speculate about the relative lack of significance for the partition factor, and the high dependence upon polar factors in our series.

Since our compounds have $\log P$ values higher than atropine by about 3.0 log units [>CHCH₂OH, log $P \cong$ -0.29; >C = C(C₆H₅)H, log $P \cong 2.7$; for atropine, experimental value of log $P = 1.8^8$ so $1.8 + (2.7 + 1.8)^8$ (0.29) = 4.8, the range in log P caused by substitutions ranging from OH to $\overline{\text{CF}}_3$ only alters the 4.3 value ± 1.2 log units, and all of these analogs therefore have $\log P$ values higher than atropine. The roughly equivalent antispasmodic activity for atropine and some of these compounds indicates that the partition factor plays only a small role in the antispasmodic activity of this series of compounds.

The significance of the electron density at the ortho position of this series (see formula, Table I, arrow) gives rise to several possibilities. First, models suggested the possibility of a slight spatial overlap between the π electron density at the ortho position and the carbonyl group π electrons. This could conceivably affect the rate of hydrolysis of these esters, and thus effect a stability change which might be important in the maintenance of a necessary drug concentration, or might be significant in some drug-receptor interaction involving the ester group. Second, the increased electron density at the ortho position of the α -phenyl ring may be involved in the actual binding at a receptor site (or enzyme surface) and may strengthen binding at a cationic (or partially electron deficient) site. Third, this effect may be reflected in an alteration of the rate of metabolic transformation in this series. The parabolic relationship

(8) Unpublished experimental value obtained by S. Anderson and C. Hansch.

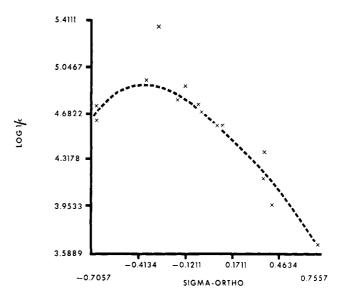


Figure 1.—Computer plot for eq 7, Table II.

found for σ (optimum value ≈ -0.346) is in line with the first and third of these possibilities, since kinetic processes are involved and easily lead to maximum effects. It is difficult to reconcile the second explanation with the parabolic relationship.

Metabolic studies would be of value to help determine the reason for this relationship between biological activity and physical-chemical properties.

Acknowledgment.—The authors gratefully acknowledge the help given to this project by Professor Corwin H. Hansch.

New s-Triazine Derivatives as Depressants for Reticuloendothelial Hyperfunction Induced by Bacterial Endotoxin

TSUTOMU IRIKURA, * YASUO ABE, KYUYA OKAMURA, KYOICHI HIGO, AKITOSHI MAEDA, FUMIHIKO MORINAGA, GOKI SHIRAI, AND SHINKICHI HATAE

Kyorin Chemical Laboratory, Division of Kyorin Pharmaceutical Company, Ltd., Tokyo, Japan

Received February 27, 1970

A series of 159 derivatives of s-triazine were synthesized and evaluated for their depressive effects on the reticuloendothelial hyperfunction induced by typhoid-paratyphoid vaccine. Among those, 20 derivatives were found to be as active as or superior to phenylbutazone. The most active depressants were 2-n-propyl-4,6dicyclohexylamino-s-triazine (9), 2-amino-4-cyclohexylamino-6-(3-pyridyl)-s-triazine (35), and 2-ethyl-4,6-dipiperidino-s-triazine (112). These showed potent depressive effects on the reticuloendothelial hyperfunction as active as cortisone. Structure-activity relationships are discussed.

In recent years, reports have been published on the relationships between the phagocytic activity of the reticuloendothelial system (RES) and tumors, inflammation,² or atherosclerosis.³ The phagocytosis of the RES is enhanced systemically by means of bacterial polysaccharides, cholesterol, or inactive polymer colloids. We found that some antiinflammatory drugs had an inhibitory effect on this hyperfunction of the RES. For the purpose of obtaining antiinflammatory or antiatherosclerotic drugs, many compounds were synthesized in our laboratory and screened with respect to the depressive effects on the hyperfunction of the Recently, some s-triazine derivatives have been found to have reliable effects.

Some pharmacological activities of s-triazines have

^{*} To whom correspondence should be addressed.

^{(1) &}quot;Reticuloendothelial Structure and Function," J. M. Heller, Ed., Ronald Press Co., 1960: K. Stern, p 233; B. N. Halpern, G. Biozzi, C. Stiffel, and D. Mouton, p 259.

⁽²⁾ M. Kozima, Nippon Ketsueki Gakkai Zasshi, 20, 75 (1957); K. Akazaki and M. Kozima, Saishin Igaku, 13, 986 (1958).

⁽³⁾ P. R. Patek, S. Bernick, and V. A. de Mignard, Advan. Exp. Med.

⁽⁴⁾ R. K. Fred and M. L. Shore, ibid., 1, 1 (1967); E. L. Dobson, L. S. Kelly, and C. R. Finney, ibid., 1, 63 (1967); S. Ota, Nippon Byori Gakkai Kaishi, 48, 799 (1959).

