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INTRODUCTION

The high-temperature phase of CsH

 

2

 

PO

 

4

 

 (

 

t

 

 

 

≥

 

 230°

 

C)
has almost the highest electrical conductivity among
superprotonic salts. In addition, CsH

 

2

 

PO

 

4

 

 is potentially
attractive as an electrolyte for medium-temperature
fuel cells [1, 2]. The stability of this superionic material
is, however, influenced by the relative humidity; prepa-
ration, storage, and experimental conditions; and trace
impurities and water on its surface.

Humidity has a particularly strong effect on the
properties of this material: in a dry atmosphere, the
superionic phase transition is accompanied by dehydra-
tion, and the conductivity of the high-temperature
phase of CsH

 

2

 

PO

 

4

 

 drops sharply by orders of magni-
tude. At the same time, at an increased water vapor con-
tent in the ambient atmosphere (

 

~30

 

 mol %) the salt is
thermodynamically stable [3, 4]. This high humidity,
however, has an adverse effect on the mechanical prop-
erties of the electrolyte, and the necessity to humidify
the ambient atmosphere adds complexity to the fuel cell
design.

Along with fine-particle oxide additions [5–8], one
possible way of extending the temperature stability
range of the superionic material is by cation or anion
substitution. Superionic acid salts obey the so-called
chemical pressure principle: an increase in the radius of
a cation or anion is equivalent to an increase in hydro-
static pressure, and vice versa. This suggests that sub-
stitution of a smaller sized cation for cesium may
reduce the phase transition temperature.

Indeed, partial ammonium substitution for cesium
in cesium dihydrogen phosphate, as represented by the

formula Cs

 

1 – 

 

x

 

(

 

NH

 

4

 

)

 

x

 

H

 

2

 

PO

 

4

 

 (

 

ı

 

 

 

≤

 

 0.1)

 

, reduces the phase
transition temperature by 

 

10°

 

C during heating and by

 

37°

 

C during cooling [9, 10]. In addition, it stabilizes the
high conductivity of the salt, but the mechanism behind
this effect is not yet understood. In particular, it is
unclear whether this is due to the difference in cation
configuration or to the greater number of protons in the
ammonium ion and the higher concentration of hydro-
gen bonds in the system, even though these are known
not to be involved in proton transport in other acid salts.
In this context, it is of interest to assess the effect of par-
tial Rb

 

+

 

 substitution for Cs

 

+

 

 on the properties of cesium
dihydrogen phosphate, because these cations differ
less.

The purpose of this work was to study the transport
properties of Cs

 

0.97

 

Rb

 

0.03

 

H

 

2

 

PO

 

4

 

 and the thermodynamic
stability of its high-temperature phase.

EXPERIMENTAL

CsH

 

2

 

PO

 

4

 

 and Cs

 

0.97

 

Rb

 

0.03

 

H

 

2

 

PO

 

4

 

 single crystals were
grown from aqueous solutions containing appropriate
ratios of phosphoric acid, cesium carbonate, and rubid-
ium carbonate by isothermal evaporation. The crystals
were washed with acetone and heated at 

 

150°

 

C for 2 h
to remove the residual water. The cation composition of
the crystals was determined by a combination of atomic
absorption and emission flame photometry (

 

λ

 

 = 852.1 nm)
[11]. 

 

ç

 

2

 

P  was determined by differential colorime-
try as the yellow vanadomolybdate complex [12]. From
the X-ray diffraction (XRD), colorimetry, and chemical
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single crystals. The mixed salt is isostructural with cesium dihydrogen phosphate and has slightly smaller unit-
cell parameters. The cation substitution increases the low-temperature ionic conductivity of the material by
about two orders of magnitude but has an insignificant effect on the conductivity of the high-temperature phase.
The low-temperature conductivity of single-crystal samples exhibits significant anisotropy, with 

 

σ

 

a

 

 < 

 

σ

 

b

 

 

 

±

 

 

 

c

 

. The
conductivity of the polycrystalline material is close to 

 

σ

 

b

 

 ± 

 

c

 

. The substitution reduces the temperature of the
superionic phase transition by 

 

20°

 

C and enhances the thermal stability of the high-temperature phase at low
humidity (1 mol % H

 

2

 

O).
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analysis data, the accuracy in the compositions
obtained was estimated at 2%.

