

Recognition of the violet system of S2CI in the pyrolysis of S2CI2

C. L. Chiu, S. C. Pan, and C. K. Ni

Citation: The Journal of Chemical Physics **85**, 10 (1986); doi: 10.1063/1.451648 View online: http://dx.doi.org/10.1063/1.451648 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/85/1?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in

Extension of the CN Red and Violet Band Systems J. Chem. Phys. **48**, 1980 (1968); 10.1063/1.1669000

Combination Flash PhotolysisFlash Pyrolysis System Rev. Sci. Instrum. **37**, 1500 (1966); 10.1063/1.1720028

Experimental Determination of the Oscillator Strength of the Violet System of OH J. Chem. Phys. **40**, 1414 (1964); 10.1063/1.1725326

Experimental Oscillator Strength of the Violet System of CN J. Chem. Phys. **36**, 399 (1962); 10.1063/1.1732517

Crystal Spectra of Metal Coordination Compounds. II. Violet Form of CoPy2Cl2 and CoCl2·6H2O J. Chem. Phys. **32**, 533 (1960); 10.1063/1.1730730

Recognition of the violet system of S₂Cl in the pyrolysis of S₂Cl₂

C. L. Chiu, S. C. Pan, and C. K. Ni

Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300, Republic of China

(Received October 1985; accepted 18 March 1986)

A total of 37 absorption bands, lying between 3785 and 4805 Å, have been observed during the pyrolysis of S_2Cl_2 at 750 K. These bands have been tentatively assigned to transitions between the $\tilde{X}A''$ state of S_2Cl to an unidentified electronically excited state with vibrational frequencies $\omega'_1 = 480 \text{ cm}^{-1}$ and $\omega'_2 = 407 \text{ cm}^{-1}$. From this assignment it follows that the ground state vibrational frequencies are $\omega''_1 = 659 \text{ cm}^{-1}$, $\omega''_2 = 600 \text{ cm}^{-1}$, and $\omega''_3 = 336 \text{ cm}^{-1}$. A simple molecular orbital diagram has been constructed from the frontier orbitals of S_2 and Cl. The predicted changes in the bond strengths and bond angles between the ground state and the excited state are consistent with experimental assignments.

I. INTRODUCTION

The production of a violet band system in the flash photolysis of gas phase S_2Cl_2 was first reported by McGrath¹ in 1960. Its carrier was suggested to be S_2Cl . Donovan *et al.*² in 1968 did the same experiment and suggested SCl instead, in spite of the fact that only one progression was observed whereas SCl would have given two.

The first accepted evidence for the existence of the S_2Cl radial as one of the photolytic products of S_2Cl_2 was the result of an ESR study of inert matrices at 4.2K.³ Evidence of the SCl radical was reported in an infrared (IR) study using a microwave discharge and argon matrix technique.⁴ An investigation of the pyrolysis of S_2Cl_2 was undertaken here primarily to see if either of the radicals could be detected and identified at higher temperatures in the gas phase.

II. EXPERIMENTAL

Commercial S_2Cl_2 was purified by distillation *in vacuo* and then transferred into a 15 mm diam Pyrex absorption cell. The cell had a separately heated tail tube used to control the vapor pressure of S_2Cl_2 in the main cell. The vapor in the main cell could be heated up to 750 K in order to produce sufficient band carrier species. It was not possible to investigate the region below 3700 Å because of the strong background absorption continuum of S_2Cl_2 . Light from a 500 W halogen-quartz lamp passed through the absorption cell, and was sent to a 1/4 m Jarrell Ash monochromator equipped with 50 μ m slits and an ORIEL 7062 photomultiplier at the exit slit.

When the cell temperature was raised above 550 K, a sharp absorption band system began to appear over a steep background. When the radiation from the 500 W lamp was focused into the absorption area, the band intensity got stronger, probably due to both photolysis and local heating effects. The band absorption reached a maximum as the cell temperature was raised to about 750 K. Above that temperature, the band absorption declined.