Table I
2-Cyclohexylamino- or Cyclohexylalkylamino-4,6-disubstituted-8-triazines

No.	71	\mathbf{R}_{t}	R#	Mp, °C	Recrystn solvent	Yield.	Method	Formula"	LD50 (po), g/kg	Carbon in blood ^b	Effic a cy ^c
1	0	CH_3	H—NH	190-192	$\mathbf{AeOE}t$	65	В	$C_{16}H_{27}N_5$	>4.0	214.0	+ $+$ $+$
2 3	0	$ ext{CH}_3 \ ext{C}_2 ext{H}_5$	$\mathrm{C_6H_5CH_2CH_2NH} \\ \mathrm{NH_2}$	120–121 149–151	EtOH MeCN	97 50	A D	$\begin{array}{c} C_{18}H_{25}N_5 \\ C_{11}H_{19}N_5 \end{array}$	d	$\frac{146.0}{104.8}$	+ ±
4	()	$\mathrm{C_2H_5}$	H—NH	179	${ m MeCN}$	88	В	$\mathrm{C}_{17}\mathrm{H}_{29}\mathrm{N}_{5}$	>4.0	168.8	++
5	0	C_2H_5	H NCH:	73-74	MeCN	63	A	$C_{18}H_{31}\mathbf{N}_5$	> 2.0	182.8	++
6	()	C_2H_5	$C_6H_5CH_2CH_2NH$	86-87	MeCN	79	A	$\mathrm{C}_{19}\mathrm{H}_{27}\mathrm{N}_{5}$		109.5	±
7	()	n - C_3H_7	i - C_3H_7NH	81-83	${ m MeCN}$	88	\mathbf{A}	$C_{15}H_{27}N_5$		166.2	++
8	0	n - C_3H_7	$(n\text{-}{ m C}_3{ m H}_7)_2{ m N}$	138-139	MeCN	72	A	$C_{18}H_{34}ClN_5^{\prime\prime}$		106.1	#
9	0	n-C ₃ H ₇	H NH	145-146	MeCN	68	В	$C_{18}H_{31}\mathbf{N}_5$	>4.0	300.0	+++
10	0	n - C_3H_7	H NCH	173-175	MeCN	43	A	$\mathrm{C}_{19}\mathrm{H}_{34}\mathrm{Cl}\mathbf{N}_{5}{}^{e}$		168.9	++
11	0	n - C_3H_7	$\mathrm{C_6H_5CH_2CH_2NH}$	71-73	MeCN	87	A	$C_{20}H_{35}N_5$		116.2	andre a
12	0	<i>i</i> -C₃H ₇	NH_2	129-130	${ m MeCN}$	44	Ð	$C_{12}H_{21}N_5$	4.56	241.7	+++
13	0	<i>i</i> -C₃H ₇	$(n\text{-}\mathrm{C}_3\mathrm{H}_7)_2\mathrm{N}$	147-149	MeCN	32	A	$\mathrm{C}_{18}\mathrm{H}_{34}\mathrm{ClN}_{5^{P}}$		158.9	++
14	()	i-C ₃ H ₇	H)—NH	149-150	MeCN	87	В	$C_{18}H_{31}\mathbf{N}_5$		159.0	++
15	0	$n\text{-}\mathrm{C}_4\mathrm{H}_9$	NH	96-98	${ m MeCN}$	52	D	$C_{13}H_{23}N_5$	>4.0	234.0	+++
16	0	$n\text{-}\mathrm{C}_4\mathrm{H}_3$	H NH	136-137	n -C ₆ Π_{14}	67	В	$C_{19}H_{33}N_5$	>2.0	152.3	++
17	0	$n\text{-}\mathrm{C}_4\mathrm{H}_9$	$C_6H_5CH_2CH_2NH$	187-189	MeCN	69	A	$\mathrm{C}_{21}\mathrm{H}_{31}\mathrm{N}_5$		112.7	<u>+</u>
18	0	n-C ₆ H ₁₃	i-C ₃ H ₇ NH	49-51	MeCN	41	A	$C_{18}H_{33}N_5$		135.1	+
19	0	n-C ₆ H ₁₃	n-C ₆ H ₁₃ NH	38-40	MeCN	89	A	$C_{21}H_{39}N_5$		82.4	±
20	ő	n-C ₆ H ₁₃	$(n-C_3H_7)_2N$	42-42.5	MeCN	82	Ā	$C_{21}H_{39}N_5$		114.9	+
21	0	n-C ₆ H ₁₃	H > NII	114-115	MeCN	86	В	$C_{21}H_{37}N_5$		146.7	+
22	0	n-C ₆ H ₁₃	С.Н-СН.СП ХН	59-60	MeCN	92	A	$C_{28}H_{85}N_5$		124.3	±
23	0	$\mathrm{C_6H_5CH_2}$	IIN—NII	158-160	ЕтОН-П2О	82	В	$C_{22}H_{31}N_5$		81.8	.ir
24	0	${ m C_6H_5(CH_2)_2}$	II NH	131133	MeCN	79	В	$C_{23}H_{33}N_5$		139.9	+
25	()	NH_2	CH ₃ NH	189-190	MeCN	93	A	$C_{10}H_{18}N_{6}$	>4.0	246.0	+++
26	Ö	NH ₂	C ₂ H ₅ NH	160-161	EtOH	51	A	$C_{16}H_{24}N_6O_4f$	>4.0	226.4	+++
27	ő	NH ₂	n-C ₃ H ₇ NH	169-170	MeCN	62	Ā	$C_{16}\Pi_{26}N_6O_4$	>4.0	174.0	++
28	0	NH ₂	n-C ₄ H ₉ NH	156-158	МеОН	49	A	$C_{17}H_{28}N_6O_4f$	>4.0	207.0	+++
29	0	NH_2	$(CH_3)_2N$	134-136	MeCN	74	A	$C_{11}H_{20}N_6$	4.56	189.0	++
30	Ö	NH_2	$(C_2H_5)_2N$	167-169	MeCN	86	A	$C_{17}H_{28}N_6O_4{}^f$	>4.0	204.0	+++
31	0	NH_2	$(n-C_3H_7)_2N$	130-132	MeCN	61	A	$C_{19}H_{32}N_6O_4f$	>4.0	137.0	+
32	0	NH_2	$(n - C_4 H_9)_2 N$	121-122	MeCN	62	A	C ₂₁ H ₃₆ N ₆ O ₄ /		91.0	
33	0	NH_2	(x C);	123-127	EtOH-H ₂ O	73	Α	$C_{14}H_{24}N_6$		130.2	+
34	0	NH_2	н	266-269	EtOH	78	A	$\mathrm{C}_{13}\mathrm{H}_{21}\mathrm{N}_7\mathrm{O}$		122.2	±
35	()	$\mathrm{NH_2}$		163-165	MeCN	33	D	$C_{14}H_{18}N_6$	>4.0	305.4	+++
36	0	NH_2	H)—NH	169-170	MeCN	32	В	$\mathrm{C}_{15}\mathrm{H}_{26}\mathrm{N}_{6}$	>4.0	239.9	+++
37	0	NH_2	H NH	186 dec	Me ₂ CO	49	В	$C_{19}H_{30}N_6O_4$		181.1	++
38	0	NH_2	H NCH;	168–169	AcOEt	49	A	$C_{20}H_{32}N_6O_4\ell$		191.2	++
39	0	NH_2	$C_6H_5CH_2NH$	207-208	МеОН	7 3	A	$C_{20}H_{26}N_6O_4{}^{\it f}$	>4 0	160/8	++

Table I (Continued)

