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13C NMR Data for Labdane Diterpenoids

Alejandro F. Barrero* and Joaquin Altarejos

Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

The analysis of the '*C NMR spectra of 91 labdane-type compounds, classified into ten different series, is

reported.
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INTRODUCTION

In the course of our research on the isolation and
chemical transformations of natural products, a large
number of labdane diterpenes and structurally related
substances have been obtained.!™® In spite of the abun-
dant work in diterpene chemistry, few compilations of
3C NMR data of labdane-type compounds are
known.’ This encouraged us to analyse our '3C NMR
spectra in order to provide several sets of data that
might serve as models for the assignment of similar
compounds in further research.

RESULTS AND DISCUSSION

All the compounds were classified into ten series
according to the different substitution of the trans-
decalin system (Fig. 1). Their structural elucidation was
effected by the usual methods (MS, IR, NMR); '3C
NMR spectra were obtained by broadband decoupling
and DEPT experiments.'® The assignment of the !3C
resonance signals was based on general chemical shift
arguments,'!"*2 substituent effects’® and by analogy
with decalin models!**> and related labdanes.®1¢~!° In
order to clarify some questionable assignments the use
of H/H and one-bond H/C correlations was desirable
and thus we performed 2D NMR experiments on com-
pounds 1A-2, 1A-31, 1A-45, 2A-16, 4-2, 6A,-7, 6B-14,
7B-54 and 8A-59, allowing an almost unambiguous
assignment for all substances.

Most of the compounds presented here were prepared
from the natural products methyl mirceocommunate
(1A-7), methyl trans-communate (1A-8), methyl cis-
communate (1A-9) and cis-abienol (6A,-9) by ozonoly-
sis, oxymercuration-demercuration, hydroboration—
oxidation, hydrogenation, epoxidation, photooxidation
and other reactions.!"*~’ Some of the compounds were
isolated from Juniperus oxycedrus L.** and Abies maro-
cana trabut® (for details see Experimental).

* Author to whom correspondence should be addressed.
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Series 1

This series includes dicarbocyclic labdanes with a A317
exocyclic double bond. Comparison of the 3C NMR
data of the series 1A compounds (Table 1) reveals the
constancy of the chemical shifts for the decalin system,
including carbons C-17, -18, -19 and -20. The averaged
¢ values of these carbons are depicted in Fig. 2, calcu-
lated on those compounds with a saturated side-chain
(1A-1), with A2 A3 and/or A'* unsaturation (1A-2 to
1A-9) and with an oxygenated functionality at C-13, -14,
-15 or -16 (1A-10 to 1A-14, 1A-16; 1A-19 to 1A-25;
1A-27 to 1A-30). In these compounds only small differ-
ences are detected at C-9 depending on whether the
double bond is located at A'2 (§ 56.5), A'3 (S 55.6) or
further positions (6 56.2). However, some of these &
values suffer modifications when the side-chain contains
oxygenated groups at C-12 or a A'! double bond.

In the first case (1A-31, -37; 1A-41; 1A-43) C-9 is the
carbon mainly affected by the y-gauche shielding effect
of the hydroxyl group (1A-31 to 1A-33) or epoxide
group (1A-34 to 1A-37), or as a consequence of the
functional change which occurs in compounds 1A-41
and 1A-43. Thus, the C-9 shielding is ca. 4 ppm for 12-
hydroxy derivatives and somewhat lower (ca. 2 ppm) for
12,13-epoxy derivatives, according to the more preferred
conformation of the side-chain in this type of com-
pound (Fig. 3).?° The presence of a A'! double bond
(1A-44, -45, -46; 1A-48 to 1A-53) induces J variations at
the nearest carbons, i.e. C-1, C-9 and C-20, and also
C-6, C-7 and the olefinic carbons (C-8, C-17). In spite of
the a-effect exerted by the sp? C-11 on C-9, this position
is only deshielded by ca. 4 ppm (averaged d value of
60.1 ppm). This fact could be explained by the loss of
the deshielding H-H anti interaction between H-9 and
H-118, existing in labdanes with a saturated C-11—
C-12 bond (Fig. 4). In this manner, the loss of the
shielding interactions between H-1la and H-18 or
H-118 and H-20 (Fig. 4) could also explain the observed
deshielding for both carbons (ca. 1.5 ppm for C-1; ca.
0.8 ppm for C-20).

