI2/HMPA [16,17].
Nevertheless, all these reported methods suffer from some drawbacks, such as the use of expensive or
toxic catalysts, long reaction times, tedious synthetic procedures, or low yields of the products. In recent
years, solvent-free organic synthesis has become a popular method, and has attracted immense interest
as an environmentally benign method. It leads to good yields, clean reactions, and shorter reaction
times [18]. In view of the facts mentioned above, a series of novel sulfonylurea benzothiazoline was
designed and synthesized with o-aminothiophenol and ketone as starting materials in the presence of
neutral alumina via a solvent-free procedure (Scheme 3) [19].

Molecules 2017, 22, 1601 2 of 10 

 

Herbicides and safeners may share common molecular characteristics, depending on the 
structure-activity relationships (SAR) and the mechanisms of the safeners [9]. A systematic review of 
the chemical characteristics and SAR of herbicide safeners indicated that there are closely similar 
structural features between herbicides and safeners [10]. For example, sulfamide compounds may be 
an antidote to protect plants from the injury caused by sulfonylurea herbicides. 

According to the facts mentioned above, and continuing on from our previous research, a series 
of sulfonylurea substituted benzothiazoline compounds 3a–3m was designed based on active subunit 
combination, bioisosteric replacement, and SAR; the sulfur- and nitrogen-containing heterocyclic was 
retained and modified on the sulfonylurea functional groups (Scheme 2) [11–13]. 

 
Scheme 2. The design of the target compounds. 

A number of synthetic routes for benzothiazoline have been reported. The most common 
method is the condensation of o-aminothiophenol with carbonyl compounds in the presence of  
p-toluenesulfonic acid with Ga(OTf)3 as catalyst [14,15]. Other methods include the reaction of 2,2’-
dinitrodiphenyl disulfide with ketones in the presence of TiCl4/Sm and SmI2/HMPA [16,17]. 
Nevertheless, all these reported methods suffer from some drawbacks, such as the use of expensive 
or toxic catalysts, long reaction times, tedious synthetic procedures, or low yields of the products. In 
recent years, solvent-free organic synthesis has become a popular method, and has attracted immense 
interest as an environmentally benign method. It leads to good yields, clean reactions, and shorter reaction 
times [18]. In view of the facts mentioned above, a series of novel sulfonylurea benzothiazoline was 
designed and synthesized with o-aminothiophenol and ketone as starting materials in the presence 
of neutral alumina via a solvent-free procedure (Scheme 3) [19]. 

 

Scheme 3. Route for synthesis of the target compounds 3. 

2. Results and Discussion 

2.1. Chemistry 

1,3-Benzothiazoline derivatives 2 were synthesized with o-aminothiophenol and ketone 1 smoothly 
in the presence of neutral alumina. All compounds were synthesized under solvent-free conditions 
and further purified by column chromatography (silica gel, petroleum ether (PE):ethyl acetate; 20:1) 
to give the pure product. 

The yields of compounds 2 were 56–92% (Table 1). The substituent group affected the yields 
significantly. When the substituents were cyclopentyl or cyclohexyl, the formation of spiro compounds 

N

O

COCHCl2

N

O

COCHCl2

S
N
H

C

O

O
N S

R1 R2

O

S
N
H

C

O

O

O

N
H

N

N

Y

X

Benoxacor

R-28725

bioisosterism
replacement

union of active group

The basic structure of 
sulfonylurea compounds

Herbicide Safener

N
H

S

target molecule

Scheme 3. Route for synthesis of the target compounds 3.

2. Results and Discussion

2.1. Chemistry

1,3-Benzothiazoline derivatives 2 were synthesized with o-aminothiophenol and ketone 1
smoothly in the presence of neutral alumina. All compounds were synthesized under solvent-free
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conditions and further purified by column chromatography (silica gel, petroleum ether (PE):ethyl
acetate; 20:1) to give the pure product.

The yields of compounds 2 were 56–92% (Table 1). The substituent group affected the yields
significantly. When the substituents were cyclopentyl or cyclohexyl, the formation of spiro compounds
made the structure more stable than others. Thus, the yields of 2l, 2m were better, at 91% and 92%,
respectively. The bulk substituent reduced the stability of the benzothiazoline. The yield of 2k was
only 56% which might be caused by the R1 and R2 being two n-propyl groups. The yields were similar
for 2f and 2g.

Table 1. Characterization data, reaction condition and yields for products 2 and 3.