III. RESULTS AND DISCUSSION

As shown in Fig. 1, the absorption bands can be easily divided into seven groups. If the carrier is assumed to be S_2Cl , rather than SCl, these groups can be rationalized. Each

group, as listed in Table I, is arranged in accordance with a v'progression of the v_1 (S-SCl stretching) mode of the excited electronic state. The vibrational constant is about 480 cm^{-1} . Most of the bands in group A have been reported before.^{1,2} The very weak 4618 Å band is assigned to the 1_0^0 transition tentatively. Group B has a quantum of 407 cm^{-1} above group A. This quantum can be attributed to the v_2 (S₂-Cl stretching) mode of the excited electronic state. Group C is composed of hot bands with v'' = 1. When compared with group A, a value of 659 cm⁻¹ for $\Delta G''$ results. The magnitude of this vibrational quantum is smaller than that of S_2 (725 cm^{-1}) ,⁵ comparable to that of the S–SO stretch mode of S_2O (680 cm⁻¹),⁶ but greater than that of SCl (617 cm⁻¹).⁴ It is therefore assigned to the v_1 mode of the ground state of S₂Cl. The observation of groups D and E further supports the above assignments. Group F consists of only two very weak members. Since their energies are about 600 cm^{-1} below l_0^0 and l_0^1 bands and this energy difference is quite near to the fundamental frequency of SCI radical, they are assigned tentatively to the $1_0^0 2_1^0$ and the $1_0^1 2_1^0$ transitions, respectively. Members of group G are about 336 cm^{-1} below the corresponding members of group A. Group G is thus

FIG. 1. Typical absorption spectrum of S_2Cl from pyrolysis of S_2Cl_2 at 750 K. The assignments for these progressions are: $A(1_0^{\prime\prime})$, $B(1_0^{\prime\prime}2_0^{\prime})$, $C(1_1^{\prime\prime})$, $D(1_1^{\prime\prime}2_0^{\prime\prime})$, $E(1_0^{\prime\prime}2_0^{\prime\prime})$, and $G(1_0^{\prime\prime}3_1^{\prime\prime})$. The members of each progression are marked by solid leading lines and some of their v' quantum numbers are given. Because of the strong absorption of S_2Cl_2 , the spectrum has to be taken separately with different vapor pressures for each wavelength region.

© 1986 American Institute of Physics

ticle is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to TP: 128.62.36 173 On: Tue, 25 Nov 2014 21:41:36

11

TABLE I. Observed absorption peak wavelengths (Å in air) and their vibrational assignments of the violet system of S_2CI .

v'	A 10	B 1°20	C 1 ^{v'}	$ D 1_1^{\nu} 2_0^1 $	E 1 ^{v'} 2	F 1 ^v ₀ 2 ⁰	G 1°'30
0	4618	4532		4671		4754	
.1	4517	4435	4656	4568	4805	4643	
2	4420	4340	4553	4468	4693		
3	4327	4252	4454	4373	4587		
4	4239	4166	4360				
5	4154	4086	4271				
6	4074	4010					4130
7	3997						4052
8	3924						3976
9	3853						3903
10	3785						3834

considered to arise from the $v_3'' = 1$ level since 336 cm⁻¹ falls into the right region for a bending frequency expected for S₂Cl.

The S_2Cl may result from the cleavage of a chlorine atom from S_2Cl_2 directly, or from the follow-up reaction of the S-S cleavage indirectly,

$$S_2Cl_2 \rightarrow 2SCl,$$
 (1)

$$S_2Cl_2 + SCl \rightarrow S_2Cl + SCl_2.$$
(2)

In Eq. (2), S_2Cl is generated and SCl is consumed. This might be one of the reasons that S_2Cl was observed here and SCl was not, although both of them are radicals.

Some of the bands in group A have been described as diffuse^{1,2} althouth only medium resolution spectrographs have been taken. It remains possible that the diffuseness of this violet system is just the result of a dense overlap of the rotational lines of the heavy and asymmetric S₂Cl top, but not the result of short radiative lifetime. To help clarify this point, a resolution variation method was applied. It is wellknown that the absorption intensity of a diffuse band goes down relative to that of a sharp band as the resolution of the spectrometer gets higher. Absorption spectra in the region from 3800 to 4550 Å were remeasured for this purpose with a 3 m spectrometer. However, the relative absorption intensities of vibrational bands in each single run did not change much when the resolution was changed from 1.4 to 0.15 Å. This observation implies that most of the lines are broader than 1.4 Å in these bands, i.e., they are diffuse, as suspected by earlier workers.^{1,2}