The replacement of the 4pf-carbomethoxy group
(series 1A) by a methyl group (series 1B) is mainly
reflected in the 6 changes of C-2, -3, -4, -5, -6, -9, -18 and
-20 (Table 2), as stated in the literature.!* The larger
size of the methyl group compared with the flat
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3C NMR DATA FOR LABDANE DITERPENOIDS

Figure 1. (cominued)

*mmmm X
m%mmm

on2
AL P
W ,/\n/\/ S
x> OAc e O
1 12 13 14 R%=H
15 R%=Ac
(\E (\i N‘CY wane CHO va\r
16 R%=H
20 21
17 R%=Ac
23: R%=H 25: R®=H
24: R’zMe 26: R%=Ac
COOMe (\g( A'.C\(\ ’/'\( <Ck<
28
ﬂ ﬁ
OAc OAc OAc (o]

42 43 44 45 46: R*=H
[o] 5
z U
47: R°= -(:1
o 2°3°Cl
o
18 J3OH 0
OAc
12
S P 11 & P /j‘ ,/\OAC
48 49 50 51 52 53
15
16 “ OH OH 15
v i S R
54 55 56 57 58 59
OH
| o
o
£ T Ly
NN
63

Figure 1. Labdane diterpenoids of series 1 to 10.
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12-R 12-8
R
H. H | H
[ /° >
H
H
H
R=H (1A-31 or 1A-32) R<H (1A-33)

R=C-13 (1A-34 or 1A-36) R=C-13 (1A-35 or 1A-37)

Figure 3. Preferred conformations of the side-chains of 12-
oxygenated A®'7-labdanes.

Figure 4. Shielding interactions between C-1, C-11 and C-20,
and anti-disposition of H-118 and H-9 in A®7_labdanes with a
saturated C-11—C-12 bond.

Series 1 Serles 2

Figure 6. Increase in the C-20—C-11 dihedral angle and
decrease in the C-1—C-11 dihedral angle from series 1 to series 2.

Series 1 Serles 2

Figure 7. Decrease in the C-6—C-9 dihedral angle from series 1
to series 2.

Table 2. § Changes (Ad) from series
1A to series 1B*

Carbon AS (1B) - (1A)® Effect
2 -05 y
3 +4.0 B
4 -10.5 a
5 -08 8
6 -1.8 7
9 +1.0 s
18 +4.9 B
20 +1.9 )

21B-9and 1B-11.
-+, Deshielding; —, shielding.

methoxycarbonyl group, which prefers to eclipse the
C-3—C-4 bond,?" induces a deshielding of ca. 2 ppm on
C-20 as a consequence of the enhanced syn-axial inter-
actions between the two methyl groups. The same argu-
ment supports the shielding (of ca. 2 ppm) of C-6, in this
case by increasing the y-gauche cffect between 4f-Me
and H-6f (this effect seems to be weaker on C-2). The
presence of a A'! double bond (1B-44) modifies the cor-
responding decalin carbons in the same way as in series
1A

Series 2

The change of the A®'7) exocyclic double bond (series
1) to the A® endocyclic position (series 2) introduces a
considerable modification of the ring B conformation
causing important shift changes of the decalin carbons,
as shown in Fig. 5 and Table 3. The greater flatness of
ring B in series 2 explains the observed deshielding at
C-20, because the y-gauche effects from H-11§ and, to a
lesser extent from H-68, have been weakened (Fig. 6). In
the same way, the considerable decrease in the C-6—
C-9 dihedral angle could explain the observed shielding
of C-6 (Fig. 7). On the other hand, the shielding of ca. 4
ppm of C-7 could be attributed to the y-syn periplanar
arrangement with respect to C-10.22 In addition to these
two arguments, the deviation from the H-68/H-Ta anti
disposition in series 1, as a result of the new half-chair
conformation of ring B, must also contribute to the
shielding of C-6 and C-7. The observed shielding of C-1
and C-5 may be explained by their new homoallylic
positions?? in addition to the decreasing C-1—C-11 and
C-5—C-8 dihedral angles (Fig. 8). As for C-11, the
deshielding of ca. 4 ppm (i.e. 2A-9 compared with 1A-9)
is the balance of its deshielding allyl position and the
y-syn periplanar situation with respect to C-17 and the