No. 40	n 0	$\begin{array}{c} R_1 \\ NH_2 \end{array}$	$R_2 \\ C_6 H_5 (CH_2)_2 NH$	мр, °С 195–196	Recrystn solvent Me ₂ CO	Yield, % M 24	lethod A	Formula a $\mathrm{C}_{21}\mathrm{H}_{28}\mathrm{N}_6\mathrm{O}_4{}^f$	LD ₅₀ (po), g/kg	$ m ^{Carbon}$ $ m ^{blood^b}$ $ m 178.9$	Efficacy ^c
41	0	n-C ₆ H ₁₃ NH	H NH	92-94	EtOH-H ₂ O	95	В	${ m C}_{21}{ m H}_{38}{ m N}_6{}^{g}$		100.0	\pm
42	.0	H NH	H NH	229-230	EtOH	81	\mathbf{C}	$\mathrm{C}_{21}\mathrm{H}_{36}\mathrm{N}_{6}$		89.1	±
43	1	$\mathrm{C_2H_5}$	H CH ³ NH	107-108	МеОН	82	В	$C_{19}H_{33}N_5$		77.8	-
44	1	n-C ₃ H ₇	H CH NH	81-82	${ m MeCN}$	64	В	${\rm C}_{20}{\rm H}_{35}{ m N}_5$	>2.0	67.7	-
45	1	i - C_3H_7	H CH ₂ NH	74–7 6	${ m MeCN}$	38	В	$C_{20}H_{35}N_{5} \\$		132.1	+
46	1	n-C ₄ H ₉	H CH NH	101-103	${ m MeCN}$	53	В	$C_{21}H_{37}N_5$	>2.0	110.0	土
47	1	n -C ₄ H $_9$	H $(CH_g)_2NH$	79-80	${ m MeCN}$	97	A	${\rm C}_{22}{\rm H}_{39}{\rm N}_5$		96.9	±
48	1	n-C ₄ H ₉	II NCH.	67-69	MeCN	86	A	$C_{21}H_{37}N_5$		84.4	土
49	1	n-C ₄ H ₉		55-57	$\cdot h$	77	A	$C_{25}H_{45}N_{5} \\$		93.8	土
50	1	n -C $_6$ H $_{13}$	H CH2NH2	81-82	MeCN	47	A	${\rm C}_{23} H_{41} {\rm N}_5$		93.2	±
51	2	C_2H_5		145-146	${ m MeOH}$	74	В	${ m C_{21}H_{37}N_{5}}$	>4.0	108.2	±
52	2	n - $\mathrm{C}_3\mathrm{H}_7$	$H \longrightarrow (CH_2)_2NH$	92-93.5	MeCN	59	В	$C_{22}H_{39}N_{5}$	>4.0	79.5	_
53	2	i - $\mathrm{C}_3\mathrm{H}_7$	H $(CH_2)_2NH$	104~105	МеОН	54	В	$C_{22}H_{39}N_5$		90.4	\pm
54	2	n-C ₄ H ₉	H (CH ²) ² NH	78-79	${ m MeOH}$	62	В	${\rm C}_{23}{\rm H}_{41}{\rm N}_5$		111.0	±
55	2	$n ext{-}\mathrm{C}_6\mathrm{H}_{13}$	H (CH ₂) ₂ NH	73–74	MeCN	94	В	$C_{25}H_{45}N_5$		76.7	-
56	2	NH_2	$\left\langle H\right\rangle - \left\langle CH_{2}\right\rangle _{2}NH$	151-153	${ m EtOH-}H_2{ m O}$	65	В	$\mathrm{C}_{19}\mathrm{H}_{34}\mathrm{N}_{6}$		141.4	+

^a All compds were analyzed for C, H, N. ^b Remaining level of C in blood 5 min after injection of colloidal C, expressed as per cent ratio to the level in blood of the mouse treated with TAB vaccine alone. This value for normal mouse (before treatment with vaccine) was 910.6. Judged from the remaining level of C in blood; -: <80, ±: 80-125, +: 126-150, ++: 151-200, +++: >200. ^d Not done. ^e Hydrochloride. ^f Maleate. ^g N: calcd, 22.44; found, 21.80. ^h Purified by column chromatography (Al₂O₃).

been reported, e.g., CNS depressive,5 hypotensive,6 antiviral,7 antitumor,8 and nitrogen mustard-like,9 or diuretic 10 activities. It was reported that 2,4-diamino-4-β-hydroxyphenethylamino-s-triazine had an antiinflammatory activity as great as cortisone on the mustard-induced rat's paw edema, 11 but details were not divulged.

s-Triazine derivatives recorded in this paper are listed in Tables I-III. These derivatives and intermediates were prepared by the methods illustrated in Scheme I.

2-Alkyl or 2-aralkyl-4,6-dichloro-s-triazines (IIa) were synthesized by the reaction of 2,4,6-trichloro-striazine (I) with Grignard reagents according to Hirt, et al. 12 2-Amino-4,6-dichloro-s-triazines (IIb) were prepared by replacing the Cl of I with an amino group according to the method of Diels, et al. 13 In method A, 2,4,6-trisubstituted-s-triazines (IV) were synthesized by the two-step reaction of 2-substituted-4,6dichloro-s-triazines (IIa,IIb) with the corresponding amines via the intermediates III. In method B, compounds II were treated with twice the theoretical amount, or an equimolar amount, of amines in the presence of K₂CO₂ to give 2,4,6-trisubstituted-s-triazines (IV).

In method C, I was treated with a bimolar amount of the appropriate amine in the presence of Na₂CO₃ or NaHCO₃ to give 2-chloro-4,6-disubstituted-s-triazines (III) which were treated with another amine to obtain IV. In method D, 2-amino-4,6-disubstituted-s-triazines (VI) were easily prepared by the reaction of the corresponding biguanides (V) with the appropriate ester in MeOH. The oily trisubstituted-s-triazines were isolated as crystalline hydrochlorides or maleates.

Pharmacology.—The effects of s-triazine derivatives on the hyperfunction of the RES induced by typhoidparatyphoid vaccine (TAB vaccine) were tested with a simplified carbon clearance method. These results and the LD₅₀ values are also listed in Tables I-III.

In Table I, compounds which have one or more

⁽⁵⁾ Y. Takeo, S. Chiba, T. Mikoda, and T. Yui, Takeda Kenkyusho Nempo, 24, 42 (1965).

⁽⁶⁾ S. Chiba, Y. Takeo, T. Mikoda, and T. Yui, ibid., 24, 48 (1965).

⁽⁷⁾ T. Ueda, S. Toyoshima, M. Furukawa, and Y. Seto, Chemotherapy, 12, 148 (1964).

⁽⁸⁾ M. R. Lewis and M. L. Crossley, Arch. Biochem. Biophys., 26, 319

⁽⁹⁾ F. S. Philips and J. B. Thiersch, J. Pharmacol, Exp. Ther., 100, 398

⁽¹⁰⁾ W. B. McKeon, Jr., Arch. Int. Pharmacodyn., 151, 225 (1964).

⁽¹¹⁾ D. E. Heitmeier and A. P. Gray, J. Med. Chem., 7, 288 (1964).

⁽¹²⁾ R. Hirt, H. Nidecker, and R. Berchtold, Helv. Chim. Acta, 33, 1365 (1950)