Entry R1 R2
Compound 2 Compound 3

T (◦C) Time (h) Yield (%) # T (◦C) Time (h) Yield (%) #

a CH3 CH3 r.t. 0.5 82 12 12 96
b CH3 CH2CH3 r.t. 0.5 83 r.t. 5 65
c CH3 CH2CH2CH3 r.t. 0.5 92 r.t. 5 78
d CH3 CH(CH3)2 80 1 84 r.t. 12 70
e CH3 CH2COCH3 50 3 78 r.t. 10 55
f CH3 CH2CH2CH2CH3 r.t. 2 76 r.t. 10 50
g CH3 CH2CH(CH3)2 r.t. 0.5 76 r.t. 12 36
h CH3 C(CH3)3 88 1 80 36 2 59
i CH3 PhCH2CH2 r.t. 0.5 86 12 12 95
j CH2CH3 CH2CH3 r.t. 0.5 82 5 5 40
k CH2CH2CH3 CH2CH2CH3 80 0.5 56 4 4 82
l (CH2)4 r.t. 0.5 91 12 12 95

m (CH2)5 r.t. 0.5 92 12 12 99
# Refers to yields of crude products only; r.t.: Room temprature.

The proposed outline for the cyclization is outlined in Scheme 4. First, o-aminothiophenol reacted
with ketone to generate a Schiff base. Nucleophilic attack from nearby S atom gave the intermediate 2.
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The target compounds 3 were synthesized by direct carbamylation with 1,3-benzothiazoline
derivatives 2 and tosyl isocyanate. All compounds were obtained by washing the mixture with the
solution (anhydrous benzene:Anhydrous n-hexane; 1:1) to get white powder.

The yields of compounds 3 were 36%–99% (Table 1). When the substituents were symmetric small
groups or cyclic structures, the yield was good. Compounds 3a, 3l, 3m were over 90% yields.

In general, there was no significant effect on the yields of the target products caused by steric
hindrance, because the substituents at the 2-position were almost perpendicular to the plane of
benzothiazoline ring. Comparing compound 3f and 3g, it was also noticeable that the presence of a
straight-chain at the 2-position of benzothiazoline increased the yield. In contrast, the yields were
decreased when there was a branch-chain with the same carbon atom number.

The peaks at 1708, 1341 and 1152 cm−1 in the IR for compound 3a confirmed the presence of the
carbonyl and sulfonyl groups. The 1H-NMR spectrum also confirmed the proposed structure, the three
hydrogens at δ 2.37–2.41 ppm showed the methyl of the benzene ring. The signals at δ 6.48–7.85 ppm
related to the benzene ring. The single signal observed at δ 11.86 ppm was characteristic of hydrogen
linked to a nitrogen atom.



Molecules 2017, 22, 1601 4 of 10

2.2. Biological Activity

All the novel sulfonylurea benzothiazoline derivatives 3 were evaluated for their protection
of maize against the injury of chlorsulfuron (2 µg/kg) (Table 2). After a preliminary screening,
the concentration of the safener and compounds applied in the bioassay was determined. Chlorsulfuron
could provoke an obvious decrease in the growth of maize, but significant differences were observed
after the introduction of compounds. The recovery rates of the root length were attained over 25%
except for compounds 3e, 3j. Recovery rates of plant weight were over 40%, except for compound 3e.
Among all the test compounds, compound 3c showed the best safener activity against the injury of
chlorsulfuron, better than the commercialized safener AD-67. A good protection activity may be due
to the introduction of a sulfonyl group, causing the compound to bind with the herbicide target site
competitively, and reduce the injury of chlorsulfuron.

Table 2. Effect of detoxification of compounds 3a–m to growth index of maize i, ii, iii, iv.

Compound Root Length
Recovery Rate (%)

Plant Height
Recovery Rate (%)

Root Fresh Weight
Recovery Rate (%)

Plant Fresh Weight
Recovery Rate (%)

AD-67 32.66 efg 81.62 de 81.25 b 89.47 c

3a 38.05 cde 68.57 f 37.50 h 57.89 ef

3b 35.02 def 54.41 g 43.75 g 21.05 h

3c 55.89 a 109.56 a 87.50 b 126.31 a

3d 42.76 bc 100.92 ab 6.25 m 52.63 f

3e 19.87 i 20.59 i 56.25 e 42.11 g

3f 56.23 a 91.73b cd 12.50 l 73.68 d

3g 27.95 gh 81.86 de 37.50 h 84.21 c

3h 45.12 b 72.24 ef 87.50 b 105.26 b

3i 32.66 efg 84.01 cd 31.25 i 110.53 b

3j 18.18 ij 73.35 ef 156.25 a 57.89 ef

3k 31.31 fg 40.26 h 37.50 h 57.89 ef

3l 33.00 efg 89.34 cd 18.75 k 84.21 c

3m 25.93 h 92.65 bc 12.50 l 110.53 b

i Data are means of three replicates; ii Recovery Rate (%) =
Treated with compounds − Treated with chlorsulfuron

Contrast − Treated with chlorsulfuron ; iii Water
treated was used as contrast; iv Small letter is significant at the 0.05 level.

