Acta Cryst. (1995). C51, 1595-1602

Une Serie de *N*-(2,3-Dihydroxybenzilidene)amines: Manifestation d'Equilibres Tautomères

Frédérica Mansilla-Koblavi, Jules Abodou Tenon, Siaka Toure et N'Dédé Ebby

Département de Physique, Université Nationale de Côte d'Ivoire, 22 BP 582, Abidjan 22, Côte d'Ivoire

JACQUES LAPASSET

Laboratoire de Minéralogie-Crystallographie, URA CNRS 233, Université Montpellier II - Sciences et Techniques du Languedoc, Case 026, 34060 Montpellier CEDEX, France

MICHELINE CARLES

Laboratoire de Physique des Interactions Ioniques et Moléculaires, UR CNRS 773, Université de Provence, Centre de Saint-Jérôme, Case 542, 13397 Marseille CEDEX 20, France

(Reçu le 15 avril 1994, accepté le 16 mars 1995)

Abstract

The crystal structures of five N-(2,3-dihydroxybenzylidene)amine derivatives, $C_7H_6NO_2 - R$ [R = phenyl(1), p-methylphenyl (2), o-chlorophenyl (3), isopropyl (4) and cyclopropyl (5)] are presented and discussed. [IUPAC names: 3-(phenyliminomethyl)- (1), 3-(4-tolyliminomethyl)- (2), 3-(2-chlorophenyliminomethyl)- (3) and 3-(cyclopropyliminomethyl)-1,2-benzenediol (5), and 2-hydroxy-5-(isopropylaminomethylene)-2,4-cyclohexadien-1-one (4).] All the molecules are characterized by the presence of a strong intramolecular hydrogen bond, O-H...N, which determines the formation of a six-membered pseudocycle in the same plane as the phenolic moiety. When R is an aromatic ring, the molecules are either planar or make a dihedral angle which does not exceed 10° . Except for (2), all the molecules are associated as dimers with two intermolecular O-H···O hydrogen bonds involved in a tenmembered pseudocycle. In compound (5), an intermolecular hydrogen bond with a third molecule is also observed. In (2), the cohesion of the crystal is mainly secured by the intermolecular hydrogen bond between the hydroxyl group and the aromatic *p*-methylphenyl ring. Unlike the N-(2-hydroxybenzylidene)amines for which the phenolic tautomer largely prevails, in the present compounds the quinonic form is present in significant amounts and is even dominant for compound (4). Hence the presence of a second vicinal hydroxyl

group determines an important shift in the tautomeric equilibrium.

Comment

Les salicylidène amines sont des composés cristallisés servant de modèles pour l'étude du thermochromisme et du photochromisme (Cohen, Schmidt & Flavian, 1964; Cohen, Hirshberg & Schmidt, 1964; Hadjoudis, Vittorakis & Moustakali-Mavridis, 1987; Hadjoudis & Moustakali-Mavridis, 1990) en liaison avec les équilibres tautomères impliquant les formes phénoliques P, C₆H₄(OH-2)-CH = N - R. et quinoniques *Q*, $C_6H_4(0-2) =$ cristallographiques CH-NH-R. Les données (Bregman, Leiserowitz & Schmidt, 1964; Bregman, Leiserowitz & Osaki, 1964; Destro, Gavezotti & Simonetta, 1978; Moustakali-Mavridis, Hadjoudis & Mavridis, 1978, 1980; Lindeman, Shklover, Struchkov, Kravcheny & Potapov, 1982a,b; Moustakali-Mavridis, Terzis & Hadjoudis, 1987; Hoshino, Inabe, Mitani & Maruvama, 1988; Mansilla-Koblavi, Toure, Lapasset, Carles & Bodot, 1989; Inabe, Hoshino, Mitani & Maruyama, 1989; Inabe, Gautier-Luneau, Hoshino, Okaniwa, Okamoto, Mitani, Nagashima & Maruyama, 1991; Inabe, 1991) et spectrométriques (Ledbetter, 1977; Carles, Eloy, Pujol & Bodot, 1987; Hoshino et al., 1988; Inabe et al., 1989; Turbeville & Dutta, 1990) montrent que les tautomères phénoliques sont largement prédominants dans les cristaux. La présence d'un second groupement hydroxyle en ortho du premier est susceptible de modifier l'équilibre tautomère; nous avons donc étudié une série de N-(2,3-dihydroxybenzilidène)amines.

Les composés sont synthétisés par chauffage au reflux pendant quelques minutes, dans une solution alcoolique (CH₃OH ou C₂H₅OH), d'un mélange équimolaire de 2,3dihydroxybenzaldéhyde et de l'amine appropriée [aniline pour (1), *para*-toluidine pour (2), 2-chloroaniline pour (3), isopropylamine pour (4), cyclopropylamine pour (5)]. Des cristaux convenables pour une étude par diffraction des rayons X sont obtenus à partir de solutions dans des mélanges d'hexane et de dichlorométhane; les points de fusion observés (non corrigés) sont (1) 402–403, (2) 414–415, (3) 397–398, (4) 393– 394, (5) 341 K.

Parallèlement aux études cristallographiques faisant l'objet de présent article nous avons montré par spectroscopie infrarouge et UV visible (Koblavi, 1993; Carles, Koblavi, Tenon, N'Guessan & Bodot, 1992) que toutes les N-(2,3-dihydroxybenzilidène)amines citées [(1) à (5)] comportent, quel que soit l'état physique étudié (solution diluée apolaire ou état cristallisé), un équilibre tautomère entre les formes P et Q. Dans tous les cas, la forme Q est nettement augmentée lorsqu'on passe de la solution au cristal et ces résultats indiquent que le transfert de l'hydrogène H(2) lié à l'oxygène O(2) vers l'azote est favorisé par l'interaction intermoléculaire.

Nous discutons tout d'abord de la localisation de l'hydrogène H(2) dans les differentes molécules et des données structurales confirmant la présence des formes P et/ou Q. Ensuite l'analyse des données concernant l'empilement moléculaire nous permettra d'expliquer l'importance des liaisons hydrogènes impliquant H(3) pour l'observation de la tautomérie dans cette série de molécules.