Table II
2-Phenethylamino-4,6-disubstituted-s-triazines

No.	Rı	R?	Mp. °C	Recrystn solvent	Yield,	Method	Formula'	LD ₆₀ (po), g/kg	Carbon in blood ^b	Efficaey ^c
57	$ m CH^3$	NH_2	152-154	i-PrOH	60])	$\mathrm{C}_{12}\mathrm{H}_{15}\mathrm{N}_5{}^d$	€′	126.0	+
58	CH_3		135136	$(i ext{-Pr})_2\Theta$	86	A	$C_{16}H_{21}N_{5}$		135.8	+
59	$ m CH_3$	HZ	231-233	E(OH	74	A	$C_{16}H_{20}N_6O$		122.0	土
60	CH_3	$C_6H_5(CH_2)_2NH$	213-214	EtOH	75	В	$C_{20}H_{23}N_5$	>4.0	110.0	.4=
61	C_2H_5	NH_2	140.5 - 142	$i ext{-} ext{PrOH}$	55	D	$\mathrm{C}_{13}\mathrm{H}_{17}\mathrm{N}_{5}$		115.8	
62	$\mathrm{C_2H_5}$	$\mathrm{C_6H_5}(\mathrm{CH_2})_2\mathrm{NH}$	147-148	${ m MeCN}$	90	В	$\mathrm{C}_{21}\mathrm{H}_{25}\mathrm{N}_{5}$		118.2	Æ
63	n - C_3H_7	NH_2	89-91	${ m MeCN}$	61])	$C_{14}H_{19}N_5$		126.2	+
64	n - $\mathrm{C}_3\mathrm{H}_7$	$\mathrm{C_6H_5}(\mathrm{CH_2})_2\mathrm{NH}$	96-97	MeCN	82	В	$\mathrm{C}_{22}\mathrm{H}_{27}\mathrm{N}_{5}$		134.8	+
65	i - C_3H_7	NH_2	80-81	MeCN	43	D	$C_{14}H_{19}N_5$		135.0	-+-
66	i - C_3H_7	$\mathrm{C_6H_5}(\mathrm{CH_2})_2\mathrm{NH}$	9091	MeCN	69	В	$\mathrm{C}_{22}\mathrm{H}_{27}\mathrm{N}_5$	> 2.0	152.0	++
67	n-C ₄ H ₉	NH_2	93-95	<i>i</i> -PrOH	71	D	$C_{15}H_{21}N_5$	6.95	134.0	+
68	$n ext{-}\mathrm{C}_4\mathrm{H}_9$	$\mathrm{C_6H_5CH_2NH}$	100~102	EtOH	60	A	$\mathrm{C}_{22}\mathrm{H}_{27}\mathrm{N}_5$		92.1	土
69	n-C ₄ H ₉	$C_6H_5(CH_2)_2NH$	66-67	${ m MeCN}$	87	В	$\mathrm{C}_{23}\mathrm{H}_{29}\mathrm{N}_5$		129.9	+
70	$n ext{-}\mathrm{C}_6\mathrm{H}_{13}$	${ m C_6H_5(CH_2)_2NH}$	90~91	${ m MeCN}$	97	В	$\mathrm{C}_{25}\mathrm{H}_{33}\mathrm{N}_5$		127.0	+
71	$n ext{-}{ m C}_{11}{ m H}_{23}$	NH_2	75 - 75.5	EtOH	27])	$\mathrm{C}_{22}\mathrm{H}_{35}\mathrm{N}_5$		96.6	1.
72	$\mathrm{C_6H_5CH_2}$	$\mathrm{C_6H_5}(\mathrm{CH_2})_2\mathrm{NH}$	116117	EtOH	68	В	$\mathrm{C}_{22}\mathrm{H}_{31}\mathrm{N}_5{}^f$		76.8	
73	$C_6H_5CH==CH$	NH_2	170-172	EtOH	28	1)	$C_{19}H_{19}N_3$	>4.8	109.0	- Andrews
74	$\mathrm{C_6H_5CH_2CH_2}$	$\mathrm{C_6H_5}(\mathrm{CH_2})_2\mathrm{NH}$	105 - 105.5	${ m MeCN}$	95	В	$\mathrm{C}_{27}\mathrm{H}_{29}\mathrm{N}_5$		98.2	4:
75	NH_2	NH_2	171 - 173	i-PrOH	87	C	$\mathrm{C_{11}H_{14}N_6}$		128.0	+
76	NH_2	CH_3NH	166-167	${ m MeCN}$	48	A	$\mathrm{C}_{12}\mathrm{H}_{16}\mathrm{N}_{6}$		123.5	:±:
77	NH_2	C_2H_5NH	161 - 162.5	MeOH	7:3	Α	$C_{17}H_{22}N_6O_4{}^g$	> 7.55	219.5	+++
78	NH_2	n-C ₆ H ₁₃ NH	139 - 142	МеОН	65	A	$\mathrm{C}_{21}\mathrm{H}_{80}\mathrm{N}_{6}\mathrm{O}_{4}{}^{g}$	>4.0	182.3	++
79	NH_2	$(n\text{-}{ m C}_3{ m H}_7)_2{ m N}$	118-120	C_6H_6	77	A	$\mathrm{C_{21}H_{30}N_6O_4}^g$	>6.0	107.4	±
80	NH_2	$(n\text{-}{ m C}_4{ m H}_9)_2{ m N}$	128~129	MeCN	61	A	$\mathrm{C}_{23}\mathrm{H}_{34}\mathrm{N}_6\mathrm{O}_4{}^g$		110.3	±
81	NH_2		149150	MeCN	31	A	$C_{19}H_{24}N_6O_4^{\theta}$		142.4	+
82	NH_2	<u>`</u> ;	164-166	МеОН	48	A	$C_{20}H_{26}N_6O_4^{\mu}$		101.5	at:
83	NH_2	HX	240-241	DMF~H ₂ O	49	A	$C_{15}H_{10}N_7O$	>20.0	205.0	+++
84	NH_2	HN X	151-152 ^h	МеОН	50	A	$\mathrm{C}_{19}\mathrm{H}_{23}\mathrm{N}_{7}\mathrm{O}_{5}{}^{g_{\gamma}i}$	>4.0	182.4	++
85	NH_2		142-145	EtOH	21	D	$G_{16}H_{16}N_{6}$	>4.0	205,0	+++
86	$ m NH_2$	$C_6H_5CH_2NH$	110-112	i-PrOH	67	A	$C_{18}H_{20}N_{6}$		115.9	:±=
87	NH_2	$C_6H_5(CH_2)_2NH$	140-142	$i ext{-} ext{PrOH}$	70	В	$\mathrm{C}_{19}\mathrm{H}_{22}\mathrm{N}_{6}$	>20.0	154.0	++
88	$\mathrm{C}_6\mathrm{H}_5(\mathrm{CH}_2)_2\mathrm{NH}$	$C_6H_5(CH_2)_2NH$	140 - 141.5	MeOH	66	C	$\mathrm{C}_{27}\mathrm{H}_{30}\mathrm{N}_{6}$	>4.0	197.7	++

a.b.c See corresponding footnotes in Table 1. d C: calcd, 62.86; found 62.29. e See footnote d, Table I. f N: calcd, 17.10; found, 17.63. e Maleate. h Decomp. i C: calcd, 53.14; found, 52.59.

cyclohexylamino or cyclohexylalkylamino group as substituents are shown.

Among 2-alkyl-4-cyclohexylamino-6-substituted-striazines (1-22), 4,6-dicyclohexylamino derivatives (1, 4, 9, 14, 16, 21) were active. 2-n-Propyl-4,6-dicyclohexylamino-s-triazine (9) was the most active of this series. The activity was slightly lowered when R_2 was N-methylcyclohexylamino (5, 10). Potent activity was also observed when R_2 was amino and R_1 was i-Pr (12) or n-Bu (15). When R_2 was phenethylamino, the activity was reduced and also when R_2 was alkylamino or dialkylamino.

Among 2-amino-4-cyclohexylamino-6-substituted-striazines (25–40), potent activity was observed when R₂ was alkylamino (25–28). When R₂ was dialkylamino (29–32), the activity was reduced. Lengthening of the C chain of this alkylamino or dialkylamino group seems to result in reduced activity. When R₂ was an amino group such as cyclohexylamino (36), N-methylcyclohexylamino (38), benzylamino (39), and phenethylamino (40), some activity was observed. 2-Amino-4-cyclohexylamino-6-(3-pyridyl)-s-triazine (35), was the most active compound in this experiment.