Comparing the chemical properties of compound 3c and chlorsulfuron, such as log p, pKa,
molecular weight (MW) and electronegativity, with a view to proving the hypothesis that safeners
may act as competitive antagonists for herbicides at the herbicide target site (Table 3), it was observed
that pKa, MW and the electronegativity of compound 3c were all similar to the herbicide chlorsulfuron.
This indicated that, in terms of the investigated features, the safener/herbicide combinations were
quite similar at the molecular level. The visual evaluation of the superimposed molecular structures is
shown in Figure 1. Chlorsulfuron and 3c were perfectly aligned in a common skeleton.
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Table 3. Chemical property comparisons of chlorsulfuron with 3c.

Compounds log p a pKa
b MW Electronegativity c

Chlorsulfuron 2.63 4.1 ± 0.4 357.77
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was predicted by Sybyl-X 2.0 (Tripos Inc., St. Louis, MO, USA).

Sulfonylurea herbicides are a kind of acetolactate synthase (ALS) inhibitors. The three-dimensional
structure of compound 3c and chlorsulfuron was constructed by the sketch module of SYBYL-X 2.0.
Subsequently, the molecule was optimized and Gasteiger-Huckel charges were calculated. The crystal
structure of ALS was taken from the Protein Data Bank (PDB ID 1YHY). Docking modeling used
the CDOCKER method in Accelrys Discovery Studio 2.5 (Accelrys Inc., San Diego, CA, USA, 2005).
Before docking, the protein structure was given the CHARMM force field and removed the water and
some other co-crystallized small molecules. After the protein preparation, the docking studies active
site was defined, with a subset region of 13.0A from the center of the known ligand. The Top Hits
was set to 100, and the default values were used for the remaining parameters. The binding energy
of the small molecule-receptor protein complex was used as an evaluation index, with the largest
negative representation of the most stable conformation. The molecular docking result showed that
both compound 3c and chlorsulfuron were able to bind well to the herbicide target active site of ALS
(Figure 2). In the docking modeling, the phenyl moiety of chlorsulfuron rotated to the right side in the
active site, effectively blocking the entrance to the channel and preventing the substrate from binding
with the active site, caused herbicidal activity. In contrast, the phenyl moiety of compound 3c turned
left at the active site, partially blocking the entrance of the channel. While preventing the combination
of chlorsulfuron with the active site, the small substrate had more opportunity to thrust itself into the
channel and catalyze the active site.

When compound 3c was applied before or simultaneously with chlorsulfuron, it potentially
competed with chlorsulfuron at the target site by preventing the herbicide from reaching or acting
on the ALS active pocket, leading to counter action of the herbicide. This may be the detoxification
mechanism of the novel compound.
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3. Materials and Methods

3.1. Reagents and Analysis

All the reagents were analytical grade, and were used without further purification. The IR spectra
were recorded on a Bruker ALPHA-T spectrometer (BRUKER Inc., Beijing, China). The 1H-NMR and
13C-NMR spectra were recorded on a Bruker AVANVE 300 MHz (BRUKER Inc., Beijing, China) using
CDCl3 (Energy Chemical., Shanghai, China) or DMSO-d6 (Energy Chemical., Shanghai, China) as
solvent and TMS (Energy Chemical., Shanghai, China) as internal standard. The melting point was
measured on a Beijing Taike melting point apparatus (X-4) (Beijing, China), and was uncorrected.
The high-resolution mass spectrometry was recorded on a FT-ICR MS spectrometer (BRUKER Inc.,
Beijing, China). The spectrogram datas of compounds could be found in the Supplementary Materials.

3.2. General Procedure for the Preparation of 1,3-Benzothiazoline Derivatives 2

o-Aminothiophenol (0.03 mol) and ketone (0.02 mol) were mixed in a round-bottomed flask in
the presence of neutral alumina (3 g). The reaction mixture was stirred under nitrogen atmosphere at
appropriate temperature for a period of time. The reaction mixture was extracted with chloroform
and filtered. The organic layer was dried over anhydrous Na2SO4 and chloroform was evaporated
under vacuum. The pure products were obtained by recrystallization (2a, 2e, 2i, 2l–2m) or column
chromatography on silica gel eluting with PE and EtOAc (20:1) (2b–2d, 2f–2h, 2j–2k).

2,2-Dimethylbenzothiazoline (2a): White solid, Yield 82%. IR (KBr, ν/cm−1) 3334 (N-H), 2961–2917 (C-H),
1581–1363 (C=C). 1H-NMR (300 MHz, CDCl3): δ (ppm) 6.67–7.10 (m, 4H), 3.97 (s, 1H), 1.74 (s, 6H).
13C-NMR (75 MHz, CDCl3): δ (ppm) 145.9, 128.5, 125.1, 122.2, 121.1, 111.5, 74.8, 31.7, 31.7.

