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Abstract

The room temperature reactions of homoleptic
metal alkyl complexes with hydrogen sulfide in
toluene solution have been investigated . The alumi-
num alkyls, AIR S (R = Me, Et and i-Bu), reacted with
H2 S to form air-sensitive solids which are postulated
to be mixtures of A1 2S3 and (RATS),, . A species of
the empirical formula CH 3GaS was produced when
GaMe3 was treated with H2 S . Reaction of Cd(CH2-
SiMe 3)2 with H2S yielded cadmium sulfide which
retained approximately 10 ppm of the alkyl group .
At room temperature, Hg(CH2 SiMe 3 )2 was unreac-
tive with H2 S . However at 150 °C the neat liquid
reacted to form highly crystalline mercuric sulfide
in the cubic crystalline form . The reactions of MgEt 2
and Ti(CH2 SiMe 3 )4 with H2 S are also described .

Introduction

Metal sulfide powders are important as lubricants,
phosphors, catalysts [1] and precursors of optical
ceramics [2] . We are investigating possible low tem-
perature routes to metal sulfide powders as alterna-
tives to traditional high temperature solid state
methods. Low temperature routes may give products
with smaller particle size and higher purity . Previous
reports of the reaction of H 2 S with metal alkyls have
dealt primarily with high temperature metal-organic
chemical vapor deposition [3, 4] or metal-organic
vapor phase epitaxy [5] . The preparation of alumi-
num sulfide powder by the vapor phase reaction of
A1Me 3 with H2 S, at temperatures in the range of 50-
90 °C, has been reported [6] . ZnS powder doped with
amine ligands has also been prepared from H 2 S and
the amine adduct of diethylzinc at room temperature
[7] . In a separate paper we present a detailed study
of the preparation of ZnS powders from diethylzinc
and H2 S [8] . In this paper we have surveyed the
reaction of metal alkyl complexes with H 2 S. Closed
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shell (d ° or d 10) metal complexes were chosen based
on our interest in preparing optically transparent
materials .

Experimental

General Information
All manipulations were performed under argon

using Schlenk techniques or in a helium filled glove
box . Infrared spectra were recorded on a Nicolet
60SX Fourier transform spectrophotometer using a
Barnes diffuse reflectance cell . rH NMR spectra were
obtained at 80 .13 MHz from an IBM NR80 Fourier
transform spectrometer . X-ray powder diffraction
patterns were collected on a Scintag PAD V diffrac-
tometer . A Perkin-Elmer 2000 gas chromatograph,
with a 3600 Data Station, equipped with either an
Analabs 1/8" X 6' stainless steel Spherocarb column
or a 1/8" X 6' stainless steel Porapak T column was
used to record gas chromatograms . Elemental
analyses were performed by Galbraith Laboratories,
Knoxville, TN .

Materials
The following materials were used as provided :

hydrogen sulfide (99 .5%) (Matheson Gas Products),
cadmium iodide and mercuric chloride (J . T . Baker
Chemical Company), trimethylsilylmethyl lithium
(1 .0 M in pentane), trimethylsilylmethyl magnesium
chloride (1 .0 M in ether) and titanium(IV) chloride
(Aldrich Chemical Company), deuterium chloride
(33% in D2 0, ICN Biomedicals), diethylmagnesium
(1 .45 M in diethyl ether) and trimethylgallium (Alfa
Products) . Trimethyl, triethyl and triisobutyl alu-
minum (Research Organic/Inorganic Chemicals) were
distilled prior to use . All organic solvents were dried
under argon over sodium benzophenone ketyl before
use . Ti(CH2 SiMe 3)4 [9], Hg(CH 2 SiMe 3 )2 [10] and
Cd(CH2 SiMe 3)2 [11] were prepared as described in
the literature .