In Table II, 2-phenethylamino-4,6-disubstituted-s-

triazines (57-88) are listed, except those having a cyclohexyl or cyclohexylalkylamino as the substituent (2, 6, 11, 17, 22, 40, 47, 51-56). When either of the substituents was an alkyl or aralkyl group (57-74), strong activity was not shown. Among 2-amino-4-phenethylamino-6-substituted-s-triazines (75-87), potent activity was observed when R_2 was ethylamino (77), nhexylamino (78), oxopiperazino (83), 3-pyridyl (85), or phenethylamino (87). 2,4,6-Tris(phenethylamino)-striazine (88) was also active.

In Table III, some other s-triazine derivatives are listed. Among the alkyl-s-triazines, compounds with an amino group at R2 and pyrrolidino at R3 were very active (94, 110). Increasing the size of the alkyl resulted in loss of activity (121, 126). Good activity was also observed when both R2 and R3 were piperidino and the alkyl group was Me, Et, or n-Pr (105, 112, 116). 2-Ethyl-4,6-dipiperidino-s-triazine (112) showed the most potent activity. Activity was observed when both R₂ and R₃ were N-methylevelohexylamino and the alkyl group was Me or Et (108, 114), but the activity was reduced when the number of C atoms of the alkyl group was increased to 3 (117, 120). When both the substituents were replaced with isopropylamino and the alkyl group was Et or n-Pr (111, 115), potent activity was observed, but replacing the alkyl group with nhexyl (125) resulted in loss of activity. Aryl- or aralkyl-s-triazines (128-138) did not show interesting activity, except for 134 and 135.

Among 2-amino-4,6-disubstituted-s-triazines (139-154), potent activity was observed when both R_2 and R₃ were pyrrolidino (147), 3-methylcyclohexylamino (152), or N-methylcyclohexylamino (153).

Cortisone and phenylbutazone showed high activity, as shown in Table III. 2-n-Propyl-4,6-dicyclohexyl-2-amino-4-cyclohexylamino-6-**(9**), amino-s-triazine (3-pyridyl)-s-triazine (35), and 2-ethyl-4,6-dipiperidinos-triazine (112) showed marked activity almost as high as cortisone. These compounds had low toxicity in spite of their effect on the hyperfunction of the RES. Antiinflammatory and antiatherosclerotic effects of these compounds will be reported in detail elsewhere.

Experimental Section¹⁴

Pharmacology.—Depressive activities of s-triazines, phenylbutazone, and cortisone on the induced hyperfunction of the RES were determined by the following procedure. Hyperfunction of the RES was induced by iv injection of 0.1 ml of typhoidparatyphoid vaccine (TAB vaccine) to each mouse 3 times every other day. Tested compounds were administered orally 4 times to the mice, 1 hr before every administration and 24 hr after the last administration of vaccine. Dosage level of one administration was 300 mg/kg of body weight, except cortisone (50 mg/kg). One hour after the last administration of the test compounds, colloidal C was injected iv. This colloidal C was previously prepared by diluting Pelikan drawing ink with fourfold 0.8% gelatin soln and kept at 37°. Five minutes after the injection, the remaining level of colloidal C in the blood was determined. A higher level of colloidal C in the blood means greater depression of the hyperfunction of the RES. The oral LD₅₀ values of s-triazines in mice were determined by the "up and down method" according to Brownlee, et al.15

Materials.—2,4,6-Trichloro-s-triazine (I) and most of the amines used in this work were obtained from commercial sources. Amines, not commercially available, were prepared as follows: cyclohexylmethylamine, β -cyclohexylethylamine, and N-n-butylcyclohexylmethylamine were prepared by LAH reduction of the corresponding amides in Et₂O. 3-Methylcyclohexylamine was obtained from 3-methylaniline by hydrogenation (PtO₂). The biguanides were prepared by the procedure of Shapiro, 2-Amino-4,6-dichloro-s-triazines (IIb) and 2-alkyl or 2-aralkyl-4,6-dichloro-s-triazines (IIa) were prepared as described before. 12,13 Preparations of 16, 60, 67, 81, 83, 93, 98, and 156 depicted below are typical of each group.

Method A. 2-Amino-4-phenethylamino-6-(3-oxopiperazin-1yl)-s-triazine (83).—To a suspension of 2-amino-4,6-dichloro-striazine (IIb, 8.2 g, 0.05 mole) in H₂O (100 ml) was added dropwise with stirring phenethylamine (6.1 g, 0.05 mole) below 5°. The mixture was slowly heated to 70° and a soln of Na₂CO₃ (10.6 g, 0.1 mole) in H_2O (20 ml) was added. The resultant mixture was refluxed for 2 hr. After cooling, the precipitate was collected by filtration and recrystd from DMF to give 2amino-4-phenethylamino-6-chloro-s-triazine (9.0 g, 72%) as

⁽¹⁴⁾ The melting points were obtained on a micro hot stage and are Nmr spectral data were obtained using a Japan Electron Optics Lab Model 4H-100 (Me4Si). All s-triazines were analyzed for C, H, Where analyses are indicated only by symbols of the elements (Tables I-III), analytical results obtained for those elements were within ±0.4% of the theoretical values.

⁽¹⁵⁾ K. A. Brownlee, J. L. Hodges, and M. Rosenblatt, J. Amer. Statist. Ass., 48, 262 (1953).

⁽¹⁶⁾ S. L. Shapiro, V. A. Parrino, and L. Freedman, J. Amer. Chem. Soc., 81, 2220 (1959); 81, 3728 (1959).