La position de H(2) a été obtenue dans tous les composés (Fig. 1) par Fourier différence. Les résultats montrent que les composés (2), (3) et (5A) ont des distances O(2)—H(2) compatibles avec une localisation préférentielle de H(2) sur O(2), forme P [O(2)—H(2) = 0,923 (2), 0,911 (4) et 1,014 (3) Å]. Le composé (4) avec une distance N—H de 0,958 (2) Å

correspond sans ambiguité à la forme Q. Les composés (1), (5B), (5C) avec des distances respectives de O(2)—H(2) égales à 1,248 (3), 1,112 (3) et 1,297 (3) Å indiquent plutôt un mélange de P et Q avec P majoritaire.

Les atomes liés [O(2)-C(2)-C(1)-C(7)-N] peuvent être considérés coplanaires puisque les angles dièdres [N-C(7)-C(1)-C(2), C(7)-C(1)-C(2)-O(2) et $C(1) - C(2) - O(2) \cdot \cdot \cdot N$ sont proches de 0° (valeur maximale $4,4^{\circ}$). (Tableau 4). H(2) et H(N) appartiennent à ce plan puisque les angles dièdres [C(1)-C(2)-O(2)-H(2)]ou C(1) - C(7) - N -H(N)] sont également faibles (valeur maximale 3°). Quel que soit le composé, H(2) ou H(N) fait partie intégrante d'un cycle plan à six chaînons facilitant son déplacement entre O(2) et N. La distance entre ces deux atomes non liés varie peu [2,528(5) < d < 2,621(5)Å], elle est inférieure aux rayons de van der Waals et résulte de la liaison hydrogène intramoléculaire forte $H(2) \cdots N$ ou $H(N) \cdot \cdot \cdot O(2).$

En ce qui concerne la nature de R, il y a lieu de distinguer trois cas. Lorsque R est un noyau aromatique substitué ou non, les molécules (1), (2), (3), peuvent être considérées comme planes. La déviation maximale de -10° déterminée pour la molécule (3) est la plus importante et est imposée par la taile de l'atome de chlore situé à proximité de H(2). Lorsque R est isopropyl, composé (4), le problème de la planéité ne se pose pas. Lorsque R est le cyclopropyl, composé (5), le plan C(7)—N—C(8) est à peu près bissecteur du groupement cyclopropyl (Tableau 4). Cette conformation est stabilisée par la conjugaison entre la double liaison C—N et le

Fig. 1. Représentation des molécules avec la numérotation.

groupement cyclopropyl. Dans tous les cas, la géométrie observée correspond toujours à une délocalisation maximale du système π sur l'ensemble des atomes de carbone et d'azote de la molécule assurant ainsi une

groupement cyclopropyl. Dans tous les cas, la géométrie disponibilité maximale du doublet libre de l'azote observée correspond toujours à une délocalisation concerné par l'interaction avec H(2).

Les formes P et Q doivent pouvoir être distinguées par la distance C(2)—O(2) qui met en cause l'oxygène

Fig. 2. Vues perpectives des molécules dans leur maille.

hybridé sp^3 ou sp^2 . Nous disposons pour P d'une valeur de référence (d = 1,369 Å) obtenue lors de la résolution de la structure du composé monohydroxylé P C₆H₄-(OH-2)—CH=N—R (R = 2,4,6-triméthylphényl) (Mansilla-Koblavi *et al.*, 1989). La distance C=O pour ce type particulier de carbonyl caractérisant la forme Q peut être raisonnablement postulée voisine de 1,24 Å. La comparaison entre nos valeurs expérimentales et les deux distances de référence nous permettent d'affirmer que les formes P et Q sont présentes dans le cristal pour tous les composés dans des proportions variables, avec pour (4) une prédominance du tautomère Q [C(2)—O(2) = 1,294 (2) Å].

Bien que le composé (4), soit majoritairement présent sous forme Q, aucune distance C—C ne permet de différéncier de cycle quinonique d'un cycle aromatique. Les valeurs trouvées s'écartent peu de la valeur 1,39 Å des dérivés benzéniques. Les faibles variations des liaisons C(7)—N ($\pm 0,015$ Å) ne peuvent constituer une 'sonde tautomérique'. Il en est de même des angles de valence voisins de 120°. Les distances C(3)—O(3) et O(3)—H(3) sont caractéristiques d'un groupement hydroxylique phénolique pour tous les composés (Tableau 2).

Les différents composés se distinguent par la position de l'hydrogène H(3). Il est situé hors du cycle salicylique et la déviation atteint une valeur élevée pour le composé (3) [angle dièdre C(2)—C(3)—O(3)—H(3) = 27 (1)°. Ainsi, à l'interaction intramoléculaire $O(2) \cdots H(3)$ s'ajoute une interaction intermoléculaire assurée par H(3) et qui donne lieu à trois types d'empilement moléculaire (Fig. 2).

Les composés (1), (3) et (4) sont associés en dimers par un centre de symétrie (Tableau 5) avec des distances courtes $O(2)^{I} \cdots O(2)^{II}$. Le compromis entre liaisons hydrogène intramoléculaire et liaison hydrogène intermoléculaire varie selon la nature de R et impose une distance variable entre les plans parallèles concernés I et II.

Pour le composé (2), l'oxygène O(3) $(-x, -\frac{1}{2} + y, \frac{1}{2} - z)$ est situé quasiment sur l'axe C_6 du noyau *p*-méthylphényl de la molécule (x, y, z) à une distance d = 3,11(1) Å. L'hydrogène H(3) lié à O(3) est à une distance faible de ce plan [2,43(1) Å]; ce qui implique une interaction de cet hydrogène avec le système π du noyau aromatique concerné.

