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ABSTRACT

Elaiolide (2)

The 16-membered macrodiolide elaiolide (2) has been prepared in 20 steps from the ketone (S)-8 in 9.3% overall yield with a diastereoselectivity
of 76%. Key steps included the copper(l) thiophene-2-carboxylate promoted cyclodimerization of the vinyl stannane 3 to give the C,-symmetric
macrocycle 16 in 80% yield and the two-directional aldol coupling of the macrocyclic diketone 17 with aldehyde 5. Most of the stereocenters
in the macrocyclic precursor 3 were constructed using boron aldol methodology developed in this laboratory.

Elaiophylin (1), first isolated from cultures dbtreptomyces  include several other 16- and 18-membered monomeric
melanosporusdy Arcamoneet al'? and shortly thereafter  macrolides, in particular the bafilomycins and concanamy-
from a related microorganism by Ar#ijs a 16-membered  cins? The elaiophylin aglycon elaiolid&) has been obtained
macrolide which displays antimicrobial activity against through acidic deglycosylation df®

several strains of Gram-positive bactéfig. Elaiophylin also
has anthelmintic activity againgtichonomonasaginalis?
as well as inhibitory activity against'dependent adenosine
triphosphatase¥. The C,-symmetric macrodiolide structure
was determined by chemical degradatiohand spectro-
scopic method&! with the full absolute configuration being
elucidated by X-ray crystallographic analy&$Elaiophylin

) Elaiophylin (1) Ry = 2-deoxy-o-L-fucose, Ry = H
belongs to a family of structurally related compounds, all Elaiolide (2) R, = Ry = H

having similar stereochemistry in the secoacid moiety. These

(1) () Arcamone, F. M.; Bertazzoli, C.; Ghione, M.; Scotti, T. G. Previous synthetic effortslirected toward elaiophylirdj

Migrahigl 1959 7, 207. (b) Azalomycin B, as reported by Arai, is identical ioli i
with elaiophylin: Arai, M.J. Antibiot., Ser. AL96Q 13, 46, 51. have-gongtructed the macrOdIO“de co_re by a conventional
(2) (@) Hammann, P.; Kretzschmar, a1 990 46, 5603. (b) esterification/lactonization strategy. This has generally been

[i_amrcna’\r}ln, 33.; Kretzich\rlnvar, IG %eissrtms_ .| i m&llg‘gal-A (g) followed by a double aldol coupling between a macrocyclic
iu, C.-M.; Jensen, L.; Westley, J. W.; Siegel, . ) :
350. (d) Drose, S.; Bindseil, K. U.; Bowman, E. J.; Siebers, A.; Zeek, A; dialdehyde and an ethyl ketone to form the-Cso bond,

Altendorf, K. Bigaaasaiskey1993 32, 3902. which was employed in the total synthesis by Kinoslgita

(3) (a) Takahashi, S.; Arai, M.; Ohki, (i1 967, 15, 6a,b i i
1651, (b) Takahashi, S.: Kurabayashi. M. OhK! [ —— al.%2% In the same manner, various aglycon derivafiveés

1967, 15, 1657. () Takahashi, S.; Ohki, [iSSEEG_G—_———!1967, 15,

1726. (d) Kaiser, H.; Keller-Schierlein, \Vijinimniissisgr1 981, 64, 407. (4) Omura, S. IrMacrolide Antibiotics: Chemistry, Biology and Practjce
(e) Neupert-Laves, K.; Dobler, Nnimnfismisgir1 932 65, 262. (f) Ley, Omura, S., Ed.; Academic Press: New York, 1984; pp-5846.
S. V.; Neuhaus, D.; Williams, Dl i tt1982 23, 1207. (5) Bindseil, K. U.; Zeeck, Againifaiagin 1993 58, 5487.
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have been synthesized, including a derivative originally _
obtained from the acidic methanolysis of elaiophyHhA. Scheme 2
Recently, an elegant synthesis of elaioli@g\as reported
by Evans and FitcB} in which a high level of diastereo- R (ChXI)E%(BOCIOMgZEtN R
selectivity was achieved in thes€Cyq aldol coupling step KHA-OBZ e $ OBz
described previously. As part of our studies in macrolide | ¢ MeCHO, -78 — -20 °C; OH O
synthesig, we devised an alternative strategy to synthesize | ¢ & _ e Ho0,, pH 7 Buffer 9, R = Me (95%, 597% ds)
eIaioIide Q) which did not rely on a conventional macro- (510, R = Et 11, R = Et (95%, >97% ds)
lactonization step to construct the 16-membered ring.
We envisagetia novel cyclodimerization process, involv- R 1) PMB-TCA, TfOHcat, EO or
ing a Stille cross-coupling reaction of vinylstannadjeto y H DEIPSCI, Im, DMF _
form the G—C,4/Cs-Cs bonds while simultaneously con- PO O g; “2%”4’&":8:&%’0& MeOH
structing the macrocyclic core (Scheme 1). A double aldol 7 R=Me, P = PVB (84%) ®
coupling between the macrocyclic methyl ketoseand 5 R = Et, P = DEIPS (86%)