XRD patterns were collected on a Bruker powder
diffractometer (

 

ë

 

u

 

K

 

α

 

1

 

 radiation, continuous scan rate
of 2

 

°

 

/min) at room temperature. The crystal structures
of the salts at 

 

235°

 

C were determined at the Difrakt-
sionnoe Kino Station at the Siberian Synchrotron Radi-
ation Centre. The diffracted radiation (

 

λ 

 

= 1.525 

 

Å) was
detected by an OD-3 linear array detector [13] in the
angular range 

 

2

 

θ

 

 = 23°–54°

 

. The samples were heated at a
rate of 

 

10°

 

C/min in an Anton Paar XRK900 chamber.

Electrical conductivity was measured by a two-
probe ac method at frequencies from 12 Hz to 200 kHz
using an Instek LCR-821 impedance meter. For aniso-
tropic conductivity measurements, the crystals were
lapped in various crystallographic directions. The crys-
tals measured 

 

~0.2 

 

×

 

 0.3 

 

×

 

 0.4

 

 cm, and the crystal size
depended on the crystallographic direction (the (100)
face had the largest area). The conductivity of polycrys-
talline material was measured using samples 6 mm in
diameter and 1–2 mm in thickness with a relative den-
sity of 

 

~95%

 

. Electrical contacts were made with fine-
particle palladium paste or pressed fine-particle silver.
The measurements were performed isothermally or
during cooling at a rate of 

 

0.1–0.2°

 

C/min in air at 

 

~15%

 

relative humidity.

Thermal analysis (TG + DTA) was carried out with
a Netzsch STA 449C system in the temperature range

 

20–400°

 

C at a heating rate of 

 

10°

 

C/min (argon, flow
rate of 30 ml/min).

IR absorption spectra of powder samples preheated
at 

 

~140–150°

 

C for 10 h were measured in the range
580–4000 cm

 

–1

 

 on a Digilab Excalibur 3100 (ZnSe)
spectrometer.

RESULTS AND DISCUSSION

According to our XRD data, the low-temperature
phase of the synthesized CsH

 

2

 

PO

 

4

 

 has a monoclinic
structure (sp. gr. 

 

P

 

2

 

1

 

/

 

m

 

) with unit-cell parameters

 

a

 

 = 7.9120 Å, 

 

b 

 

= 6.3830 Å, 

 

c

 

 = 4.8802 Å, and 

 

β 

 

=
107.73°, 

 

V

 

 = 234.75 

 

Å

 

3

 

, in agreement with previous data
[14] (Fig. 1). In the XRD pattern of Cs

 

0.97

 

Rb

 

0.03

 

H

 

2

 

PO

 

4

 

,
the reflections are shifted to larger angles, attesting to
the formation of a CsH

 

2

 

PO

 

4

 

-based solid solution with a
reduced unit cell. Its lattice parameters determined by a
fit among the 11 strongest reflections (IK software) are

 

a

 

 = 7.9052 Å, 

 

b

 

 = 6.3742 Å, 

 

c

 

 = 4.8757 Å, 

 

β 

 

=
107.8280°

 

, and 

 

V

 

 = 233.89 Å

 

3

 

 (

 

∆

 

V

 

 within 0.4%).

XRD results show that, above 

 

225°

 

C, CsH

 

2

 

PO

 

4

 

transforms into a cubic phase (sp. gr. 