Le composé (5), avec trois molécules indépendantes A, B, C dans l'unité asymétrique présente un autre mode d'association. Les molécules B et C associées en dimers sont en très forte interaction comme dans le premier cas: $O(2B)\cdots O(3C) = 2,759$ (7), $O(3B)\cdots O(2C) =$ 2,707 (8) Å. Les deux interactions sont comparables, mais les molécules ne sont plus situées dans des plans parallèles (Fig. 2). Cette organisation permet à une troisième molécule A' (1 - x, 1 - y, 1 - z) générée à partir de A, de se lier à la molécule B par l'intermédiaire de H(3); $O(2A')\cdots O(3B) = 3,141$ (6), $H(3A')\cdots O(3B) =$ 1,839 (7) Å. En conclusion, les données cristallographiques de ces cinq composés indiquent une similitude de structure pour le motif commun à toutes les molécules. Seuls les empilements moléculaires sont différents. L'atome H(3) assure toujours l'interaction intermoléculaire stabilisante par liaison hydrogène et facilite le déplacement de H(2) entre O(2) et N. La position en 3 du groupement hydroxylique permet de distinguer cette série de salicylidèneamines des homologues monohydroxylés en position 2 pour lesquelles aucune forme prédominante Qn'ait jamais été observée dans le cristal.

Partie expérimentale Composé (1)

Données cristallines

C₁₃H₁₁NO₂ $M_r = 213,3$ Monoclinique $P2_1/c$ a = 10,021 (3) Å b = 5,991 (2) Å c = 18,094 (6) Å $\beta = 101,10 (3)^\circ$ $V = 1066 (1) Å^3$ Z = 4 $D_x = 1,33 \text{ Mg m}^{-3}$

Collection des données Diffractomètre CAD-4 Balayage $\theta/2\theta$ Pas de correction d'absorption 1053 réflexions mesurées 834 réflexions indépendantes 613 réflexions observées $[I > 1,5\sigma(I)]$ $R_{int} = 0,028$ $\theta_{max} = 16^{\circ}$

Affinement

Affinement à partir des F R = 0.037 wR = 0.037 S = 0.83613 réflexions 146 paramètres Les paramètres des atomes d'hydrogène en position théorique

Composé (2)

Données cristallines $C_{14}H_{13}NO_2$ $M_r = 227.3$ Mo $K\alpha$ radiation $\lambda = 0,71069$ Å Paramètres de la maille à l'aide de 25 réflexions $\theta = 8,2-15,2^{\circ}$ $\mu = 0,084$ mm⁻¹ T = 298 K Prisme $0,4 \times 0,3 \times 0,2$ mm Rouge

 $h = 0 \rightarrow 9$ $k = 0 \rightarrow 5$ $l = -14 \rightarrow 14$ $3 (\overline{610}, 404, 0\overline{37}) \text{ réflexions}$ de référence mesurées toutes les 200 réflexions variation d'intensité: aucune

 $w = 1/[\sigma^2(F) + 0.0027F^2]$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 0.131 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.165 \text{ e } \text{Å}^{-3}$ Correction d'extinction: non appliquée Facteurs de diffusion de *SHELXS*86 (Sheldrick, 1985)

Mo $K\alpha$ radiation $\lambda = 0,71069$ Å

Monoclinique $P2_1/c$ a = 11,28 (5) Å b = 7,92 (3) Å c = 13,45 (5) Å $\beta = 105,16$ (8)° V = 1158 (2) Å³ Z = 4 $D_x = 1,30$ Mg m⁻³

Collection des données Diffractomètre CAD-3 Balayage $\theta/2\theta$ Pas de correction d'absorption 2663 réflexions mesurées 2227 réflexions indépendantes 1570 réflexions observées $[I > 2,5\sigma(I)]$ $R_{int} = 0,031$

Affinement

Affinement à partir des F R = 0,072 wR = 0,072 S = 0,981570 réflexions 154 paramètres Les paramètres des atomes d'hydrogène en position théorique

Composé (3)

Données cristallines $C_{13}H_{10}CINO_2$ $M_r = 247,5$ Monoclinique $P2_1/c$ a = 7,236 (7) Å b = 7,714 (3) Å c = 21,663 (7) Å $\beta = 112,34$ (6)° V = 1118 (1) Å³ Z = 4 $D_x = 1,47$ Mg m⁻³

Collection des données

Diffractomètre CAD-4 Balayage $\theta/2\theta$ Pas de correction d'absorption 2625 réflexions mesurées 2434 réflexions indépendantes 809 réflexions observées $[I > 2,5\sigma(I)]$ $R_{int} = 0,026$

Affinement

Affinement à partir des FR = 0.046

```
Paramètres de la maille à
l'aide de 20 réflexions
\theta = 7,2-14,3^{\circ}
\mu = 0,082 \text{ mm}^{-1}
T = 298 \text{ K}
Prisme
0,5 \times 0,3 \times 0,3 \text{ mm}
Orange-rouge
```

 $\theta_{max} = 21^{\circ}$ $h = 0 \rightarrow 15$ $k = 0 \rightarrow 17$ $l = -18 \rightarrow 18$ 1 (10,2,7) réflexions de référence mesurées toutes les 60 réflexions variation d'intensité: aucune

Poids unitaire $(\Delta/\sigma)_{max} = 0.025$ $\Delta\rho_{max} = 0.265$ e Å⁻³ $\Delta\rho_{min} = -0.259$ e Å⁻³ Correction d'extinction: non appliquée Facteurs de diffusion de *SHELX*76 (Sheldrick, 1976)

Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Paramètres de la maille à l'aide de 25 réflexions $\theta = 6.64-16.87^{\circ}$ $\mu = 0.325$ mm⁻¹ T = 298 K Prisme $0.5 \times 0.4 \times 0.2$ mm Rouge

 $\theta_{max} = 17^{\circ}$ $h = 0 \rightarrow 9$ $k = 0 \rightarrow 9$ $l = -27 \rightarrow 25$ $3 (1\overline{3}5, 12\overline{4}, 01\overline{6})$ réflexions de référence mesurées toutes les 200 réflexions variation d'intensité: aucune

Poids unitaire $(\Delta/\sigma)_{max} = 0.043$ wR = 0,046
S = 1,34
809 réflexions
154 paramètres
Les paramètres des atomes d'hydrogène en position théorique

Composé (4)