aldehyde5 would then be required to form the;£-Ci4f
C,2—Ci3z bonds. A further aldol disconnection a$-€Cy in

the monomeric uniB leads to ethyl ketoné and aldehyde

7. We now report a novel synthesis of elaiolide based on
this cyclodimerization strategy, which further demonstrates
the use of our chiral ketone methodology for the controlled
introduction of key stereocenters.

Using our standard conditions, a boron-mediatstialdol
reaction between the lactate-derived ethyl ket@®)e8f and
acetaldehyde proceeded with high diastereoselectivigy¢o
ds) to give adduc® in 95% vyield (Scheme 2). Th&hydroxy
ketone9 was then converted into aldehyden 84% yield,

via a three-step sequence of PMB protection, ketone reduc-

(6) (a) Toshima, K.; Tatsuta, K.; Kinoshita, \iisiassusssigtt1 986
27, 4741. (b) Tosh|ma K.; Tatsuta K.; Kinoshita,

Jpn 1988 61, 2369. (c) Seebach D,; Chow H.-F.; Jackson, R. F. W

Lawson, K.; Sutter, M. A,; Thalsrlvongs S, Zlmmerman

Soc 1985 107 5292. (d) Seebach, D; Chow H.-F.; Jackson, R. F. W

Sutter, M. A.; Thaisrivongs, S.; Zlmmermann_nl.%a

1281. (e) Wakamatsu T Nakamura H.; Nara, E.; Ban,

ﬂ 1986 27, 3895. (f) Wakamatsu T, Yamada S.; Nakamura, H.; Ban,

s1987 25, 43. (g) Formal total synthe5|s of elalophylln

Nakamura H.; Arata, K.; Wakamatsu, T.; Ban, Y.; Shibasaki,Q{em.
I199C] 38, 2435. (h) Evans, D. A Fitch, D.

1997, 62, 454. (i) Ziegler, F. E.; Tung, J. Mnlggl 56, 6530.

(7) For reviews on macrollde synthesis, see: (a) Paterson, |.;
M. M. 985 41, 3569. (b) Masamune, S.; McCarthy, P. A.In
Macrolide Antibiotics: Chemistry, Biology and Practjg®mura, S., Ed.;
Academic Press: New York, 1984; pp 12798.

(8) For a model study for this cyclodimerization strategy, see: Paterson,
I.; Man, J. t1997, 38, 695.

(9) Paterson, I.; Wallace, D.; Cowden, Syathesis1 998 639.

20

Mansuri,

tion/ester hydrolysis, and finally oxidative cleavage. The
aldehydes was prepared from the propyl ketor-10° and
acetaldehyde in a similar fashion, where thdydroxyl
group in intermediaté1 was protected as a diethylisoprop-
ylsilyl (DEIPS)® ether, in 86% overall yield.

As shown in Scheme 3, thes€C,, fragment 12 of

Scheme 3
(Chx),BCl, EtsN, :
L[(l\/OBn Et,0, 0 °C; X OBn
6 -
o 7,-78>-20°C;  pyBG  OH O

HoO5, pH 7 buffer
13 (96%, >97% ds)

12 MeCN-AcOH, -35 °C

5 2) 2,2-DMP, PPTS, CH Cly

1) Me,;NBH(OAC)s ‘

0.0

2 (92%, >97% ds)

PMBO

elaiolide was prepared from the ethyl ketoig6,° which
has been used extensively as a dipropionate building block
for the expedient synthesis of a range of polypropionate
natural product$! Using our standard conditioA%a boron-
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mediatedanti aldol reaction betweers[-6 and aldehyd&
proceeded with high diastereoselectivityd7% ds) to give
adduct 13 in 96% vyield. This was followed by amnti
reductiod? using tetramethylammonium triacetoxyboro-
hydride, which afforded, after hydroxyl protection, a 92%
yield of acetonidel2 with a similar level of diastereoselec-
tivity. In this way, theanti-syn-anti-synCs—C,; stereopentad
was efficiently established.