General Procedure for the Reaction of Metal Alkyls
with Hydrogen Sulfide

Typically, 15 mmol of metal alkyl were placed in
a 100 ml Schlenk flask and diluted to 1 M with
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toluene . This solution was added with stirring, via a
22 gauge cannula, to a 100 ml Schlenk flask contain-
ing 30 ml of an H2 S-saturated toluene solution over
c. 30 min. During the addition, a continuous H 2 S
purge was maintained with the excess gas exiting
through a mineral oil bubbler followed by two
bubblers containing 6% NaOCI to destroy the H 2 S .
When addition of the metal alkyl solution was com-
plete, the mixture was stirred for an additional 10
min under H 2 S flow. After filtration, the solid was
washed with two 10 nil portions of toluene, dried at
10-3 torr and 25 °C for 3 h, then heated to 80 °C
and dried overnight to a final pressure of 2 X 10 -4
torr .

Reaction of AIR 3 (R = Me, Et and i-Bu) with
Hydrogen Sulfide

White solids precipitated after induction periods
of 2, 1 and 10 min for R = Me, Et and i-Bu respec-
tively . These solids partially dissolved in d 5 -pyridine
to give 'H NMR spectra which exhibited two sets of
peaks for each species . R =Me : 8 -0 .094(s) ; 0 .17(s) .
R = Et : 5 0 .46 (q, J = 8 Hz), 1 .26 (t, J = 8 Hz); 0 .72
(q, J= 8 Hz), 1 .50 (t, J= 8 Hz). R = i-Bu : 5 0 .46 (d,
J = 7 Hz), 1 .06 (d, J = 7 Hz), 2 .19(m) ; 0 .71 (d, J = 7
Hz), 1 .14 (d, J = 7 Hz), 2 .19(m) .

Reaction of GaMe 3 with Hydrogen Sulfide
A white solid began to precipitate 15 min after

the start of GaMe 3 addition to the H 2 S saturated
solution . Anal. Calc. for GaSCH 3 : Ga, 59 .68 ; S,
27 .44 ; C, 10 .28 ; H, 2 .59 . Found : Ga, 58 .55 ; S, 27 .31 ;
C, 10 .51 ; H, 2 .77%. Diffuse reflectance infrared
spectrum of 2975(w), 2910(w), 2863(w), 2769(w),
1772(w), 1395(w), 1205(m), 744(s), 576(s), 383(s),
352(m), 260(w) cm-' .

Reaction of Cd(CH2 SiMe3)2 with Hydrogen Sulfide
Cd(CH2 SiMe 3)2 formed an orange solid imme-

diately upon contact with the H 2 S-saturated solution .
Anal. Calc . for CdS : Cd, 77 .81 ; S, 22 .19 . Found : Cd,
78 .28 ; S, 22 .31 ; C, 0 .24 ; H, 0 .11% .

Reaction of Hg(CH2 SiMe 3)2 with Hydrogen Sulfide
Hg(CH2 SiMe3)2 (11 .1 mmol, 4 .17 g) was loaded

into a 100 ml Schlenk flask and a stream of H 2 S was
bubbled in through a syringe needle . The flask was
then heated to 150 °C under an H2 S flow with rapid
stirring. After 25 min, all of the liquid had been
replaced by a black powder that was subsequently
washed twice with 10 ml portions of toluene, filtered
and dried in vacuo . The sample was dried further by
heating to 90 °C overnight at 2 X 10-4 torn . Anal.
Calc . for HgS : Hg, 86 .22 ; S, 13 .78 . Found : Hg,
81 .60 ; S, 14 .24 ; C, <0 .1 ; H, <0 .1% .

Reaction of MgEt2 with Hydrogen Sulfide
A 5 ml aliquot of an MgEt 2 solution (1 .45 M in

ether) was diluted with 30 ml of ether and cannulated
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into a Schlenk flask containing 40 ml of an H 2 S-
saturated ether solution as described in the general
procedure . A white solid began to precipitate imme-
diately . After addition of the metal alkyl solution
was complete, the reaction mixture was stirred an
additional 45 min and then allowed to sit under an
H2 S atmosphere for 3 days . The solid was filtered,
washed with ether and pentane, and then dried first
at 10-3 torr for 3 h at room temperature and finally
for 4 h at 73 °C .