Données cristallines $C_{10}H_{13}NO_2$ $M_r = 179,3$ Monoclinique $P2_1/c$ a = 10,749 (9) Å b = 9,509 (3) Å c = 17,977 (5) Å $\beta = 146,08 (7)^\circ$ $V = 1025 (1) Å^3$ Z = 4 $D_x = 1,16 \text{ Mg m}^{-3}$

Collection des données

Diffractomètre CAD-4 Balayage $\theta/2\theta$ Pas de correction d'absorption 1884 réflexions mesurées 1804 réflexions indépendantes 1067 réflexions observées $[I > 2,5\sigma(I)]$ $R_{int} = 0,035$

Affinement

Affinement à partir des F R = 0,034 wR = 0,034 S = 0,0461067 réflexions 118 paramètres Les paramètres des atomes d'hydrogène en position théorique

Composé (5)

Données cristallines $C_{10}H_{11}NO_2$ $M_r = 177,3$ Triclinique $P\overline{1}$ a = 9,80 (2) Å b = 15,88 (5) Å c = 9,38 (2) Å $\alpha = 96,08 (8)^{\circ}$ $\beta = 105,80 (8)^{\circ}$ $\gamma = 77,30 (10)^{\circ}$ $V = 1368 (2) Å^3$ Z = 6 $D_x = 1,29 Mg m^{-3}$ $\begin{array}{l} \Delta\rho_{max}=0.207 \ \text{e} \ \text{\AA}^{-3} \\ \Delta\rho_{min}=-0.269 \ \text{e} \ \text{\AA}^{-3} \\ \text{Correction d'extinction:} \\ \text{non appliquée} \\ \text{Facteurs de diffusion de} \\ SHELX76 \ (\text{Sheldrick}, \\ 1976) \end{array}$

Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Paramètres de la maille à l'aide de 25 réflexions $\theta = 8.56-16.35^{\circ}$ $\mu = 0.076$ mm⁻¹ T = 298 K Prisme $0.4 \times 0.2 \times 0.2$ mm Jaune

 $\theta_{max} = 16^{\circ}$ $h = 0 \rightarrow 12$ $k = 0 \rightarrow 11$ $l = -18 \rightarrow 20$ $3 (16\overline{1}, 21\overline{4}, 501) \text{ réflexions}$ de référence mesurées toutes les 300 réflexions variation d'intensité: aucune

Poids unitaire $(\Delta/\sigma)_{max} = 0,005$ $\Delta\rho_{max} = 0,104 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0,158 \text{ e } \text{Å}^{-3}$ Correction d'extinction: non appliquée Facteurs de diffusion de *SHELX*76 (Sheldrick, 1976)

Cu K α radiation $\lambda = 1,5418$ Å Paramètres de la maille à l'aide de 20 réflexions $\theta = 23,2-50,35^{\circ}$ $\mu = 0,234$ mm⁻¹ T = 100 K Prisme $0,4 \times 0,2 \times 0,2$ mm Jaune