2-Ethyl-2-methyldihydro-benzothiazoline (2b): Yellow liquid, Yield 83%. IR (KBr, ν/cm−1) 3353 (N-H),
3086–2875 (C-H), 1581–1375 (C=C). 1H-NMR (300 MHz, CDCl3): δ (ppm) 6.60–7.05 (m, 4H), 3.89 (s, 1H),
1.80–2.02 (m, 2H), 1.66 (s, 3H), 1.02–1.06 (t, J = 7.5 Hz, 3H). 13C-NMR (75 MHz, CDCl3): δ (ppm) 146.2,
127.7, 125.0, 122.0, 129.5, 110.8, 78.9, 38.9, 29.6, 9.8.

2-Methyl-2-propylbenzothiazoline (2c): Yellow liquid, Yield 92%. IR (KBr, ν/cm−1) 3353 (N-H), 3067–2871
(C-H), 1583–1395 (C=C). 1H-NMR (300 MHz, CDCl3): δ (ppm) 6.62–7.06 (m, 4H), 3.85 (s, 1H), 1.80–1.98
(m, 2H), 1.68 (s, 3H), 1.44–1.58 (m, 2H), 0.94–0.99 (t, J = 7.5 Hz, 3H). 13C-NMR (75 MHz, CDCl3): δ

(ppm) 146.0, 127.9, 124.9, 121.9, 120.6, 110.9, 78.2, 46.4, 30.0, 18.8, 14.2.

2-Isopropyl-2-methylbenzothiazoline (2d): Yellow liquid, Yield 84%. IR (KBr, ν/cm−1) 3348 (N-H),
3068–2869 (C-H), 1583–1373 (C=C). 1H-NMR (300 MHz, CDCl3): δ (ppm) 6.61–7.07 (m, 4H), 3.95
(s, 1H), 2.13–2.22 (m, 1H), 1.66 (s, 3H), 1.05–1.11 (q, J = 6.6 Hz, 6H). 13C-NMR (75 MHz, CDCl3): δ (ppm)
146.4, 127.0, 124.9, 121.8, 120.1, 110.2, 82.6, 39.9, 27.1, 19.0, 18.2.

2-(Acetonyl)-2-methylbenzothiazoline (2e): Transparent crystal, Yield 78%. IR (KBr, ν/cm−1) 3334 (N-H),
3070–2969 (C-H), 1580–1338, 1706 (C=C). 1H-NMR (300 MHz, CDCl3): δ (ppm) 6.52–6.95 (m, 4H), 6.42
(s, 1H), 3.14–3.21 (q, J = 17.4 Hz, 2H), 2.12 (S, 3H), 1.619 (s, 3H). 13C-NMR (75 MHz, CDCl3): δ (ppm)
206.1, 145.9, 125.2, 124.9, 121.1, 118.2, 108.8, 74.3, 55.8, 30.8, 29.5.

2-Butyl-2-methylbenzothiazoline (2f): Yellow liquid, Yield 76%. IR (KBr, ν/cm−1) 3349 (N-H), 3068–2859
(C-H), 1583–1374 (C=C). 1H-NMR (300 MHz, CDCl3): δ (ppm) 6.64–7.08 (m, 4H), 4.02 (s, 1H), 1.83–1.98
(m, 2H), 1.70 (s, 3H), 1.31–1.54 (m, 4H), 0.92–0.96 (t, J = 7.2 Hz, 3H). 13C-NMR (75 MHz, CDCl3):
δ (ppm) 145.9, 127.8, 125.0, 122.0, 120.7, 110.9, 78.4, 73.8, 30.0, 27.7, 22.9, 14.1.

2-Isobutyl-2-methylbenzothiazoline (2g): Yellow liquid, Yield 76%. IR (KBr, ν/cm−1) 3357 (N-H), 2967
(C-H), 1582–1391 (C=C). 1H-NMR (300 MHz, CDCl3): δ (ppm) 6.64–7.08 (m, 4H), 3.88 (s, 1H), 1.84–1.98
(m, 3H), 1.70 (s, 3H), 1.02–1.04 (d, J = 6.3 Hz, 6H). 13C-NMR (75 MHz, CDCl3): δ (ppm) 145.7, 128.1,
125.0, 122.0, 120.6, 111.0, 78.4, 52.1, 30.5, 25.6, 21.5, 21.0.
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2-tert-Butyl-2-methyl benzothiazoline (2h): Yellow liquid,Yield 80%. IR (KBr, ν/cm−1) 3362 (N-H),
3068–2871 (C-H), 1582–1385 (C=C). 1H-NMR (300 MHz, CDCl3): δ (ppm) 6.59–7.06 (m, 4H), 3.96 (s, 1H),
1.74 (s, 3H), 1.14 (s, 9H). 13C-NMR (75 MHz, CDCl3): δ (ppm) 146.7, 126.5, 124.8, 121.5, 119.7, 109.5,
85.7, 39.9, 27.1, 26.3, 26.3, 26.3.