Hydrolysis and Gas Chromatography of the Sulfide
Powders

Residual alkyl groups in the sulfide powders were
measured by chromatography of the gas released by
hydrolysis . Typically, 30 mg of the solid was placed
in a 50 ml two neck round-bottom flask fitted with a
septum and a vacuum valve adapter . The flask was
evacuated to 2 X 10 -4 torr and 0 .5 ml of concen-
trated H2SO4 was added . The resulting mixture was
stirred until gas evolution ceased . A 1 .0 ml sample of
gas was withdrawn into a gas-tight syringe that was
then stoppered and the gas compressed to 0 .50 ml
giving a final pressure of 0 .4 to 0 .8 atmospheres .
The syringe was opened briefly to the atmosphere
and the sample injected into the gas chromatograph .
The percentage of alkane present in the gas was
determined by comparison with calibration standards
of known hydrocarbon concentration . The total
moles of alkane was then calculated by assuming ideal
gas behavior . Assuming an empirical formula of
A1 2 S 3 _.,R2xi the ratio of alkyl group to aluminum
was determined .

Hydrolysis and 'HNMR of (MeGaS) n
A vial containing a stirbar was loaded with 24 mg

of (MeGaS)„ and 1 ml of C 6D 6 . To this suspension
was added I ml of 33% DCl in D 2 0 dropwise with
stirring . After an additional 10 min of stirring, the
aqueous and organic layers were transferred to
separate NMR tubes . Spectra of both samples were
recorded and then 5 .0 p1 of methanol and 2 .0 pl of
acetone were added as integration standards in the
aqueous and organic layers, respectively . The benzene
layer did not exhibit any resonances other than those
of solvent and accompanying impurities . A singlet
was observed in the spectrum of the aqueous layer
0.23 ppm downfield of DSS (3-trimethylsilyl-l-
propanesulfonic acid sodium salt) .

'HNMR of the Ti(CH2 SiMe3)4 Reaction with
Hydrogen Sulfide

Ti(CH2 SiMe 3)4 (30 mg, 0 .076 mmol) was pipetted
into an NMR tube and dissolved in c . 1 ml of C 6D6 .
An integration standard (2 .0 pl toluene) was added
and the spectrum recorded . Upon the addition of
gaseous H 2 S (5 .0 ml, 0 .18 mmol), a black solid
formed. A spectrum of this mixture revealed only the
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presence of tetramethylsilane, the toluene standard,
and dissolved H2 S .

Results and Discussion

Reaction of Aluminum Alkyls with Hydrogen Sulfide
The air-sensitive solids obtained from the reaction

of aluminum alkyls with H 2S were hydrolyzed in
concentrated sulfuric acid and the evolved hydro-
carbon gas analyzed . In all cases the amount of alkane
released was between 0 .2 and 0 .7 mol per mole of
aluminum, indicating incomplete conversion of the
trialkyl aluminum complex to aluminum sulfide (see
Table 1) . For the solid derived from A1Me 3i the A1 :C
ratio of 1 :0.66, determined by elemental analysis,
agreed with the amount of methane observed by
hydrolysis.

TABLE 1 . Alkyl group content of metal sulfide productsa

-78 °C 1
AlEt 3 + H2S - - (EtAlS)„ + 2EtH

n

aAll values, unless noted, were determined by gas chromatog-
raphy of the hydrolysis products .

	

bResults from two
separate preparations .

	

'Duplicate determination from one
preparation .

	

dGa-CH 3 bond not hydrolyzed . Value deter-
mined by 111 NMR of the hydrolysis product in 33% DCIL
eRef. 8 .

	

(None observed .

Previous reports have demonstrated [12, 13) that
when AlEt3 reacted with a deficiency of H 2S a
species with the stoichiometry C 2H5A1S was pro-
duced .