Collectio	n des donnée	es			Compos	sé (3)					
Diffractomètre CAD-3 $h = -10 \rightarrow 16$				C(1)	0,7793 (10)	0,0995 (7)	0,5956 (3)	2,2 (6)			
Balayage $\frac{A}{2A}$ $k = -17 \rightarrow 16$			C(2)	0,7147 (10)	0,2703 (8)	0,5727 (3)	2,5 (6)				
Datayage $0/20$ $k = -11 \rightarrow 10$ (C(3)	0,7228 (10)	0,3977 (8)	0,0213 (3)	2,8(0)				
Pas de co	Shection		$l = 0 \rightarrow 10$ 1 $(\overline{2} \overline{11} \overline{7}) \rightarrow 10$	·	C(4)	0,7890(10) 0.8481(10)	0,3323(9) 0.1845(8)	0,0877 (3)	3,0 (0)		
d absorption 1 (5,11,7) tellexions de				C(6)	0.8434 (10)	0.0592 (9)	0.6647 (3)	3.1 (7)			
3565 réfl	exions mesu	irées	référence		C(7)	0,7834 (11)	-0,0323(8)	0,5500 (3)	2,7 (7)		
3565 réfl	exions		mesurées tout	es les 60	C(8)	0,7410 (10)	-0,1265 (9)	0,4394 (3)	2,5 (6)		
indépe	ndantes		réflexions		C(9)	0,6992 (11)	-0,0741 (8)	0,3727 (3)	3,1 (7)		
2932 réfl	exions obser	rvées	variation d'in	tensité:	C(10)	0,6861 (11)	-0,1907 (10)	0,3239 (4)	3,8 (8)		
[l > 2]	$.5\sigma(D)$		aucune		C(11)	0,7370 (12)	-0,3618 (11)	0,3412 (4)	4,4 (8)		
A. = 56	5°				C(12)	0,7928 (12)	-0,4166 (9)	0,4066 (4)	4,3 (9)		
$v_{\rm max} = 50$	5				U(13)	0,7922(11) 0.7365(0)	-0,3000 (9)	0,4347(4) 0,4866(3)	26 (5)		
A 66					\int_{Ω}	0,7303(9) 0,6480(7)	-0,0017(7) 0.3141(5)	0,4800 (3)	34(4)		
Ajjinemei	ru				0(3)	0.6696 (8)	0.5664 (6)	0.6018 (2)	3.8 (5)		
Affineme	ent à partir d	es F	Poids unitaire		CI	0,6297 (4)	0,1419 (2)	0,3513 (1)	1,9 (2)		
R = 0.06	6		$(\Delta/\sigma)_{\rm max} = 0.39$	98							
wR = 0.0	-		$\Delta q_{max} = 0.579$	$Å^{-3}$							
S = 1.22	.00		$\Delta \rho = -0.166$	Δ^{-3}	Compos	sé (4)					
2022	aviana		$\Delta p_{min} = 0,100$	vinction:	C(1)	0,2423 (4)	0,3208 (2)	0,0278 (2)	4,0 (5)		
2932 ren	exions		Correction d exi	incuon:	C(2)	0,1071 (4)	0,2029 (2)	-0,0185 (2)	3,7 (4)		
352 para	metres		non appriquee	;	C(3)	-0,0140 (4)	0,1351 (2)	-0,1369 (2)	3,9 (5)		
Les para	mètres des a	tomes	Facteurs de diff	usion de	C(4)	-0,0063 (4)	0,1839 (3)	-0,2048 (2)	4,7 (5)		
d'hydr	ogène en po	sition	SHELX76 (Sł	eldrick,	C(5)	0,1254 (5)	0,3013 (3)	-0,1584 (3)	5,2 (6)		
théoric	que		1976)		C(6)	0,2483 (4)	0,3670 (3)	-0,0446 (3)	5,1(6)		
	•				C(7)	0,3743(4) 0,5150(4)	0,3870(2) 0.4184(3)	0,1479(3) 0.3453(3)	4,5 (5)		
					C(0)	0,5150(4)	0,4184(3) 0,3061(4)	0,3455(3) 0.4468(3)	73(6)		
					C(10)	0.3707 (5)	0.5122 (3)	0.3218 (3)	7,5 (8)		
					N	0,3775 (3)	0,3516 (2)	0,2193 (2)	4,4 (4)		
					O(2)	0,0938 (3)	0,1570 (2)	0,0425 (2)	4,5 (3)		
Tableau	1. Coordon	nées atom	iques et facteur.	s d'agitation	O(3)	-0,1386 (3)	0,0185 (2)	-0,1818 (2)	4,8 (3)		
	thermia	ie isotrone	équivalents (Å	²)							
	mermiqu	ie iseli ope	equivalente (11	/	Compos	sé (5)					
					C(1A)	0.6180 (4)	0.1992 (3)	0.9042 (4)	2.5 (4)		
	Béo =	$= (8\pi^2/3) \sum_i \sum_i \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{$	$\Sigma_i U_{ii} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_i$.		C(2A)	0,6404 (4)	0,1920 (3)	0,7610 (4)	1,9 (3)		
	~			_	C(3A)	0,7774 (4)	0,1557 (3)	0,7393 (4)	2,0 (3)		
~ .	x	У	Z	B _{éq}	C(4A)	0,8890 (4)	0,1248 (3)	0,8585 (5)	3,0 (4)		
Compose	(1)	0.0400.00	0.4001.(2)	2.2 (2)	C(5A)	0,8681 (5)	0,1321 (4)	1,0012 (5)	4,6 (5)		
C(1)	0,6006 (3)	-0,0402 (6	0,4091(2)	3,2(3)	C(6A)	0,7344 (5)	0,1696 (4)	1,0238 (5)	3,9 (6)		
C(2)	0,3992(3) 0,7044(4)	0,1342 (0	0,4510(2)	3,2(2) 37(4)	C(7A)	0,4700(4)	0,2392(3) 0.3014(3)	0,9293 (4)	2,0 (4)		
C(4)	0.8112(3)	0.0405 (7	(1) 0.5320(2) 0.5320(2)	4.1 (4)	C(0A)	0,2313(4) 0,1194(5)	0,3014(3)	0,3387(5) 0,7481(5)	34(4)		
C(5)	0.8132 (4)	-0,1523 (7	(2) 0,4879 (2)	4,5 (4)	C(10A)	0.0979(4)	0.2697(3)	0.7634 (5)	3.1 (4)		
C(6)	0,7094 (4)	-0,1945 (6	0,4276 (2)	3,9 (3)	N(A)	0,3661 (3)	0,2639 (2)	0,8222 (4)	2,7 (3)		
C(7)	0,4922 (4)	-0,0887 (6	0,3469 (2)	3,4 (2)	O(2A)	0,5314 (3)	0,2189 (2)	0,6395 (3)	2,8 (3)		
C(8)	0,2799 (3)	0,0179 (6	b) 0,2667 (2)	3,2 (3)	O(3A)	0,8017 (3)	0,1485 (2)	0,6008 (3)	2,3 (3)		
C(9)	0,2636 (3)	-0,1663 (6	0,2189(2)	4,0 (4)	6 P	0.1510.15	0.5014 (2)	0 ((07 (5)			
C(10)	0,1482 (4)	-0,1845 (0	0,1022(2)	4,3 (4)	C(1B)	0,4548 (5)	0,5014 (3)	0,6697 (5)	2,7(4)		
C(12)	0.0644(3)	0.1641 (7	(2) = 0.2019(2)	4.5 (4)	C(2B)	0,4010(3) 0,3497(4)	0,5900 (3)	0,0897 (4)	2,3(4) 21(3)		
C(13)	0.1799 (4)	0,1825 (6	b) 0,2580 (2)	3,8 (3)	C(4B)	0.2372(5)	0.6203 (3)	0.4952 (4)	2.5 (4)		
N	0,3937 (3)	0,0533 (5	i) 0,3261 (2)	3,5 (3)	C(5B)	0,2309 (5)	0,5324 (3)	0,4758 (5)	2,9 (4)		
O(2)	0,5004 (2)	0,3081 (4) 0,4350(1)	4,2 (2)	C(6B)	0,3402 (5)	0,4734 (3)	0,5623 (5)	2,9 (4)		
O(3)	0,7015 (2)	0,3733 (4	k) 0,5590 (1)	4,9 (3)	C(7B)	0,5666 (6)	0,4394 (3)	0,7626 (5)	3,4 (4)		
					C(8B)	0,7756 (7)	0,4016 (4)	0,9580 (6)	5,2 (5)		
C ommon ((\mathbf{a})				C(9B)	0,9061 (9)	0,4204 (5)	1,0289 (8)	7,9 (8)		
Compose	$\binom{2}{0}$	0 2577 (5	0 3460 (3)	2 2 (2)	N(B)	0,8114 (7)	0,4208(3)	0.8668 (4)	37(A)		
C(1)	0,2122(3) 0 1989(3)	0,2577 (5	0,3400(3)	29(2)	O(2R)	0,0093 (3)	0,4044(3) 0,6202(2)	0,3003(4) 0,7901(3)	29(2)		
C(3)	0.2948 (4)	0,3724 (5	0,2010(3)	3.3 (3)	O(3B)	0.3524 (3)	0.7360 (2)	0.6179 (3)	2.3 (2)		
C(4)	0,3981 (4)	0,2734 (6	b) 0,2438 (3)	3,8 (3)	- (/						
C(5)	0,4110 (4)	0,1657 (6	i) 0,3279 (3)	4,0 (3)	C(1C)	0,7039 (4)	0,9038 (3)	0,6739 (4)	2,4 (4)		
C(6)	0,3193 (4)	0,1572 (4	a) 0,3790 (3)	3,8 (3)	C(2C)	0,6934 (4)	0,8212 (3)	0,7080 (4)	2,6 (4)		
C(7)	0,1168 (4)	0,2497 (5	b) 0,4001 (3)	3,2 (3)	C(3C)	0,8026 (5)	0,7496 (3)	0,6889 (4)	2,9 (4)		
C(8)	-0,0/45(3)	0,3323 (5	0, 0, 4281(3)	2,9 (2)	C(4C)	0,9191 (5)	0,7011(3)	0,0418 (5)	3,0 (4)		
C(9) C(10)	-0.0399(4) -0.1571(4)	0,2513 (6	0, 0, 5221(3)	3,0(3) 3,5(2)	C(SC)	0,9311 (3)	0,8433 (3)	0,0111 (3)	5,1 (4) 2 8 (A)		
C(11)	-0.1571(4) -0.2679(4)	0,2302 (0	(0, 3073, (3)) (1) $(0, 5250, (3))$	3,3(3)	C(7C)	0.5896 (4)	0.9774(3)	0.6861(4)	2,5 (3)		
C(12)	-0,2816 (4)	0,4122 (6	0.4314(3)	3,7 (3)	C(8C)	0,3657 (4)	1,0410 (3)	0,7449 (5)	2,6 (3)		
C(13)	-0,1862 (4)	0,4142 (6	6) 0,3831 (3)	3,7 (3)	C(9C)	0,2183 (4)	1,0185 (3)	0,7273 (5)	3,1 (4)		
C(14)	-0,3715 (4)	0,3267 (6	i) 0,5789 (3)	4,2 (3)	C(10C)	0,3037 (5)	1,0460 (3)	0,8791 (5)	3,3 (4)		
N	0,0181 (3)	0,3399 (4	(2) 0,3732 (2)	2,9 (2)	N(C)	0,4813 (3)	0,9687 (2)	0,7342 (4)	2,4 (3)		
O(2)	0,1027 (2)	0,4701 (4) 0,2261 (2)	3,7 (2)	O(2C)	0,5828 (3)	0,8084 (2)	0,7561 (3)	1.8 (2)		
O(3)	0,2830 (3)	0,4792 (4	e) 0,1274 (2)	4,8 (3)	U(3C)	0,7936 (3)	0,6684 (2)	0,7180 (3)	3,5 (3)		