Table 3. 6 Changes (Ad) from series
1A to series 2A

Carbon Ad (2A) - (1A)
1 -23
5 -2.8
6 -54
7 -4.2
20 +4.9
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<
33.3 22.0

Figure 8. & Values for compound 3-9.

H

CHy3 cH CH, R
CH, R 3 CH,
H CH,
HyC HyC
3 H 3 H
(a) (b)

Figure 9. Conformations of ring B for compounds of series 3.

R'=H(C-8:39.6, C-17:61.1)
R1=Ac(C-8:35.7, C-17:63.6)

R=7,9, 26,38,39,40

Figure 11. Averaged & values for compounds of series 5.

loss of the H-9/H-11§ anti interaction. The Ad values
outlined in Table 3 can be applied to predict the assign-
ments of 2B-44, taking as reference those of 1B-44.
Finally, the « disposition of HO—C-7 in 2C-14 has
been mainly established by the considerable shielding
of C-5 {—6.5 ppm) as opposed to that expected for
7B-hydroxy derivatives.!®

Series 3

As stated for series 2, the half-chair conformation of
ring B introduces important differences in this series
compared with series 1. The comparison of the § values
of compound 3-9 (Fig. 8) with those of 1B-9 (Table 1)
reveals shift changes at C-5, C-9, C-10 and C-11,
according to some well established 2D NMR
examples!®1® (Table 4). However, the § value of C-6
scarcely changes, as both the y-syn periplanar effect
from C-9 and the a-effect from C-8 mutually cancel. The
location of C-6 and C-9 in the same plane produces an
increase of the y interaction between C-7 and C-10 (Ad
—2.8 for C-10), and between C-8 and C-5 (Ad —5.2 for
C-5). The larger shielding of C-5 with respect to C-10
can be explained by its homoallylic position. The dis-
position of the H-11 hydrogens and C-1, C-20 carbons

Table 4. § Changes (Ad) from series
1B to series 3

Carbon A6 (3-9) — (1B-9)
5 -5.2
9 -2.0
10 -28
1 +3.2

Table 5. § Changes (Ad) from series
1A to series 4

Carbon AS (8) ~ (1A)
6 -7.2
7 -3.6
g -2.6
10 -1.6
20 +1.7

should be similar to that presented in series 1, since the
C-1 and C-20 § values in series 3 do not suffer appre-
ciable modifications. This fact seems to suggest that the
conformation depicted in Fig. 9(a) is the most probable
for ring B as the dihedral C-1—C-11 and C-11—C-20
angles are closest to those of series 1.

Series 4

The g disposition of the 8-Me in compounds 4-2 and
4-3 has been established by the chemical shift of C-17 (6
15.2), being tpyical of the value of an axial methyl group
on a cyclohexane with a vicinal equatorial alkyl
group'? (slightly deshielded by a J-syn axial effect with
the 10-Me), and by that of C-6, ca. 7 ppm upfield with
respect to series 1A because of the y-gauche influence
from C-17.1° Figure 10 shows the J values for this series
and Table S shows the differences observed compared
with series 1A. Thus, both pairs, C-7, C-9 and C-6,
C-10, suffer upfield shifts as a consequence of the loss of
the allylic position and the appearance of the y-gauche
effect of the 88-Me, respectively. The 1,3-diaxial dis-
position of the 88-Me and 10-Me causes a deshielding
of ca. 2 ppm on C-20.24