/ •
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El(A\S/ I'N'N/

(1)

The species formulated as (EtAlS)„ dissolved in
pyridine, forming an adduct which was postulated to
have the structure of one of the two isomers below .
The gas phase reaction of A1Me 3 with H 2 S reportedly
produced a mixture of 90% A1 2S 3 and 10% (MeAlS)„
at 50 °C [6) .
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We believe that the powders produced in our
reactions are mixtures of A1 2 S 3 and (RA1S),,, based
on the residual alkyl group content and the follow-
ing supporting results . The powders are partially
soluble in pyridine . The product from AI(i-Bu) 3 had
the lowest solubility in pyridine, consistent with
the observation that it retained the least amount of
unreacted alkyl group . Proton NMR spectra of the
soluble components displayed two sets of resonances
assignable to two different alkyl aluminum species .
The ratios of the upfield to downfield peak heights
were 23 :1 for R = Me, 1 .6 :1 for R = Et, and 0 .9 :1
for R = i-Bu . The 'H NMR spectrum of the pyridine
adduct of (EtAlS)„ was reported to contain two
resonances separated by 49 Hz [121 (no chemical
shifts were given) . The two species we observed have
peak separations (S CH3 - S CH2) of 48 Hz (S 1 .26,
0.46) and 47 Hz (5 1 .50, 0 .72), when converted to a
60 MHz resonance frequency . To determine whether
one of these species was the same as the one previ-
ously reported, we repeated the literature synthesis
and found that the pyridine adduct of (EtA1S)„ has
resonances at 1 .26 and 0 .46 ppm . The identity of the
second pyridine adduct observed from our synthesis
remains unknown . Presumably, the different reaction
temperature and/or stoichiometry account for the
formation of the second adduct .

Reaction of GaMe3 with Hydrogen Sulfide
GaMe 3 forms a complex with the empirical

formula CH 3GaS. Unlike the case for the aluminum
alkyls, the product obtained by treating GaMe 3 with
H2S at room temperature in toluene contained no
binary metal sulfide . In fact, the remaining gallium-
carbon bond is extremely inert, resisting hydrolysis
with hydrochloric or concentrated sulfuric acid* .
Hydrolysis of (McGaS)„ with concentrated sulfuric
acid released only 4 .3 X 10-3 mol CH4 per mole of
Ga . Upon treatment with a 33% DCl solution, (Me-
GaS)„ released D 2S and formed a soluble species
that displayed a singlet in the 1H NMR at 0 .23 ppm .
The integrated intensity of this peak corresponded
to 0 .85 methyl groups per formula weight of MeGaS .

(McGaS)„ was insoluble in a number of solvents
including toluene, tetrahydrofuran, methylene
chloride and acetonitrile . However, it dissolved com-
pletely in pyridine forming a pyridine adduct . This is
analogous to the formation of adducts by the addi-
tion of pyridine to the species (RA1S)„ (vide supra) .
However, 1H NMR of the gallium analog revealed
only one species in d 5 -pyridine with a singlet at 0 .27
ppm .

(McGaS)„ could be partially sublimed at 390 °C
and 2 X 10-4 torr . Continued heating to 450 °C

*The etherate of GaEt3 also displayed incomplete
hydrolysis in concentrated HC1 [14] .

Precursor Alkyl group/Metal atom

A1Me3 b 0.66
0.61

A1Et3 b 0.34
0.23

Al(i-Bu)3 c 0.17
0.14

GaMe 3 0 .85d
MgEt2 2 .4 X 10-5
ZnEt2 1 .0 x 10-5 e

Cd(CH 2 SiMe 3) 2 1 .0 x 10-s
Hg(CH2SiMe3)2 <1 .0 X 10-6 f
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Fig . 1 . Diffuse reflectance infrared spectra of : (MeGaS)n (lower trace) and product derived from (MeGaS) n by heating to 450 °C
in vacuo .overnight (upper trace) .

caused the material to change color from white to
yellow. The infrared spectrum of the X-ray amor-
phous yellow solid displayed very weak C-H
stretching bands at 2982, 2918, 2883 and 2775
cm-1 similar in shape to those of (MeGaS) n as well as
new peaks at 695(s), 687(s) and 580(sh) cm -1
(Fig . 1) . After heating to 640 °C in vacuo, X-ray
diffraction lines corresponding to GaS (not Ga 2 S 3)
were observed . Due to the insolubility of (MeGaS),
the value of n could not be ascertained . Given its
sublimability, it is unlikely that (MeGaS)n is
polymeric .