Tableau 2. Distances interatomiques (Å) dans les motifs communs aux différentes molécules

	(1)	(2)	(3)	(4)	(5A)	(5B)	(5C)
C(1) = C(2)	1 397 (4)	1.412(5)	1.423 (8)	1,433 (3)	1,408 (5)	1,411 (6)	1,414 (6)
C(1) = C(2)	1,407 (5)	1,421(5)	1.425 (8)	1,430(3)	1,400 (5)	1,419(6)	1,413 (6)
C(2) = C(3)	1 379 (5)	1,378(6)	1.376 (9)	1.370(3)	1,379(6)	1,380(6)	1,384 (6)
C(3) = C(4)	1,075(5)	1 393 (6)	1.391 (9)	1,409 (3)	1,398(6)	1,401 (6)	1,405(7)
C(4) = C(5)	1,405 (5)	1,385(5)	1.363 (9)	1.355 (3)	1,378(6)	1,388(6)	1,383 (6)
C(5) = C(0)	1,379(5)	1,505(6)	1.423 (9)	1.425(3)	1,400(6)	1,406(7)	1,423 (6)
C(0) = C(1)	1,436(5)	1,450(5)	1.426 (9)	1.412(3)	1.470(6)	1,454(6)	1,449 (6)
C(1) = C(7)	1,450(5)	1,450(5)	1.303 (8)	1.301 (3)	1,279 (5)	1,297 (7)	1,299 (5)
N = C(8)	1,302(4) 1 474(4)	1,232 (3)	1,415(7)	1.470(3)	1,440(5)	1,432(6)	1,441 (5)
$\Gamma(\mathbf{R}) = \Gamma(\mathbf{R})$	1 302 (4)	1 388 (5)	1.418 (9)	1,500(4)	1,500(6)	1,353 (10)	1,525 (6)
C(8) = C(10)	1,572 (4)			1.515(4)	1,523 (6)	1,481 (8)	1,528(6)
C(8) - C(10)	1 394 (5)	1.403(5)	1.364(11)	_	1,503 (7)	1,425 (9)	1,516(6)
C(10) = C(11)	1,397 (5)	1,390(5)	1.384(10)	_		_	_
C(10) = C(11)	1,392 (3)	1 388 (6)	1.385(11)	_		_	
C(11) = C(12)	1,300(5)	1 394 (5)	1.375(12)	_	_	—	_
C(12) = C(13)	1,390 (3)	1,406 (5)	1 399 (9)		_		
C(13) - C(0)	1,395 (4)	1,400(5)		_		—	_
C(11) = C(14)		1,527 (5)	1.751(6)		_		
C(9) = C(1)	1 344 (4)	1 338 (4)	1,323(7)	1,294(2)	1,365(4)	1,342 (5)	1,343 (5)
C(2) = O(2)	1, 374(4)	1,378 (5)	1.378(7)	1.372(2)	1,372(2)	1,379 (5)	1,371 (6)
C(3) = U(3)	1, 374(4) 1 248(3)	0.973(2)	0.911 (4)		1.014(3)	1,112(3)	1,035 (4)
O(2) = H(2)	1,248(3)	1,046(3)	1.025(4)	0.843(2)	0.967 (3)	1,023 (3)	1,014(3)
O(3) - H(3)	2 274 (2)	2 252 (3)	2 398 (4)	2,313 (3)	2,403 (5)	2.289(6)	2,363 (6)
$O(2) \cdots \Pi(3)$	2,274(3)	2,232(3) 2,671(5)	2,550(1)	2,596(3)	2.611 (5)	2,556(7)	2,528(5)
$\mathbf{N} = \mathbf{U}(\mathbf{N})$	2,338(4)	2,021(3)	2,0.0(0)	0.958(2)		_	_
$N \rightarrow H(N)$ N····H(2)	1,326(3)	1,859 (5)	1,810(6)		1,717 (6)	1,555 (7)	1,590(6)