S₂Cl can be formed from an S₂ molecule and a Cl atom. If we assume that only the frontier orbitals, π_x^* and π_y^* of S₂ and p_x and p_y of Cl, are involved in the formation, four new molecular orbitals result: $M_1 = \pi_x^* + p_x$, $M_2 = \pi_y^* + p_y$, $M_3 = \pi_y^* - p_y$, and $M_4 = \pi_x^* - p_x$. As far as the bonding between the central sulfur atom and the chlorine atom is concerned, the first two are "bonding" and the last two are "antibonding"; M_1 and M_4 are the σ type and the other two are the π type. Figure 2 shows the shapes of these molecular orbitals with the order of their energies. There are five electrons, two from S₂ and three from Cl, to be placed in these orbitals. The electronic configuration of the ground state \tilde{X} based on these orbitals is $M_1^2 M_2^2 M_3^1$. That of the first excited state \tilde{A} is $M_1^2 M_2^1 M_3^2$. It is clear from Fig. 2 that both of these configurations give A'' representation for their electronic states. When $\tilde{X}A''$ to $\tilde{A}A''$ transition occurs, the bonding in the molecule as a whole becomes weaker and the SCl moiety is the one which gets affected more seriously since one of its π electrons goes into the anti- π type orbital. Our assignments for the vibrational modes lead to the same conclusion if one uses stretching frequency as the bond strength indicator: the stretching frequencies decreases by 1/4 for S-S and 1/3 for S-Cl when the molecule gets excited.

According to Fig. 2, ground state S_2Cl is a bent radical with bond angle a few degrees greater than 90°. The orbital parities of M_2 above and below the molecular plane are different in signs between the portions located at the two end atoms; hence these two portions repel each other. On the other hand, those of M_3 are the same. This identity of the signs in M_3 implies that a bonding molecular orbital may be

FIG. 2. Molecular orbital shape diagram for S_2 Cl radical formed from frontier orbitals of S_2 and Cl. Orbitals are shown from top to bottom according to the order of their energies from high to low.

J. Chem. Phys., Vol. 85, No. 1, 1 July 1986

formed between the end atoms if they ever get close enough to each other. This possibility tends to make the bond angle smaller. Nevertheless, this tendency is rather weak here because the end atoms are too far apart from each other; 2.8 Å is the distance if one assumes 2 Å for both the S–S and the S– Cl bonds and a 90° angle between them. As a consequence, when an M_2 electron becomes an M_3 electron, the bond angle will decrease, but not by much. This conclusion appears to be consistent with our spectroscopic results which give no v_3' progression and the only progression involving bending of the ground state, group G, is very weak.

The absorption spectrum of 15 Torr of S_2Cl_2 in a 9.4 cm cell at room temperature was taken and it showed only a continuum in the same region. Besides, no band given in Table I can be correlated to any of the ground state vibrational frequencies of S_2Cl_2 .^{7,8} It seems therefore reasonable that S_2Cl_2 is not the carrier of this band system although its concentration is the highest in the absorption cell.

Attempts have been made to search for other band systems for both S_2Cl and SCl in the longer wavelength region down to 8500 Å, but none were found.

IV. CONCLUSION

The products of the pyrolysis of gas phase S_2Cl_2 were examined by absorption spectroscopy and 37 bands were recorded. S_2Cl is suggested to be the carrier of this band sys-

```
tem. The vibrational constants assessed from our measure-
ments here are: \omega'_1 = 480 \text{ cm}^{-1} and \omega'_2 = 407 \text{ cm}^{-1} for the
excited state and \omega''_1 = 659 \text{ cm}^{-1}, \omega''_2 = 600 \text{ cm}^{-1}, and \omega''_3 = 336 \text{ cm}^{-1} for the ground state. This is the first time an
electronic spectrum of S<sub>2</sub>Cl is recognized with partial vibra-
tional analysis. The vibrational quantum number assign-
ments are only tentative but the mode assignments are be-
lieved to be reasonable.
```

ACKNOWLEDGMENTS

The authors would like to thank Professor Hua Chang for the loan of a monochromator and the National Science Council of the Republic of China for the financial support.

- ¹W. D. McGrath, J. Chem. Phys. **33**, 297 (1960).
- ²R. J. Donovan, D. Husain, and P. T. Jackson, Trans. Faraday Soc. 64, 1798 (1968).
- ³F. G. Herring, C. A. McDowell, and J. C. Tait, J. Chem. Phys. 57, 4564 (1972).
- ⁴M. Feuerhahn, R. Minkwitz, and G. Vahl, Spectrochim. Acta Part A 36, 183 (1980).
- ⁵G. Herzberg, *Molecular Spectra and Molecular Structure* (Van Nostrand, London, 1950), Vol. I.
- ⁶L. D. Chen and C. L. Chiu, Proc. Natl. Sci. Counc. ROC(A) 8, 159 (1984).
- ⁷E. B. Bradley, M. S. Mathur, and C. A. Frenzel, J. Chem. Phys. 47, 4325 (1967).
- ⁸S. G. Frankiss and D. J. Harrison, Spectrochim. Acta Part A 31, 161 (1975).