The synthesis of the cyclodimerization subst@8cheme
4) began with the conversion of the benzyl ether functionality

Scheme 4
OBn 2 ~|
. PMBO O__0
1) Hp, W-2 Ra Ni
2) Swern ox. ><
14 (80%, E: Z=20:1)
} 3) CrCl, CHlg
: 1) CSA, MeOH-HO |
z = = SnMes ) s ( )2C
! ~ 2 ngMee, Pd PPh3 |2
PMBO ort oH Li,COs, THF, 40 °C
15 (77%)
1) HOC o~
DMAP, DCC, CH.Cl, : : = ~SnMe;
’ - PMBO OH O
2) Basic alumina, or Ti(OPr), /
o) |

Hexane-Et,O

3 (68-78%,C;:C3=6.5t09.6:1)

to the €)-alkenyl iodidel4 in 80% overall yield. This was

achieved via a three-step sequence of Raney nickel selective

deprotectiort? Swern oxidatiort* and Takai olefinatiod®
The Takai reaction was performed with GHind CrC} in
THF—dioxane (1:1) and produced a 20:1 ratio Bfto Z

isomers. Acetonide hydrolysis followed by a Pd(0)-catalyzed

iodine—tin exchangé? using (MgSn), in the presence of
Li,CO;, then gave the desired vinylstanndrign 77% yield.
Esterificatiodt” 8 of diol 15 with (E)-3-iodopropenoic aciéf
using DCC and DMAP in ChkCl, at —20 °C, then provided
an inseparable 1:5 mixtui®of 3 and its G regioisomer?!

(10) (a) Paterson, I.; Goodman, J. M.; Isaka,jiiinssusssisgtt! 939
30, 7121. (b) Paterson, I.; Norcross, R. D.; Ward, R. A.; Romea, P.; Lister,
M. A. d.994 116, 11287.

(11) Reviews: (a) Cowden, C. J.; PatersorQig. React.1997 51, 1.
(b) Paterson, | 1992 64, 1821.

(12) Evans, D. A.; Chapman, K. T.; Carreira, E. o
1988 110, 3560.

(13) Horita, K.; Yoshioka, T.; Tanaka, T.; Oikawa, Y.; Yonemitsu, O.

1986 42, 3021.

(14) Mancuso, A. J.; Huang, S.-L.; Swern, [N 1978 43,
2480.

(15) Takai, K.; Nitta, K.; Utimoto, K.jiiimio 936 108,
7408.

(16) (a) Azizian, H.; Eaborn, C.; Pidcock, N 1051
215 49. (b) Barrett, A. G. M.; Boys, M. L.; Boehm, T.
1996 61, 685. (c) Wulff, W. D.; Peterson, G. A.; Bauta, W. E.; Chan,
K.-S.; Faron, K. L.; Gilbertson, S. R.; Kaesler, R. W.; Yang, D. C.; Murray.
C. K. 1986 51, 277.

(17) Steric hindrance at the;@osition when @ is protected prevents
direct esterification, and an esterification on the diélis thus required.

(18) (a) Boyce, R. J.;
(b) Neises, B.; Steglich,

Pattenden tt1996 37, 3501.
978 17. 522.
(c) Hofle, G.; Steglich, W.; Vorbruggen, gl

197§ 17, 569.
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Isomerization of this mixture was achieved under mild
conditions using basic alumina or Ti{@)?? to provide the
desired G regioisomer3 in 78% yield (6.5:1) or 68% yield
(9.6:1) from15, respectively.

In our earlier model stud$a Cu(l)-promoted Stille cross-
coupling® reaction was successfully used to prepare a
truncated version of the macrocyclic core of elaioli@y, (
where the two E)-alkenes precluded cyclization to form an
eight-membered ring. The key cyclodimerization reaction
was performed on the vinylstannarg® with copper(l)
thiophene-2-carboxylate (CuTC), a new Cu(l) reagent in-
troduced by Allred and Liebeskiftito promote rapid Stille
cross-coupling reactions under mild conditions in the absence
of Pd catalysis. Thus, treatment of a 0.01 M solution of
monomet3, in N-methylpyrrolidinone with CuTC (10 equiv)
at room temperature for 15 min, produced the required 16-
membered macrocycls as a white crystalline solid in 80%
yield (88% based on the;Qegioisomer), accompanied by
traces of other macrocycles (Scheme 5). The reaction led to

Scheme 5

3 (G; : Cq regioisomer, 9.6 : 1)