Tableau 3. Angles de valence (°) dans les différentes molécules

	(1)	(2)	(3)	(4)	(5A)	(5B)	(5C)
C(6) = C(1) = C(2)	120.1(3)	120.3(3)	120,1 (6)	120,2(2)	119,0(4)	120,1 (4)	120,4 (4)
C(7) - C(1) - C(2)	120.9 (3)	119.8 (4)	120,6(6)	119,2(2)	120,9(4)	119,5 (5)	119,5(4)
C(7) - C(1) - C(6)	119.0(4)	120,1 (4)	119,3 (6)	120,5(2)	120,1 (4)	120,4 (4)	120,1 (4)
C(3) - C(2) - C(1)	118.7 (3)	118.2 (4)	117.7 (6)	116,6(2)	120,2(3)	118,2(4)	118,6 (4)
O(2) - C(2) - C(1)	122.2(3)	124.2 (3)	122.8 (6)	123,0(2)	122,1 (3)	122,7 (4)	122,3(4)
O(2) - C(2) - C(3)	119.0(3)	117,6(4)	119,5 (6)	120,4(2)	117,7(3)	119,0(4)	119,1 (4)
C(4) - C(3) - C(2)	121.3(4)	120.8 (4)	119,8(6)	121,4(2)	119,4(3)	120,5 (4)	120,2(5)
O(3) - C(3) - C(2)	119.7 (3)	118,7(4)	119,7 (6)	118,6(2)	121,1 (3)	119,1 (4)	119.9 (4)
O(3) - C(3) - C(4)	119.0(3)	120.5 (3)	120,4(6)	120,1(2)	119,4 (3)	120,4 (4)	119,9(4)
C(5) - C(4) - C(3)	119.5(4)	120.8 (4)	122,2 (6)	121,0(2)	120,7 (4)	121,2(4)	121,1(4)
C(6) - C(5) - C(4)	120.6 (3)	120.0(4)	119,7 (6)	120,0(2)	120,0(4)	118,9(4)	120,0(4)
C(5) - C(6) - C(1)	119.7 (4)	120.2 (4)	120,4 (6)	120,7(2)	120,5 (4)	120,9(4)	119,5(4)
N = C(7) = C(1)	120.7 (3)	122.2 (4)	122,3 (6)	124,1(2)	121,6(4)	121,2(5)	120,5(4)
C(8) = N = C(7)	124,9 (3)	121.6(4)	124,8 (5)	125,2(2)	117,1(4)	119,5 (5)	121,2(4)
C(9) - C(8) - N	124.6(3)	124.2 (3)	119.2 (5)	109,0(2)	117,2(4)	119,4 (6)	115,6(4)
C(9) = C(8) = C(13)	119.7 (3)	119.0(3)	116,7 (5)				_
C(9) - C(8) - C(10)		_	_	112,5(2)	59,6(3)	60,2(5)	59,6(3)
C(10) - C(8) - N	_	_	_	109,7(2)	116,3(4)	117,5(4)	116,5(4)
C(13) - C(8) - N	115.7 (3)	116,8(3)	124,0(6)	_			_
C(8) - C(9) - C(10)	120.0(3)	119,6(4)	121,8(6)		60,9(3)	64,4 (6)	60,3(3)
C(8) - C(9) - C[_	_	118,0(2)	_			_
C(10) - C(9) - Cl			119,6(2)	_			—
C(8) - C(10) - C(9)	_	_	_		59,5 (3)	55,5(4)	60,1 (3)
C(9) - C(10) - C(11)	119,9(4)	121,6(4)	119,2(7)	—	_	—	—
C(10) - C(11) - C(12)	120,2(3)	118,4 (3)	120,8(7)	_		_	—
C(10) - C(11) - C(14)		120,1 (4)	_	—	—	_	—
C(12) - C(11) - C(14)	_	121,5 (4)				_	
C(11) - C(12) - C(13)	120,8(4)	119,6(7)	119,8(3)		—		—

Tableau 4. Angles dièdres (°) dans les motifs susceptibles de rotation interne

	(1)	(2)	(3)	(4)	(5A)	(5B)	(5C)
C(1) - C(2) - O(2) - H(2)	2(1)	-3(1)	1(1)	—	-1,6(7)	-2,7(7)	-1(1)
C(2) - C(3) - O(3) - H(3)	-6(1)	25(1)	27(1)	-9(1)			
C(1) - C(7) - N - C(8)	-178(1)	-179(1)	179(1)	180(1)	179(1)	179(1)	-179(1)
C(1) - C(7) - N - H(N)		—		-1(1)	—	_	
C(7) - N - C(8) - C(9)	-5(1)	11(1)	-176(1)	-132(1)	158(1)	157(1)	151(1)
C(7) - N - C(8) - C(10)		-	_	105(1)	-134(1)	-132(1)	-142(1)
C(7) - N - C(8) - C(13)	176(1)	-170(1)	2(1)	—			_
N-C(7)-C(1)-C(2)	4(1)	0(1)	3(1)	-2(1)	4,4 (8)	2,3 (8)	3(1)
C(7) - C(1) - C(2) - O(2)	-3(1)	1(1)	3(1)	2,5(6)	-2,2(7)	1(1)	-2(1)
C(1) - C(2) - O(2) - N	0(1)	-1(1)	-4(1)	-1,4(3)	0,2(5)	-2(1)	0,6(3)

Tableau 5. Données géométriques (Å) des interactions intermoléculaires (molecules I et II associées autour d'un centre de symétrie)