	Efficacy° ± –	+1	+ +	++++	<u>!</u>	+	+	+	4 4	#	+;		+	++	14	-4	+++++	+	+-	+++++
	Carbon in blood ^b 93.4 61.0	104.0	87.0 122.0	201.5	120.0	134.0	7.701	136.8	89.4 123.1	120.9	0.98	143.0	150.0	163.5	122.0	94.0	222.7	133.3	152.0	251.7
	LDsc (po) g/kg 7.65			0.63	3.14	>2.7						>3.0	0.85	1.4	1.0		>4.0			>3.0
	Formula ⁴ C ₇ H ₁₀ CIN ₅ O ₄ C ₁₁ H ₁₆ CIN ₅ O ₄	$\mathrm{C_{l2}H_{l8}CIN_{5}O_{2}}$	$\mathrm{C_9H_{16}CIN_5O_2}$ $\mathrm{C_11H_{44}CIN_7O_2}$	$\mathrm{C_8H_{13}N_5}$	$\mathrm{C}_9\mathrm{H}_{15}\mathrm{N}_5$	$\mathrm{C_8H_{12}N_6O}$	$C_{12}H_{23}N_{\delta}$	$\mathrm{C_{II}H_{21}N_{5}}$	$C_{12}H_{23}N_{5} \\ C_{16}H_{31}N_{5}$	$\mathrm{C_{t4}H_{26}N_{6}}$	$\mathrm{C_{12}H_{19}N_5O_4}$	$C_{12}H_{19}N_{5}O_{2}$	$C_{12}H_{19}N_5$	$\mathrm{C}_{14}\mathrm{H}_{23}\mathrm{N}_{\scriptscriptstyle \mathbb{S}}$	$\mathrm{C}_{12}\mathrm{H}_{19}\mathrm{N}_{6}\mathrm{O}_{2}$	$\mathrm{C}_{12}\mathrm{H}_{17}\mathrm{N}_7\mathrm{O}_2^i$	$C_{18}H_{31}N_5$	$C_1 M_{19} N_{5'}$	$\mathrm{C_9H_{15}N_5}$	$C_{II}H_{2I}N_5$
ä	Method C C	¥	0 0	D	2	Ą	В	6	B B	~ ;	æ	¥.	æ	В	æ	æ	13	8	2	<u>~</u>
	Yield, % 69 47	52	සි සි	47	96	95	£.	18	32	<u>16</u>	99	46	86 87	87	22	69	95	88	2 21	22
ED-8-TRIAZINES,	Recrystn solvent d EtOH	Еюн	$ m H_2O$ DMF	ЕЮН	МеОП	EtOH	AeOEt	i-PrOH	AcOEt AcOEt	PE^{λ}	$\Omega_2\Omega$	$ m PE^{\it h}$	PE	PE*	PE^h	НОЭ	EtOH-H2O	ЕЮН	i-PrOH	MeCN
2,4,6-Trisubstituted-s-triazines,	Mp, °C 300 180-182	140-141	217–218 320	195~196	193–195	320-3217	167-168	91-92	184–185 154–155	62-63	131-132	127-128	28-58	81-83	143-145	290-303	94.5-95.5	211-213	152-153	86-26
Тавье III: 2	R³ HOOCCH ₂ NH EtOOCCH ₂ NH		HO(CH) NH				O n-CJENH	~	i -C ₆ H ₉ NH n -C ₆ H ₁₃ NH	Z.	EtOOCO H, NH	Ž	(Z)	$\binom{z}{z}$	$\binom{\circ}{s}$	(Z)	H NCH,	C,H,CH,NH	Ž.	¿.C.H;NH
	R HOOCCH ₂ NH EtOOCCH ₂ NII	EtOOCCH ₂ NH	HO(CH ₂) ₃ NH	O	$ m NH_2$	$ m NH_2$	n -C $_4$ H $_9$ NH	n -C $_4$ H $_9$ NH	λ -C,H $_9$ NH n -C, $_6$ H $_{13}$ NH	$\mathrm{Et_2N}(\mathrm{CH_2})_3\mathrm{NH}$	E(OOCCH ₂ NII	EtOOCCH ₂ N.H		Ö	(°)	$\binom{\mathbb{Z}}{\mathbb{Z}}_{0}$	H NCH,	$C_6H_5CH_2NII$	NH_2	/-(-3H ₂ NH
	ž 55	Ū	ಶ ಶ	CH_3	CH3	CH_3	CH_3	CH_3	CH ₃ CH ₃	CH_3	CH_3	CH_3	CH_3	CH_3	CH3	СН,	CH ₃	CH_3	$\mathbf{C_2H_5}$	C_2H_5
	% 80 80 80	16	93 93	94	95	96	26	S.	96 00	101	701	103	104	105	901	201	<u> </u>	109	9 .	Ξ

+ + +	+1	++	+ + +	+ + +	#1	+ +	#	#	+1	#	#	# #	+	# 1	+	#	ı	ı	#	++	+ #	#	+1	+
259.8	111.0	164.2	202.2	223.9	90.4	189.0	113.6	97.0	115.0	9.701	123.2	107.7 95.7	126.0	111.0	108.0	92.9	71.7	78.6	102.0	155.4	139.3 108.9	118.8	110.7	134.0
1.3			>4.0	>4.0		2.6			1.2				>4.8	>4.0										>2.0
$\mathrm{C_{l_3}H_{25}N_5}$	$C_{19}H_{33}N_5$	$\mathrm{C}_{19}\mathrm{H}_{33}\mathrm{N}_{5}$	$\mathrm{C}_{12}\mathrm{H}_{23}\mathrm{N}_{\xi}$	$\mathrm{C_{l6}H_{27}N_{6}}$	$\mathrm{C}_{20}\mathrm{H}_{35}\mathrm{N}_{5}$	$\mathrm{C}_{11}\mathrm{H}_{17}\mathrm{N}_5$	$C_{16}H_{27}N_5$	$\mathrm{C}_{20}\mathrm{H}_{35}\mathrm{N}_{5}$	$\mathrm{C}_{11}\mathrm{H}_{19}\mathrm{N}_5$	$\mathrm{C}_{19}\mathrm{H}_{37}\mathrm{N}_{5}$	$\mathrm{C}_{21}\mathrm{H}_{37}\mathrm{N}_{5}$	$\begin{array}{l} \mathrm{C}_{21}\mathrm{H}_{25}\mathrm{N}_5 \\ \mathrm{C}_{15}\mathrm{H}_{29}\mathrm{N}_5 \end{array}$	$C_{18}H_{33}N_5$	$C_{19}H_{35}N_5$ $C_{14}H_{17}N_5^{k}$	$C_{14}H_{17}N_5$	$C_{12}H_{15}N_{5}$	$\mathrm{C}_{18}\mathrm{H}_{27}\mathrm{N}_{5}$	$C_{16}H_{19}N_{5}$	$\mathrm{C}_{15}\mathrm{H}_{17}\mathrm{N}_5\mathrm{O}$	$C_{13}H_{17}N_5$	${ m C_{19}H_{29}N_5} \ { m C_{23}H_{37}N_5}$	$\mathrm{C_{21}H_{29}N_5}$	$\mathrm{C_{25}H_{25}N_{5}}$	$\mathrm{C_7H_{12}N_6}$
В	В	В	В	В	В	D	В	В	Ŋ	В	В	ВВ	D	O O	D	В	В	D	G	В	ВВ	В	В	C
09	22	63	91	09	64	44	42	61	36	09	64	83 52	88	47 28	22	91	65	31	22	56	75 68	37	81	40
MeCN	MeCN	MeCN	${ m MeOH-H_2O}$	MeCN	EtOH-H2O	MeOH	MeCN	EtOH-H2O	Етон	AcOEt	MeCN	EtOH MeCN	EtOH	EtOH MeOH	Етон	AcOEt	$\rm EtOH-H_2O$	МеОН	МеОН	МеОН	MeCN MeCN	МеОН	MeCN	EtOH-H ₂ O
64-65	126-128	68-70	93-94	91–92	75-77	196~198	81-82	52-53.5	154-156	86-26	84-85	153-154 $68-69$	98.5-99.5	91-92 $154-156$	187-189	229 - 232I	107-108	179-181	220-222	200-201	113-114	85-86	121-122	297-301
Č į	HN HN		H NCH.	N. HN.	$\left\langle H \right\rangle$ —NCH ₃	$\binom{z}{z}$	(z)	$\left\langle H\right\rangle$ —NCH ₃	Z	n-C ₆ H ₁₃ NH	HN—NH	C ₆ H ₅ CH ₂ NH i-C ₃ H ₇ NH	Z) Č	Z	CH ₃ NH	n-C,H,NH	$\binom{z}{z}$	$\binom{z}{\circ}$	CH ₃ NH	$n ext{-}\mathrm{C}_4\mathrm{H}_9\mathrm{NH}$ $n ext{-}\mathrm{C}_6\mathrm{H}_1\mathrm{s}\mathrm{NH}$	(z)	C ₆ H ₅ CH ₂ NH	(^z)
Z	Ę (:	H. C	$\left\langle H \right\rangle$ NCH ₃	Y.C.H.J.H	$H \longrightarrow NCH_3$	${\rm NH_2}$	Ž	H \longrightarrow NCH_3	NH_2	$n ext{-}\mathrm{C}_6\mathrm{H}_{13}\mathrm{NH}$	CH ₃	$C_6H_5CII_2NH$ i - C_3H_7NH	NH_2	$ m NH_2$	NH_2	CH_3NH	n -C,H $_9$ NH	NH_2	$ m NH_2$	CH_3NII	$n ext{-}\mathrm{C}_4\mathrm{H}_9\mathrm{NH}$ $n ext{-}\mathrm{C}_6\mathrm{H}_4\mathrm{NH}$	Z	$C_6H_1CH_2NH$	NH_2
$\mathrm{C_2H_5}$	C_2H_s	C_sH_s	$n ext{-}\mathrm{C}_3\mathrm{H}_7$	n-C ₃ H ₇	n-C ₃ H ₇	i-C ₃ H ₇	$i\text{-}\mathrm{C}_3\mathrm{H}_7$	$i\text{-}\mathrm{C}_{3}\mathrm{H}_{7}$	$n ext{-}\mathrm{C}_4\mathrm{H}_{\mathfrak{g}}$	$n\text{-}\mathrm{C}_4\mathrm{H}_9$	$n ext{-C}_4 ext{H}_9$	$n\text{-}\mathrm{C}_4\mathrm{H}_9$ $n\text{-}\mathrm{C}_6\mathrm{H}_{13}$	$n ext{-}\mathrm{C}_{11}\mathrm{H}_{23}$	$n\text{-}\mathrm{C}_{\mathrm{II}}\mathrm{H}_{23} igg brace \mathrm{C}_{6}\mathrm{H}_{5}$	$C_bH_bCH_z$	$C_6H_5CH_2$	$C_6H_5CII_2$	C ₆ H ₅ CH==CH	C,H,CH=CH	$\mathbf{C_{e}H_{5}CH_{2}CH_{2}}$	$\mathrm{C}_{\mathfrak{e}\mathrm{H}_{\mathfrak{s}}(\mathrm{CH}_{2})_{\mathfrak{k}}}$ $\mathrm{C}_{\mathfrak{s}\mathrm{H}_{\mathfrak{s}}(\mathrm{CH}_{\mathfrak{s}})_{\mathfrak{k}}}$	$C_6H_5(CH_2)_2$	$\mathrm{C}_{6\mathrm{H}_{5}(\mathrm{CH}_2)_2}$	NH2
112	1113	114	115	116	1117	118	119	120	121	122	123	124 125	126	127 128	129	130	131	132	133	134	135 136	137	138	139