Series 5

The presence of an oxygenated functionality on C-17,
either HO or AcQ, is noted in the 6 shifts of carbons «
(C-17), B (C-8) and y (C-7), with respect to series 4,
according to the substituent effects of these groups (Fig.
11). However, C-9 seems not to be affected by the OR
group on C-17 (i.e. 5-9 vs. 4-2), its & value being depen-
dent on the type of side-chain. Thus, the existence of a
A2 (6 53.44, 5-26; 6 53.69, 5-9), A3 (5 52.52, 5-7), (12R)-
OAc (0 48.29, 5-38; § 48.23, 5-39) or (125)-OAc (6 49.76,
5-40) is clearly observed. The similarity of the C-6 and
C-20 chemical shifts in both series confirms the £ dis-
position of C-17.
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R=7.18

R=54,55,57, 58

o 205
K
33.5 21.1

Series 7A,

R=54,57,58

Series 7A,

Figure 14. Averaged & values for compounds of series 7A, and
7A,.

R=54, 56

Figure 15. Averaged é values for compounds of series 7B.

Series 6

This series groups labdanes with 84-OH (series 6A) and
8B-OH (series 6B). The comparison of the well estab-
lished 2D NMR decalin 6 values of series 6A, (Fig. 12)
with those of series 1A (Table 6) basically shows some
differences at C-6, C-7 and C-9. As regards series 6A,,
every chemical shift can be predicted by application of
the data in Table 2 to the ¢ values of series 6A;. Using
the assignments for series 6A,; and taking into account
the shielding expected (ca. 2 ppm) on carbons o, f and y
(with respect to OH) in trans-decalin systems, when the
hydroxy group changes its equatorial position to an

Table 6. 6 Changes (Ad) from series
1A to series 6A, and 6B

Carbon A (BA,) - (1A) A (6B) - (1A)
2 -0.9 -1.0
6 -4.0 -6.4
7 +5.9 +4.0
9 +4.3 +2.6

axial position,!® we were able to assign series 6B. Figure
13 and Table 6 summarize some characteristics of series
6B. The two series 6A and 6B can be distinguished by
the different chemical shifts of C-17 (6 23.3, series 6A; 6
30.8, series 6B), according to the typical values of axial
and equatorial methy! groups on oxygenated carbon.

Series 7

The assignments of the compounds of series 7A have
been accomplished by taking as reference the ¢ values
assigned in the literature to compounds 7A,-57 and
7A,-58.!"7 The typical chemical shifts for series 7A,
and 7A, are shown in Fig. 14. When series 7A; is com-
pared with series 6A, (6A,-9) several modifications are
observed (Table 7); the shielding of C-7, C-9 and C-17
can be explained by the creation of a new y-effect from
C-12, whereas this carbon causes an upfield shift at C-8
from the f-effect. The slight change of the C-11—C-12
bond orientation associated with the ring C formation,
with respect to that of A%?7-labdanes,® seems not to
affect the 6 values of C-1 and C-20. However, the steric
interaction between the side-chain and the 8f-Me in
12-(S) derivatives (series 7A ;) is displayed by the shielding
of C-1, C-9, C-17 and C-20 (Table 7). The study of series
7B was assisted by 2D NMR experiments performed on
7B-54. The & values of the series and their deviation
with respect to series 6B are shown in Fig. 15 and Table
8, respectively. As can be appreciated, the AJ shifts of
series 7B are slightly larger than those of 7A (Table 7)
owing to the enhanced deviation of the C-11—C-12
bond orientation with respect to series 6B. This fact is
reflected in the more deshielded C-1 and C-20 signals.
In addition to some different J§ values shown in Figs {4
and 15, the two series can be clearly distinguished by
the resonance of C-17, 6 21.4 or 25.2 for series 7A, and
d 31.5 for series 7B.