 

Pm

 

3

 

m

 

) with 

 

a

 

 

 

=
4.961 

 

Å (Fig. 2), in accordance with previous results
[15]. In the XRD pattern of the mixed salt, reflections
from the cubic phase emerge below 

 

220°

 

C. The
observed shift of the reflections indicates that the high-
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Fig. 1. XRD patterns of (1) Cs0.97Rb0.03H2PO4 and (2) CsH2PO4 at 25°C.
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Fig. 2. XRD patterns of the high-temperature phase of (1) Cs0.97Rb0.03H2PO4 and (2) CsH2PO4.
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Fig. 3. Arrhenius plots of conductivity for (1) polycrystalline and (2, 3) single-crystal Cs0.97Rb0.03H2PO4 in comparison with
(4) CsH2PO4; (2) σa, (3) σb ± c. Polycrystalline Cs0.97Rb0.03H2PO4 was cooled at 0.1–0.2°C/min; the other measurements were
made at a cooling rate of 1–2°C/min in air.
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temperature phase also has a reduced unit-cell parame-
ter: a = 4.940 Å (∆V also within ~0.4%).

Figure 3 shows the Arrhenius plots of conductivity in
different crystallographic directions for Cs0.97Rb0.03H2PO4

in comparison with CsH2PO4. The proton conductivity
of the mixed salt in the superionic state is seen to be
close to that of CsH2PO4, whereas its low-temperature
proton conductivity is about two and half orders of
magnitude higher. Over the entire temperature range
studied, the activation energy for conduction in the
mixed salt is lower, which seems to be due to a higher
degree of structural disordering.

The conductivity of single-crystal Cs0.97Rb0.03H2PO4

depends on crystallographic orientation (Fig. 3). Note
that a correlation of conductivity anisotropy with the
crystal structure and hydrogen-bond configuration was
reported previously for a variety of salts. For example,
in the low-temperature phase of CsHSO4, where the
hydrogen bonds have the form of zigzag chains in the
[010] direction, the values of σ[010] and σ[001] differ by
two orders of magnitude [16]. The conductivity of
Cs5H3(SO4)4 · H2O and Cs5H3(SeO4)4 · H2O in the hexag-
onal or pseudohexagonal plane is one to two orders of
magnitude higher than that along the normal to this
plane [17], which is consistent with the two-dimen-
sional geometry of the dynamically disordered hydro-
gen bond network [18]. The compound CsH5(PO4)2 also
has the lowest conductivity in the [100] direction, nor-
mal to the layers of hydrogen-bonded phosphate tetra-
hedra [19].

The low-temperature phase of CsH2PO4 has hydro-
gen bonds of different lengths: disordered hydrogen
bonds 2.48 Å in length and more ordered bonds 2.52 Å
in length [14]. As would be expected on structural
grounds, σb ± c (in the plane of the disordered hydrogen
bonds) is an order of magnitude higher than σa. The
observed reduction in phase transition temperature
(~20°C) upon partial rubidium substitution for cesium
is less significant than that upon ammonium substitu-
tion [10], which correlates with the ionic radii of Cs+,

Rb+, and N : 1.81, 1.66, and 1.42 Å, respectively. The
lower activation energy for conduction in ammonia-
substituted cesium dihydrogen phosphate was attrib-
uted to the lower N–O–H hydrogen bond strength, the
activation energy being lower at higher ammonium
contents. At the same time, partial rubidium substitu-
tion produces no additional hydrogen bonds but
reduces the hydrogen bond strength. Conductivity mea-
surements at different cooling rates (0.1–0.2 and
2°C/min) demonstrate that partial Rb+ substitution for
Cs+ hinders the kinetics of the transition from the supe-
rionic to the low-temperature, ordered phase.

H4
+

Cesium dihydrogen phosphate contains a system of
strong hydrogen bonds, which give rise to prominent IR
absorption bands in the spectral range 1700–2800 cm–1

[20]. The IR spectrum of the polycrystalline CsH2PO4

obtained in this study (Fig. 4a, spectrum 1) is very sim-
ilar to that reported by Marchon and Novak [20]. The
cation substitution gives rise to changes in the system
of hydrogen bonds (Fig. 4a). In particular, in the spec-
trum of Cs0.97Rb0.03H2PO4 a broad, strong absorption
band emerges in the range 3200–3400 cm–1, and the
2650-cm–1 band, arising from the OH stretching mode
(δéç), is shifted to higher frequencies (~2700 cm–1). In
addition, the substitution increases the intensity of the
broad bands in the range 1600–2400 cm–1 and shifts
them from 2320 and 1680 to 2300 and 1660 cm–1,
respectively. In the spectral range of the phosphate
group (600–1300 cm–1), we also observe significant
changes in the shape and relative intensity of absorption
bands (Fig. 4b): the bands at 868, 931, and 1068 cm–1