2-Methyl-2-phenethylbenzothiazoline (2i): Transparent crystal, Yield 86%. IR (KBr, ν/cm−1) 3353 (N-H),
3060–2856 (C-H), 1602–1375 (C=C). 1H-NMR (300 MHz, CDCl3): δ (ppm) 6.66–7.38 (m, 9H), 3.90 (s, 1H),
2.89–2.94 (t, J = 6.6 Hz, 2H), 2.22–2.30 (m, 2H), 1.82 (s, 3H). 13C-NMR (75 MHz, CDCl3): δ (ppm)
146.1,141.7, 128.5, 128.5, 128.5, 128.5, 127.5, 126.0, 125.1, 122.0, 120.7, 110.8, 76.7, 45.9, 31.9, 30.3.

2,2-Diethylbenzothiazoline (2j): Yellow liquid, Yield 82%. IR (KBr, ν/cm−1) 3371 (N-H), 3068–2930 (C-H),
1583–1398 (C=C). 1H-NMR (300 MHz, CDCl3): δ (ppm) 6.59–7.05 (m, 4H), 3.89 (s, 1H), 1.88–1.95 (q,
J = 7.5 Hz ,4H), 1.01–1.06 (t, J = 7.5 Hz, 6H). 13C-NMR (75 MHz, CDCl3): δ (ppm) 146.7, 127.1, 124.8,
121.7, 120.0, 109.9, 82.7, 34.5, 34.5, 9.2, 9.2.

2,2-Dipropylbenzothiazoline (2k): Yellow liquid, Yield 56%. IR (KBr, ν/cm−1) 3370 (N-H), 3068–2871
(C-H), 1583–1397 (C=C). 1H-NMR (300 MHz, CDCl3): δ (ppm) 6.59–7.05 (m, 4H), 3.94 (s, 1H), 1.85–1.90
(t, J = 7.8 Hz, 3H), 1.41–1.63 (m, 4H), 0.95–1.00 (t, J = 7.5 Hz, 6H). 13C-NMR (75 MHz, CDCl3):δ (ppm)
146.5, 127.3, 124.9, 121.7, 120.1, 110.0, 81.5, 44.7, 44.7, 18.2, 18.2, 14.3, 14.3.

3H-spiro[1,3-benzothiazoline-2,1’-cyclopentane] (2l): Transparent crystal, Yield 91%. IR (KBr, ν/cm−1)
3354 (N-H), 3066–2871 (C-H), 1581–1320 (C=C). 1H-NMR (300 MHz, CDCl3): δ (ppm) 6.64–7.08 (m,
4H), 4.00 (s, 1H), 2.16–2.25 (m, 2H), 1.99–2.08 (m, 2H), 1.77–1.82 (m, 4H). 13C-NMR (75 MHz, CDCl3): δ

(ppm) 145.9, 128.1, 125.0, 121.8, 129.7, 110.9, 84.2, 42.5, 42.5, 22.9, 21.9.

3H-spiro[1,3-benzothiazoline-2,1’-cyclohexane] (2m): Transparent crystal, Yield 92%. IR (KBr, ν/cm−1)
3329 (N-H), 3063–2863 (C-H), 1579–1443 (C=C). 1H-NMR (300 MHz, CDCl3): δ (ppm) 6.64–7.06 (m, 4H),
3.94 (s, 1H), 2.20–2.24 (d, J = 12.6 Hz, 2H), 1.53–1.81 (m, 7H), 1.23–1.36 (m, 1H). 13C-NMR (75 MHz,
CDCl3): δ (ppm) 145.9, 127.1, 125.0, 121.9,120.5, 110.9, 80.0, 40.9, 40.9, 25.0, 24.0, 24.0.

3.3. General Procedure for the Preparation of Sulfonylurea Benzothiazoline Derivatives 3

The intermediate 2 (5 mmol) was mixed with tosyl isocyanate (5 mmol) in a round-bottomed flask.
The mixture was vigorously stirred at 10 ◦C for 12 h. At the end of the reaction, a solid precipitated.
Then, the solid was washed with the mixed solution of anhydrous benzene and n-hexane to get
compounds 3.

2,2-Dimethyl-N-[(4-methylphenyl)sulfonyl]-1,3-benzothiazoline-3(2H)-formamide (3a): White solid, Yield
96%, m.p. 129–131 ◦C. IR (KBr, ν/cm−1) 3242 (N-H), 3071–2928 (C-H), 1708 (C=O), 1341, 1152 (O=S=O).
1H-NMR (300 MHz, DMSO-d6): δ (ppm) 11.86 (s, 1H), 6.48–7.85 (m, 8H), 2.37–2.41 (d, J = 10.5 Hz, 3H),
1.61–1.70 (d, J = 24.9 Hz ,6H). 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 147.3, 142.3, 141.9, 129.7, 127.8,
126.1, 125.4, 124.3, 123.5, 121.9, 118.8, 116.4, 109.4, 75.3, 31.9, 23.0, 21.4. HR-MS (ESI): m/z calcd. for
C17H19N2O3S2 ([M + H]+) 363.0832 found 363.0827.