	(1)	(3)	(4)
$O(2)^{I} \cdots O(2)^{II}$	3,291 (5)	3,513 (7)	3,194 (3)
$O(3)^{I} \cdots O(3)^{II}$	4,456 (5)	4,276(7)	4,406 (3)
$O(2)^{I} \cdots O(3)^{II}$	2,799 (5)	2,773 (7)	2,699 (3)
$O(2)^{I} \cdots H(3)^{II}$	1,867 (7)	1,845 (8)	1,939 (5)

Tableau 6. Données géométriques (Å) des interactionsintermoléculaires pour le composé (5)

$O(2A') \cdots O(3B)$ $O(3A') \cdots O(3B)$ $H(3A') \cdots O(3B)$	3,141 (6) 2,786 (6) 1,839 (7)	$\begin{array}{l} O(2A') \cdots O(2C) \\ H(3B) \cdots O(2C) \\ H(3C) \cdots O(2B) \end{array}$	3,580 (6) 1,748 (7) 1,774 (7)
	$O(2B) \cdots O(O(2B) \cdots O(O(3B) \cdots O(D(3B)))$	(2C) 3,079 (7 (2C) 2,759 (7 (2C) 2,707 (8))

Tous les atomes d'hydrogène du composé (1) sauf H(2), H(3), H(7) et H(11), atomes H(4) et H(5) du (2) et les hydrogènes cyclopropyls du (5B) ont étés introduits en positions idéalisées.

Programmes utilisés: MULTAN80 (Main et al., 1980), OR-TEPII (Johnson, 1976), SHELXS86 (Sheldrick, 1985) [composé (1)] et SHELX76 (Sheldrick, 1976) [composés (2)–(5)].

Ce travail a été aidé financièrement par un contrat du Ministère de la Coopération Français en soutien de la Convention Interuniversitaire entre les Universités d'Abidjan et d'Aix-Marseille I. Nous remercions Monsieur Marcel Pierrot pour l'aide appréciable apportée lors de la collecte des mesures sur le diffractomètre CAD-4. Tous les calculs ont été effectués sur les ordinateurs IBM 4341 de l'Office Central de Mécanographie d'Abidjan que nous remercions.

Les listes des facteurs de structure, des facteurs d'agitation thermique anisotrope, des coordonnées des atomes d'hydrogène, des distances et angles des atomes d'hydrogène, des plans moyens et des distances intermoléculaires ont été déposées au dépôt d'archives de l'UICr (Référence: PA1059). On peut en obtenir des copies en s'adressant à: The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Références

- Bregman, J., Leiserowitz, L. & Osaki, K. (1964). J. Chem. Soc. pp. 2086–2100.
- Bregman, J., Leiserowitz, L. & Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2068–2085.
- Carles, M., Eloy, D., Pujol, L. & Bodot, H. (1987). J. Mol. Struct. 156, 43-58.
- Carles, M., Koblavi, M. F., Tenon, J. A., N'Guessan, T. Y. & Bodot, H. (1992). J. Phys. Chem. 97, 3716–3721.
- Cohen, M. D., Hirshberg, Y. & Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2060–2067.
- Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2051.
- Destro, R., Gavezotti, A. & Simonetta, M. (1978). Acta Cryst. B34, 2867-2869.
- Hadjoudis, E. & Moustakali-Mavridis, I. (1990). Mol. Cryst. Liq. Cryst. 186, 31-36.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved

- Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.
- Hoshino, N., Inabe, T., Mitani, T. & Maruyama, Y. (1988). Bull. Chem. Soc. Jpn, 61, 4207–4214.
- Inabe, T. (1991). New J. Chem. 15, 129-136.
- Inabe, T., Gautier-Luneau, I., Hoshino, N., Okaniwa, K., Okamoto, H., Mitani, T., Nagashima, U. & Maruyama, Y. (1991). Bull. Chem. Soc. Jpn, 64, 801-810.
- Inabe, T., Hoshino, N., Mitani, T. & Maruyama, Y. (1989). Bull. Chem. Soc. Jpn, 62, 2245-2251.
- Johnson, C. K. (1976). ORTEPII. Rapport ORNL-5138. Oak Ridge National Laboratory, Tennessee, EU.
- Koblavi, M. F. (1993). Thèse No. 187/93 Univ. Nationale de Côte d'Ivoire.
- Ledbetter, J. W. Jr (1977). J. Phys. Chem. 81, 54-59.
- Lindeman, S. V., Shklover, V. E., Struchkov, Yu. T., Kravcheny, S. G. & Potapov, V. M. (1982a). Cryst. Struct. Commun. 11, 43–47.
- Lindeman, S. V., Shklover, V. E., Struchkov, Yu. T., Kravcheny, S. G. & Potapov, V. M. (1982b). Cryst. Struct. Commun. 11, 49-52.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from Xray Diffraction Data. Univ. de York, Angleterre, et de Louvain, Belgique.
- Mansilla-Koblavi, F., Toure, S., Lapasset, J., Carles, M. & Bodot, H. (1989). Acta Cryst. C45, 451-453.
- Moustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709-3715.
- Moustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1980). Acta Cryst. B36, 1126-1130.
- Moustakali-Mavridis, I., Terzis, A. & Hadjoudis, E. (1987). Acta Cryst. C43, 1389–1400.
- Scanlan, M. J. & Hillier, I. H. (1984). Chem. Phys. Lett. 107, 330-332.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. de Cambridge, Angleterre.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structure. Univ. de Göttingen, Allemagne.
- Turbeville, W. & Dutta, P. K. (1990). J. Phys. Chem. 94, 4060-4066.

Acta Cryst. (1995). C51, 1602-1604

4,5-Bis(2,4-dinitrophenylthio)-1,3dithiol-2-one Nitromethane Solvate (BNPT-DTO.CH₃NO₂)

Wen-Tao Yu, Fang Qi, Xu Dong and Min-Hua Jiang

Institute of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China

Lei Hong

Department of Electronic Engineering, Shandong University, Jinan 250100, People's Republic of China

(Received 24 May 1994; accepted 30 January 1995)

Abstract

The unit cell of the title crystal, $C_{15}H_6N_4O_9S_4.CH_3NO_2$, contains two BNPT-DTO molecules and two co-