become broader and shift to lower frequencies (to 852, 918,
and 1055.4 cm–1, respectively), the band at 1130 cm–1

disappears almost completely, and the spectrum
becomes more symmetric. This behavior suggests that
partial rubidium substitution for cesium leads to a
reduction in hydrogen bond strength and structural dis-
ordering of the phosphate tetrahedra.

The DTA curve of CsH2PO4 (Fig. 5) shows endot-
hermic peaks at 230, 280, and 345°ë, due to the superi-
onic phase transition, the formation of dimers, trimers,
or polymers as a result of partial dehydration, and melt-
ing, respectively. The dehydration of CsH2PO4 begins
near ~220°C, and the total weight loss on heating to
400°C amounts to ~7.8%, which corresponds to the
removal of two water molecules per formula unit. The
temperatures of the endotherms and the total weight
loss agree with previous results [3]. The DTA curve of
the mixed salt shows a broad endotherm between 138–
175°C, accompanied by a weight loss of 1.2%. This is
most likely due to the presence of hydrous phases on
the surface of the mixed crystals: the samples with par-
tial Rb substitution for Cs were more hygroscopic. The
substitution reduces the enthalpy of the superionic
phase transition. In addition, the dehydration endot-
herm around 280°C shifts to higher temperatures and
disappears almost completely. In the temperature range
230–310°C, the dehydration process slows down, and
the total weight loss decreases, indicating a rise in the
thermal stability of the high-temperature phase.

Indeed, long-term holding of Cs0.97Rb0.03H2PO4 at
235–240°C in air (1 mol % H2O) showed that the stabil-
ity of the cation-substituted high-temperature phase
was markedly higher than that of CsH2PO4 (Fig. 6). The
conductivity of the unsubstituted salt dropped by five
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orders of magnitude after 90 h, whereas that of the
mixed salt dropped by no more than a factor of 1.5 after
170 h. XRD examination showed that the reflections
from the low-temperature phase of cesium dihydrogen
phosphate remained unchanged.

The question that now arises is what can be respon-
sible for the considerable rise in the thermal stability of
the salt in spite of the low degree of cation substitution?
There are two possible answers: cation substitution

may influence both the thermodynamics of the dehy-
dration process (a reduction in the equilibrium water
vapor pressure in the mixed salt) and its kinetics. Both
possibilities may be associated with the formation of a
more stable, disordered high-temperature phase, with
partial amorphization, which would hinder cooperative
processes. To shed light on this problem, further inves-
tigation of the dehydration process in CsH2PO4 and par-
tially substituted analogs is needed.
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Fig. 4. IR spectra of (1) CsH2PO4 and (2) Cs0.97Rb0.03H2PO4.
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Fig. 6. Conductivity as a function of time for (1) Cs0.97Rb0.03H2PO4 and (2) CsH2PO4 during isothermal holding in air (235°C,
0.5 mol % H2O).

CONCLUSIONS

The mixed salt Cs0.97Rb0.03H2PO4 was synthesized,
and its structural, electrical, and thermodynamic prop-
erties were studied. The structure of the partially substi-
tuted salt Cs0.97Rb0.03H2PO4 corresponds to a cesium

dihydrogen phosphate based solid solution with
slightly reduced lattice parameters.

Rubidium substitution for 3 mol % cesium in
CsH2PO4 increases the low-temperature electrical con-
ductivity of the material by about two orders of magni-
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tude but has an insignificant effect on the conductivity
of the high-temperature phase.

The low-temperature conductivity of single-crystal
samples exhibits significant anisotropy, with σa < σb ± c.
The substitution changes the enthalpy of the superionic
phase transition and the enthalpy of fusion. The thermal
stability of the high-temperature phase at low humidity
increases, suggesting that the mixed salt is a candidate
material for medium-temperature fuel cells.
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