Reaction of Cd(CH2 SiMe3 )2 with Hydrogen Sulfide
The orange solid produced by H2 S treatment of

Cd(CH2SiMe 3)2 consisted of Cd and S in a 1 .0 :1 .0
molar ratio . X-ray powder diffraction confirmed
that the product was indeed the hexagonal (low
temperature) form of cadmium sulfide . Gas
chromatography of the hydrolysis product detected
only 12 ppm of tetramethylsilane derived from the
alkyl remaining in the solid .

A scanning electron micrograph (Fig . 2) of the
US powder exhibits approximately spherical par-
ticles c. 0 .1 Mm in diameter. This powder has nearly
identical particle size and residual alkyl group content
as the ZnS produced from Et 2 Zn and H2 S by the
same method [8] .

Reaction of Hg(CH2S,Me 3 )2 with Hydrogen Sulfide
In contrast to the alkyl complexes of zinc and

cadmium, bis(trimethylsilylmethyl)mercury did not
react with H2 S at room temperature in toluene .

Fig. 2 . Scanning electron micrograph of cadmium sulfide
powder from the reaction of Cd(CH 2SiMe 3)2 and H2S .

However, when neat liquid Hg(CH2 SiMe3) 2 was
heated to 150 °C under a stream of H 2 S, a fine black
powder was formed . Sharp lines in the X-ray diffrac-
tion pattern indicated a highly crystalline substance
consisting of mostly (>75%) metacinnabar (cubic
HgS) with the remainder being the hexagonal form
of mercuric sulfide (cinnabar) .

Scanning electron micrographs of the powder
reveal sharply faceted particles that are 0 .1 to 1 Mm
in diameter (Fig . 3) . When hydrolyzed by concen-
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Fig . 3 . Scanning electron micrograph of mercuric sulfide
powder from the reaction of Hg(CH 2SiMe3 ) 2 and H2S .

trated sulfuric acid, no tetramethylsilane could be
detected by gas chromatography down to the detec-
tion limit of c . 1 ppm . Although this result could be
due to incomplete hydrolysis, the high crystallinity
and the elemental analysis results argue in favor of
complete conversion to mercury(II) sulfide .

Reaction of MgEt 2 with Hydrogen Sulfide
An ether solution of diethylmagnesium produced

a white powder upon treatment with H 2 S . An X-ray
diffraction pattern of the powder displayed broad
lines for MgS as well as other weak unassigned lines
that are possibly derived from reactions with atmo-
spheric oxygen and water . Hydrolysis of the solid
liberated 24 ppm ethane . However, NMR examina-
tion of a hydrolysis indicates that the solid retained
at least 2 mol% of ether even after drying at 73 °C
for 4 h at 10-3 tort .

Reaction of Ti(CH2 SiMe3)4 with Hydrogen Sulfide
Addition of Ti(CH2 SiMe 3 )4 to an H 2 S-saturated

solution initially led to a color change from yellow
to brown followed rapidly by the precipitation of
an X-ray amorphous black solid . Hydrolysis of the
solid produced only 18 ppm of tetramethylsilane.
The extent of reaction of the titanium alkyl and
H2 S was determined in a 1H NMR experiment by
measuring the tetramethylsilane liberated . In this
case 84% of the original trimethylsilylmethyl groups
were observed as tetramethylsilane . These results
indicate that the reaction of Ti(CH 2 SiMe3)4 and H2 S
proceeds nearly to completion, with less than one
alkyl group remaining per titanium .

Conclusions

The conversion of metal alkyls to sulfides by
hydrogen sulfide treatment was essentially complete
for the divalent metals Zn, Cd, Hg and Mg . While Zn,
Cd and Mg alkyls reacted rapidly at ambient tempera-
ture, mercuric sulfide was formed only at elevated
temperatures . Due to the inertness of the third alkyl-
gallium and alkyl-aluminum bonds, pure binary
sulfides could not be produced under conditions
comparable to those employed for the divalent
metals . Instead, alkyl metal sulfide oligomers were
formed . For aluminum, the product was a mixture of
A12 S3 and (RAlS), while trimethylgallium was con-
verted exclusively to the (MeGaS) 1z oligomer.
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