2-Ethyl-2-methyl-N-[(4-methylphenyl)sulfonyl]-1,3-benzothiazoline-3(2H)-formamide (3b): White solid, Yield
65%, m.p. 91–93 ◦C. IR (KBr, ν/cm−1) 3234 (N-H), 3064–2934 (C-H), 1704 (C=O), 1350, 1155 (O=S=O).
1H-NMR (300 MHz, CDCl3): δ (ppm) 6.97–7.98 (m, 8H), 2.43–2.45 (d, J = 6.3 Hz, 3H), 2.18–2.28 (m, 1H),
1.86–1.98 (m, 1H), 1.77 (s, 3H), 0.78–0.83 (t, J = 7.2 Hz, 3H). 13C-NMR (75 MHz, CDCl3): δ (ppm) 146.9,
122.9, 138.1, 136.0, 129.6, 129.6, 128.4, 128.4, 126.5, 125.6, 124.8, 123.5, 115.4, 82.8, 32.6, 26.7, 21.7, 9.3.
HR-MS (ESI): m/z calcd. for C18H21N2O3S2 ([M + H]+) 377.0988 found 377.0984.

2-Propyl-2-methyl-N-[(4-methylphenyl)sulfonyl]-1,3-benzothiazoline-3(2H)-formamide (3c): White solid,
Yield 78%, m.p. 91–94 ◦C. IR (KBr, ν/cm−1) 3380 (N-H), 3057–2872 (C-H), 1715 (C=O), 1349, 1162
(O=S=O). 1H-NMR (300 MHz, CDCl3): δ (ppm) 6.97–7.98 (m, 8H), 2.44–2.45 (d, J = 4.5 Hz, 3H), 2.13–2.23
(m, 1H), 1.82–1.88 (m, 1H), 1.77 (s, 3H), 1.34–1.46 (m, 1H), 0.93–1.03 (m, 1H), 0.70–0.74 (t, J = 6.6 Hz,
3H). 13C-NMR (75 MHz, CDCl3): δ (ppm) 146.9, 144.9, 138.0, 135.9, 129.5, 129.5, 128.4, 128.4, 126.5,
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125.6, 124.8, 123.5, 115.4, 81.9, 41.6, 27.3, 21.7, 18.4, 13.7. HR-MS (ESI): m/z calcd. for C19H23N2O3S2

([M + H]+) 391.1145 found 391.1144.

2-Isopropyl-2-methyl-N-[(4-methylphenyl)sulfonyl]-1,3-benzothiazoline-3(2H)-formamide (3d): White solid,
Yield 70%, m.p. 105–109 ◦C. IR (KBr, ν/cm−1) 3347 (N-H), 3056–2973 (C-H), 1706 (C=O), 1357, 1164
(O=S=O). 1H-NMR (300 MHz, CDCl3): δ (ppm) 6.96–7.97 (m, 8H), 2.60–2.69 (m, 1H), 2.45 (s, 3H), 1.79
(s, 3H), 0.92–0.95 (d, J = 6.9 Hz, 3H), 0.76–0.78 (d, J = 6.6 Hz, 3H). 13C-NMR (75 MHz, CDCl3): δ (ppm)
147.2, 144.8, 138.9, 136.1, 129.5, 129.5, 128.4, 128.4, 126.5, 125.5, 124.7, 123.1, 115.3, 87.1, 36.4, 25.4, 21.7,
18.4, 17.9. HR-MS (ESI): m/z calcd. for C19H23N2O3S2 ([M + H]+) 391.1145 found 391.1149.

2-Acetonyl-2-methyl-N-[(4-methylphenyl)sulfonyl]-1,3-benzothiazoline-3(2H)-formamide (3e): White solid,
Yield 55%, m.p. 128–130 ◦C. IR (KBr, ν/cm−1) 3175 (N-H), 1714 (C=O), 1350, 1164 (O=S=O). 1H-NMR
(300 MHz, CDCl3): δ (ppm) 6.52–7.71 (m, 8H), 6.43 (s, 1H), 3.14–3.21 (q, J = 17.4 Hz, 4H), 2.37 (s, 3H),
2.12 (s, 3H), 1.61 (s, 3H). 13C-NMR (75 MHz, CDCl3): δ (ppm) 206.1, 145.9, 141.8, 141.4, 129.2, 129.2,
128.3, 125.6, 125.6, 125.2, 124.9, 121.1, 118.2, 108.8, 74.3, 55.8, 30.8, 29.5, 20.8. HR-MS (ESI): m/z calcd..
for C19H20N2NaO4S2 ([M + Na]+) 427.0756 found 427.0754.