NMP

@002&4

s
(CuTC)

PMBC:)

OH

16 (80%, 88% based on C,-regiocisomer)

clean formation ofL6 without the isolation of the open-chain
intermediate, suggesting the occurrence of a rapid Cu(l)-
mediated cyclization without competing oligomerization. In
contrast, under more concentrated reaction conditio0s(

M), the monomer3 was converted into a mixture of three
major macrocycles. Here, the desired dirh@mwas obtained

in 42% vyield, along with 34% of the Omacrotrimer and
13% of the G macrotrimer®

(19) (B)-3-lodopropenoic acid was prepared via a modification of a
procedure described by: Zoller, T.; Ugen, inninnissassiagtt1998 39,
6719. See the Supporting Information for details.

(20) Determined by 500 MH2H NMR of the crude reaction mixture.

(21) Under these kinetic conditions, reaction at the-OH was greatly
preferred over that at the presumably more hindergd@H.

(22) Seebach, D.; Hungeibler, E.; Naef, R.; Schnurrenberger, P.;
Weidmann, B.; Zger, M. is1982 138.

(23) Reviews: (a) Stille, J. 0l986 25,
508. (b) Mitchell, T. N. S3athesis1992 803. (c) Farina, V Qi
Chem.1996 68, 73.

(24) Allired, G. D.; Liebeskind, L. 2996 118 2748.

(25) The structures of these macrocycles were confirmed by FAB MS.
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Scheme 6
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LiIHMDS, THF, -78 °C;
then 5

o
OH O OP

o 0

OP O OH ODEIPS

Elaiolide 2 (80%})

18 (75%, P = TES)

The macrodiolidel6 was converted into the bis(methyl

(hemiacetal), leading to isolation of elaiolid&) (in 80%

ketone)17 by a three-step sequence of TES protection, PMB yield. The!H NMR data of the product corresponded well

deprotection, and DesdMartin oxidatior® in 56% overall

with that of material obtained by acid hydrolysis of elaio-

yield (Scheme 6). The final key step of the synthesis of phylin?° All spectral data{H and*3C NMR, IR, MS, [o]p)
elaiolide required a double aldol coupling between the obtained from the synthetic material were in agreement with

macrocyclic diketond7 and the chiral aldehyde Obtaining
a high level of Felkir-Anh selectivity from the aldehyde

reported value&sh
In summary, a novel total synthesis of elaiolidd bas

component in this reaction was crucial in order to set up the peen completed using the copper(l)-mediated cyclodimer-

13,14synrelationship?” The diketonel 7 was enolized with

LIHMDS at —78 °C for 1 h, followed by addition of an
excess of aldehydB. This led to isolation of the desired
adduct18 in 75% vyield along with 15% of a mixture of

ization, 2x 3 — 16. This route demonstrates the power of
the Liebeskind modification of the Stille cross-coupling
reaction in the synthesis of structurally complex macrocycles.

diastereoisomers. We attribute the good diastereoselectivity Acknowledgment. We thank the EPSRC (Grant No.

of this two directional extensiorcé& 90% ds for each side)
to matching of Felkir-Anh control from the aldehyde with
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deprotectio®® using HFpyridine-THF—H,0% was ac-
companied by concomitant cyclization to form the bis-

(26) (a) Dess, D. B.; Martin, J. Gt d 991, 113 7277.
(b) Ireland, R. E.; Liu, L gainifaisiiain 1993 58, 2899.

(27) Originally this aldol was attempted using Mukaiyama conditions,
involving treatment of the keton&7 with TMSCI—-EtN and LIHMDS to
form the silyl enol ether and then addition 6fand BF; etherate. These
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Roush, W. R.Angew. Chem., Int. Edin press) provided a 7:1 ratio in
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Supporting Information Available: Text giving experi-
mental procedures and tables and figures giving complete
spectroscopic data for key compounds. This material is
available free of charge via the Internet at http://pubs.acs.org.

0OL990004C

(28) Using TASF, only 35% of elaiolide was obtained, accompanied by
an eliminated compound which was also formed in the degradation of
elaiophylin: Scheidt, K. A.; Chen, H.; Follows, B. C.; Chemler, S. R.;
Coffey, C. D.; Roush, W. 1998 63, 6436.

(29) (a) Elaiophylin, kindly provided by Professor S. V. Ley, was
degraded according to the procedure described by Ze¢ok.See the
Supporting Information for tabulateiH and13C NMR data for elaiolide
with comparative data previously reported.
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