.z		z z) R3	Table II. Mp, °C	Table III (Continued) Recrystn Proposition of the solvent	Yield,	Method	Formula ^c	LDss (po) g/kg	Carbon in blood ^b	Efficacy
NH_2	Z	$\stackrel{\mathbf{z}}{\bigcirc}$		221-223	EtOH-H ₂ O	96	C	C _s H ₁₄ N ₆	ŗ ;	120.0	+
$N\Pi_2$ EtOOCCH $_2$ NH HN $_0$		NH O		233-234	$\mathrm{H_2O}$	59	V	$ m C_{11}H_{17}N_7O_3$		128.0	+
i-C ₃ H ₂ NH i	2	i-C ₃ H ₇ NH		125-126	$(i\text{-Pr})_2\mathrm{O}$	29	8 4	$C_9H_{18}N_6$	3	110.3	# -
7-C4H3NH n-C6H13NH		n-C ₆ H ₁₃ NH		61-152	EtOH-H2O	£ 156	ವ ಹ	C11H22N6 C15H36N6	>4.0	80.9 147.6	# +
$NH_2 = \frac{(n - C_3 H_7)_2 N}{(n - C_3 H_7)_2 N} = \frac{(n - C_3 H_7)_2 N}{(n - C_3 H_3)_3 N}$		$(n\text{-}C_8\text{H}_7)_2 ext{N}$		68-69	EtOH-II2O	86 75	a a	CliHaoN.		122.8	· +1 -
		Z		232-233	i-PrOH	; ž	e =	$ m C_{II}H_{IS}N_6$	9.0	184.0	+ +
NH_2 HN N	Z NH	NH NH		257-258	$i ext{-} ext{PrOH}$	62	Ŧ	$\mathrm{C_{tt}H_{tr}N_{7}O}$	>5.8	138.0	+
		o Č		201-203	HO ₁ -F	06	В	$\mathrm{C}_{13}\mathrm{H}_{22}\mathrm{N}_6$		123.9	+1
NH ₂	_			211-213	МеОП	41	<u>C</u>	$C_{12}H_{14}N_{e}^{I}$	1.7	106.0	4
NH_2 NH_2		: >		173-174	MeOH	30	Ω	$\mathrm{C}_{13}\mathrm{H}_{16}\mathrm{N}_6$	1.3	169.0	+
Č	Č	Ĕ/									
NH_2 H H H	HN-	HN—\ H		112-113	MeCN	65	В	$\mathrm{C}_{17}\mathrm{H}_{30}\mathrm{N}_6$	>4.0	189.0	+-
NH_2 H_2 H NCH_1 H	Н	$\left\langle H \right\rangle$ NCH $_{\nu}$		191-192	МеОП	:S	В	$\mathrm{C_{17}H_{30}N_6}$	>4.0	223.9	+++++
		C ₆ H ₃ CH ₂ NH		145-146	i-PrOII	ž	В	$C_{17}H_{18}N_6$		106.5	14
HOOCCH ₂ NH HOOCCH ₃ NH		Z		288-2897	7	25	၁	$C_{12}H_{20}N_6O_5'''$		103.0	#
EtOOCCH ₂ NH EtOOCCH ₃ NH \bigcirc N	$EkOOCCH_2NH$	Ž		85 -87	i-PrOH	20	၁	$C_{16}H_{26}N_6O_4$		80.9	-44
ECOCCH ₂ NH ECOCCH ₃ NH HN N	EtOOCCII2NII HIN N	(NII)		183~185	Еюн	99	ن ن	$C_{15}H_{23}N_{i}O_{5}$		126.0	+
\mathbf{E}_{1} \mathbf{E}_{1} \mathbf{E}_{1} \mathbf{E}_{1} \mathbf{E}_{1}		° (149[5]	j-PrOH	63	В	$C_{15}H_{24}N_6O_2$	>3.0	128.0	+
$E_{1}OOCCH_{2}N\Pi$	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	$\stackrel{z}{\bigcirc}$		132-133	$(i ext{-}\mathrm{Pr})_2()$	35	В	$\mathrm{C_{17}H_{28}N_6O_2}$		102.0	+
Cortisone (50 mg/kg, po)	(50 mg/kg, po)									333.3	+ -

colorless crystals, mp 215-216°. Anal. (C₁₁H₁₂ClN₆) C, H, N. A mixture of the 2-amino-4-phenethylamino-6-chloro-s-triazine (3.7 g, 0.015 mole) and 2-piperazinone¹⁷ (3.0 g, 0.03 mole) in H_2O (160 ml) was stirred under reflux for 2 hr. After cooling, the precipitate was collected by filtration, washed with H₂O, and recrystd from DMF-H₂O to give 83 as white crystals: (in CF₃COOH) τ 1.39 (b s, 2 H, HNCO), 2.66 (b s, 7 H, C₆H₅, NH₂), 5.25 (s, 2 H, CH₂CO), 5.81-6.72 (m, 6 H), and 6.98 (t, 2 H,