2-Butyl-2-methyl-N-butyl-[(4-methylphenyl)sulfonyl]-1,3-benzothiazoline-3-(2H)-formamide (3f): White solid,
Yield 50%, IR (KBr, ν/cm−1) 3245 (N-H), 3068–2871 (C-H), 1702 (C=O), 1352, 1166 (O=S=O). 1H-NMR
(300 MHz, CDCl3): δ (ppm) 6.97–7.97 (m, 8H), 2.45 (s, 3H), 1.77 (s, 3H), 0.87–1.42 (m, 6H), 0.69–0.74
(t, J = 7.2 Hz, 3H). 13C-NMR (75 MHz, CDCl3): δ (ppm) 144.8, 129.5, 129.5, 128.3, 128.3, 126.4, 125.5,
124.7, 123.4, 121.9, 120.5, 115.4, 110.8, 82.1, 43.8, 38.9, 30.0, 27.2, 22.4, 13.8. HR-MS (ESI): m/z calcd. for
C20H25N2O3S2 ([M + H]+) 405.1301 found 405.1306.

2-Isobutyl-2-methyl-N-[(4-methylphenyl)sulfonyl]-1,3-benzothiazoline-3-(2H)-formamide (3g): White solid,
Yield 36%, m.p. 96–98 ◦C. IR (KBr, ν/cm−1) 3248 (N-H), 2976–2864 (C-H), 1697 (C=O), 1345, 1163
(O=S=O). 1H-NMR (300 MHz, CDCl3): δ (ppm) 6.98–7.98 (m, 8H), 2.45 (s, 3H), 2.07–2.13 (q, J = 5.1 Hz,
1H), 1.83–1.89 (q, J = 5.7 Hz, 1H), 1.80 (s, 3H), 1.64–1.72 (m, 1H), 0.87–0.90 (d, J = 6.6 Hz, 3H), 0.70–0.72
(d, J = 6.9 Hz, 3H). 13C-NMR (75 MHz, CDCl3): δ (ppm) 147.0, 144.9, 138.0, 136.1, 129.5, 129.5, 128.4,
128.4, 126.5, 125.6, 124.9, 123.5, 115.6, 82.0, 47.7, 27.3, 25.3, 24.3, 23.9, 21.7. HR-MS (ESI): m/z calcd. for
C20H25N2O3S2 ([M + H]+) 405.1301 found 405.1307.

2-Tert-butyl-2-methyl-N-[(4-methylphenyl)sulfonyl]-1,3benzothiazoline-3(2H)-formamide (3h): White solid,
Yield 59%, m.p. 126–129 ◦C. IR (KBr, ν/cm−1) 3256 (N-H), 2972 (C-H), 1701 (C=O), 1349, 1167 (O=S=O).
1H-NMR (300 MHz, CDCl3): δ (ppm) 7.03–7.97 (m, 8H), 2.45 (s, 3H), 1.79 (s, 3H), 0.96 (s, 9H). 13C-NMR
(75 MHz, CDCl3): δ (ppm) 147.9, 144.7, 140.9, 136.2, 133.1, 129.5, 129.5, 128.3, 128.3, 126.5, 125.6, 122.1,
117.3, 89.4, 43.7, 25.6, 25.6, 25.6, 23.0, 21.7. HR-MS (ESI): m/z calcd. for C20H25N2O3S2 ([M + H]+)
405.1301 found 405.1305.

2-Phenylethyl-2-methyl-N-[(4-methylphenyl)sulfonyl]-1,3–benzothiazoline-3(2H)-formamide (3i): White solid,
Yield 95%, m.p. 126–129 ◦C. IR (KBr, ν/cm−1) 3333 (N-H), 3070–2892 (C-H), 1706 (C=O), 1364, 1118
(O=S=O). 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 12.03 (s, 1H), 6.72–7.92 (m, 13H), 2.70–2.82 (m, 1H),
2.48 (s, 1H), 2.42 (s, 3H), 1.99–2.14 (m, 2H), 1.68–1.72 (s, 3H). 13C-NMR (75 MHz, DMSO-d6): δ (ppm)
149.0, 147.6, 144.2, 142.2, 141.3, 138.9, 137.8, 129.9, 128.5, 128.1, 127.2, 126.2, 125.5, 124.2, 123.5, 121.7,
118.5, 116.3, 108.9, 80.9, 46.1, 31.7, 29.0, 21.6. HR-MS (ESI): m/z calcd. for C24H24N2NaO3S2 ([M +
Na]+) 475.1120 found 475.1113.

2,2,-Diethyl-N-[(4-methylphenyl)sulfonyl]-1,3-benzothiazoline-3(2H)-formamide (3j): White solid, Yield 40%,
m.p. 103–105 ◦C. IR (KBr, ν/cm−1) 3280 (N-H), 2959–2934 (C-H), 1715 (C=O), 1349, 1163 (O=S=O).
1H-NMR (300 MHz, CDCl3): δ (ppm) 6.98–7.98 (m, 8H), 2.46 (s, 3H), 2.13–2.24 (m, 1H), 1.83–1.88
(m, 1H), 1.77 (s, 3H), 1.34–1.46 (m, 1H), 0.93–1.03 (m, 1H), 0.70–0.74 (t, J = 7.2 Hz, 3H). 13C-NMR
(75 MHz, CDCl3): δ (ppm) 146.9, 144.9, 138.0, 135.9, 129.5, 129.5, 128.4, 128.4, 126.5, 125.6, 124.8, 123.5,
115.3, 81.9, 41.6, 27.3, 21.7, 18.4, 13.7. HR-MS (APCI): m/z calcd. for C19H23N2O3S2 ([M + H]+) 391.1145
found 391.1140.
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2,2,-Dipropyl-N-[(4-methylphenyl)sulfonyl]-1,3-benzothiazoline-3(2H)-formamide (3k): White solid, Yield
82%, m.p. 101–104 ◦C. IR (KBr, ν/cm−1) 3187 (N-H), 3066–2871 (C-H), 1700 (C=O), 1344, 1167 (O=S=O).
1H-NMR (300 MHz, CDCl3): δ (ppm) 6.94–7.96 (m, 8H), 2.44 (s, 3H), 2.15–2.25 (m, 2H), 1.67–1.77
(m, 2H), 1.35–1.47 (m, 2H), 0.81–0.98 (m, 2H), 0.66–0.71 (t, J = 7.2 Hz, 6H). 13C-NMR (75 MHz, CDCl3):
δ (ppm) 147.0, 144.9, 138.5, 135.7, 129.4, 129.4, 128.6, 128.6, 126.5, 125.4, 124.6, 123.1, 114.8, 85.7, 41.4,
41.4, 21.6, 17.9, 17.9, 13.7, 13.7. HR-MS (ESI): m/z calcd. for C21H27N2O3S2 ([M + H]+) 419.1458
found 419.1461.

N-[(4-Methylphenyl)sulfonyl]-3h-screw[1,3-benzothiazoline-2,1’-cyclopentane]-3-formamide (3l): White solid,
Yield 95%, m.p. 120–121 ◦C. IR (KBr, ν/cm−1) 3286 (N-H), 3066–2869 (C-H), 1602 (C=O), 1343, 1153
(O=S=O). 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 6.99–7.99 (m, 8H), 2.53–2.63 (m, 2H), 2.46 (s, 3H),
1.65–2.02 (m, 6H). 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 146.8, 144.9, 138.5, 136.1, 129.6, 129.6, 128.4,
128.4, 126.5, 125.7, 124.9, 123.5, 115.5, 87.2, 38.1, 38.1, 23.7, 23.7, 21.7. HR-MS (ESI): m/z calcd. for
C19H21N2O3S2 ([M + H]+) 389.0988 found 389.0982.

N-[(4-Methyl-phenyl)sulfonyl]-3h-screw[1,3-benzothiazoline-2,1’-cyclohexane]-3-formamide (3m): White
solid, Yield 99%, m.p. 149–152 ◦C. IR (KBr, ν/cm−1) 3287 (N-H), 3071–2849 (C-H), 1692 (C=O),
1346, 1160 (O=S=O). 1H-NMR (300 MHz, DMSO-d6): δ (ppm) 11.95 (s, 1H), 6.96–7.89 (m, 8H), 2.44 (s,
3H), 1.09–2.38 (m, 10H). 13C-NMR (75 MHz, DMSO-d6): δ (ppm) 149.0, 144.2, 140.0, 137.9, 129.9, 127.8,
126.9, 124.1, 123.3, 121.7, 118.4, 116.4, 109.1, 84.9, 35.1, 25.0, 24.7, 24.3, 24.0, 21.6. HR-MS (ESI): m/z
calcd. for C20H23N2O3S2 ([M + H]+) 403.1145 found 403.1149.

4. Conclusions

In conclusion, a series of novel sulfonylurea benzothiazoline derivatives was rationally designed
and synthesized using a solvent-free method, and identified as potential herbicide safeners for
sulfonylurea herbicides. All the synthesized compounds displayed safener activity to chlorsulfuron
to some extent, and compound 3c was even superior to the commercial safener AD-67. The results
suggest that compound 3c might be a novel candidate for a potential safener.

Supplementary Materials: Supplementary data associated with this article can be found in the online.
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