2-Amino-4-phenethylamino-6-pyrrolidino-8-triazine Maleate (81).—To a suspension of 2-amino-4-phenethylamino-6-chloros-triazine (6.2 g, 0.025 mole) in H₂O (120 ml) was added dropwise pyrrolidine (3.6 g, 0.05 mole) with stirring below 5°. The mixture was refluxed for 2 hr, cooled to room temperature, and extracted with CHCl₃. The extract was concentrated in vacuo leaving a syrup. The maleate was prepared by adding maleic acid (2.0 g, 0.017 mole) in MeOH (10 ml) to the syrup (7.0 g). A solid was obtained, which was recrystd from MeCN to give 81 as colorless needles.

Method B. 2-n-Butyl-4,6-bis(cyclohexylamino)-s-triazine (16).—Cyclohexylamine (8.0 g, 0.08 mole) was added to a soln of 2-n-butyl-4,6-dichloro-s-triazine (4.2 g, 0.02 mole) in $\rm H_2O$ (100 ml) under cooling with ice-water. The mixture was refluxed for 2 hr and then cooled to room temperature. The precipitate was collected and recrystd from hexane to give 16 as

2-Methyl-4,6-bis(phenethylamino)-s-triazine (60),—A soln of phenethylamine (4.8 g, 0.04 mole) in CHCl₃ (20 ml) was added to a soln of 2-methyl-4,6-dichloro-s-triazine (3.2 g, 0.02 mole) in CHCl₃ (80 ml) and then a soln of K_2CO_3 (8.2 g, 0.06 mole) in H_2O (10 ml) was added. The soln was stirred at room temp for 2 hr. The reaction mixture was washed (H₂O), dried (Na₂SO₄), and concentrated in vacuo to give an oily residue which was recrystd from EtOH to give 60 as white crystals.

Method C. 2-Chloro-4,6-bis(3-oxopiperazin-1-yl)-s-triazine (93).—A soln of 2-piperazinone (4.0 g, 0.04 mole) in H₂O (40 ml) was added to a suspension of 2,4,6-trichloro-s-triazine (I, 3.7 g, 0.02 mole) and Na₂CO₃ (4.2 g, 0.04 mole) in CHCl₃ (50 ml) with

(17) S. R. Aspinall, J. Amer. Chem. Soc., 62, 1202 (1940).

stirring at 50° for 1 hr. After cooling, the precipitates were collected, washed with hot Me₂CO, and then recrystd from DMF with activated charcoal to give 93 as white granules.

2-Piperidino-4.6-bis(ethoxycarbonylmethylamino)-s-triazine (156).—To a soln of NaHCO₃ (8.4 g, 0.1 mole) in H₂O (240 ml) was added a soln of 2,4,6-trichloro-s-triazine (I, 18.4 g, 0.1 mole) in Me₂CO (160 ml) at 0° and then a soln of ethyl glycinate · HCl (13.9 g, 0.1 mole) and NaHCO₃ (8.4 g, 0.1 mole) in $\rm H_2O$ (100 ml). The mixture was stirred at 45° for 2 hr. The precipitate was collected and recrystd from EtOH to give 90. To a soln of 90 (12.6 g, 0.04 mole) in CHCl₃ (350 ml) was added a soln of piperidine (3 4 g, 0.04 mole) in CHCl₃ (40 ml) and a soln of $K_2\hat{C}\hat{O}_3$ (5.6 g, 0.04 mole) in H_2O (40 ml). The mixture was stirred at room temp for 2 hr. The CHCl₃ layer was sepd, dried (Na₂SO₄), and concd in vacuo. The residue was recrystd from i-PrOH to give 156.

Method D. 2-Amino-4-phenethylamino-6-n-butyl-s-triazine (67).—Phenethylbiguanide HCl (24.2 g, 0.1 mole) was added to a NaOMe soln prepared from Na (2.3 g) and MeOH (80 ml) and the pptd NaCl was filtered off. Ethyl valerate (17.0 g, 0.1 mole) was added to the filtrate at -40° . The reaction mixture was diluted with H_2O (800 ml) and kept in an ice box overnight. The ppt was collected by filtration and recrystd from i-PrOH to give 67 as colorless crystals.

Other Method. 2-Methyl-4-pyrrolidino-6-n-butylamino-8triazine (98).—A mixture of 94 (6.4 g, 0.036 mole) with n-BuBr (4.9 g, 0.036 mole) was heated in a sealed tube at 190-200° for 2 hr. After cooling, the reaction mixture was dissolved in H₂O (50 ml) and then filtered. The filtrate was treated with satd NaHCO₃ soln to yield a ppt. This was recrystd from i-PrOH- H_2O to give 98 as white needles.

Acknowledgments.—The authors wish to thank Dr. S. Ogihara, President of Kyorin Pharmaceutical Co., Ltd., for his deep interest and continuous encouragement. We are grateful to Mr. A. Saito, Mr. N. Watanabe, and Mr. T. Umezawa for their expert technical assistance.

Synthesis and Pharmacological Evaluation of α,α-Disubstituted Naphthylacetaldehydes

GIANFRANCO PALA,* ARTURO DONETTI, ANTONIO MANTEGANI, ELDA CRESCENZI, BRUNO LUMACHI, AND GERMANO COPPI

Research Laboratories of Istituto De Angeli, 20139 Milan, Italy

Received June 1, 1970

Thirty-eight α, α -disubstituted naphthylacetaldehydes were prepared for extensive pharmacological screening. Some of the compounds displayed marked antipyretic, analgetic, and antiinflammatory activity. None of the other actions investigated revealed anything of particular interest.

As part of our program in the field of naphthalene compounds, we have prepared for pharmacological screening 38 naphthylacetaldehydes of the general structures I and II, in which R was an alkyl or aminoalkyl group and NAA was a tertiary amino group.

I: substituted at position 1 II: substituted at position 2

Reduction of the appropriate nitriles with LAH or lithium mono- and diethoxyaluminohydrides afforded the desired naphthylacetaldehydes together with vari-

* To whom correspondence should be addressed.

able amounts of the related naphthylalkylamines,1 which were removed from the reaction mixture by fractional precipitation before distilling. Reducing agent and reaction conditions were dependent on the steric hindrance of the nitriles. When the amines were not separated, subsequent distillation gave low yields of the aldehydes, due to formation of the related Schiff bases. In one case (24), the Schiff base (III) was isolated and

$$\begin{array}{c|c} CH(CH_3)_2 & CH(CH_3)_2 \\ \hline N(CH_2)_2CCH \longrightarrow NCH_2 & C(CH_2)_2N \\ \hline \\ III \\ \end{array}$$

⁽¹⁾ G. Pala, A. Donetti, C. Turba, and S. Casadio, J. Med. Chem., 13, 668 (1970).