Table 7. & Changes (AJ) from series 6A, to series 7TA, and 7A,
and comparison of series 7A, and 7A,

Carbon B8 (7A,) - (BA,-9) AS (TA,) - (6A,-9) AS (TA,) - (TA.)
1 — +0.7 +1.0
3 +0.6 +0.6 0
5 +1.3 +1.1 ~0
6 — +0.9 +0.6
7 -4.3 -3.9 <+0.5
8 +6.9 +6.9 0
9 -2.3 -1.2 +1.0

10 -2.0 -1.9 ~0
17 -3.0 +0.9 +3.9
20 -0.6 +0.5 +1.1
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Table 8. 6 Changes (Ad) from series
6B to series 7B

Carbon AS (7B) - (6B)
1 +2.3
5 -2.7
7 -5.7
8 +8.9
9 -1.1
10 -2.9
17 +0.7
20 +1.6

Table 9. & Changes (Ad) from series
6A, to series 9

Carbon AS (9) - (6A,)
5 -1.4
(5} +1.1
7 -8.4
9 -3.2

Table 10. § Changes (AJ) from series
1A to series 10

Carbon AS (10) - (1A)
5 +1.8
7 +4.5
9 +6.8
10 +3.3

Series 8

Assignment of the manoyl oxides (series 8A), manoyl
13-epi-oxides (series 8B) and their derivatives have been
performed according to bibliographic data'®!” and the
2D NMR correlations performed on 8A-59. The
opposite configuration of C-13 in compounds 8A-60
and 8B-60 (Table 1) is reflected at C-14, C-15, C-16 and
C-17. The C-13 stereochemistry was appropriately
established since the carbon axially placed on C-13
must suffer a shielding shift (C-16 for 8A-60 and C-14
for 8B-60). The deshielding exerted by either C-14 or
C-16 on C-17 in both series is not observed in 8A-61
(d,5 : 20.26) as there is no axial substituent on C-13.

Series 9

The 8a,17-epoxide of series 9 is defined by the C-17 o
value (50.3 ppm), slightly deshielded with respect to that
(ca. 48 ppm) of reported 88,17-epoxy derivatives.®
Because of the reduced axial nature of C-17 and equat-
orial nature of the oxygen attached to C-8 with respect
to the methylcarbinol in series 6A, several differences
are observed for the decalin (Fig. 16 and Table 9).
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R:47

R: 18,64

Figure 17. Averaged ¢ values for series 10.

Series 10

The replacement of the methylene by an oxygen on the
A847 double bond of series 1 causes the corresponding
d changes associated with the functional group change
according to the literature (Fig. 17 and Table 10).°

EXPERIMENTAL

13C NMR spectra were recorded on Bruker WP 80 SY
(20 MHz) and Bruker 300 AM (75 MHz) spectrometers
operating in the pulsed Fourier transform (PFT) mode.
All measurements were performed at a probe tem-
perature of 300 K using solutions of the compounds in
CDCl; (50-150 mg ml ') containing TMS as internal
standard. The & values were adjusted with respect to the
CDCl, central peak at 77.00 ppm. For 'H-'H (300
MHz) and one-bond 'H-!3C (300/75 MHz) 2D corre-
lations, pulse sequences COSY.AUR?*  and
XHCORRD.AUR?® from the Bruker DISnmr 85
program library were used, respectively.

All the compounds were characterized by [a]p, MS,
IR and 'H NMR. The communic acids were isolated
from berries of Juniperus communis L.27 and studied as
methyl ester derivatives (1A~7, 1A-8 and 1A4-9).? Com-
pounds 1B-9, 1B-44, 3-9, 3-44, 6A,-9 and 6A,-44 were
isolated from Abies marocana.® Methyl isocupressate
(1A-23), its 15-O-methyl derivative (1A-24) and dimethyl
agatate (1A-28) were isolated from previously methyl-
ated fractions obtained from the wood of Juniperus
oxycedrusL.> The homolabdane 1A-29 was isolated
from berries of Juniperus oxycedrus L. subsp. macro-
carpa.® Catalytic hydrogenation of methyl trans-
communate (1A-8) yielded 1A-1, 1A-3, 1A-4 and 1A-5.1
Compounds 1A-2 and 4-2 were obtained in the reaction
of methyl cis-communate (1A-9) with diimide, whereas
compounds 4-3 and 1A-6 were isolated from the same
reaction with methyl trans-communate and methyl
mirceocommunate (1A-7), respectively.? The
oxymercuration-demercuration {(OM-DM) reaction of
1A-7 yielded 1A-11, 1A-12, 1A-13, 8A-61 and 8B-62
(when NaBH, was used as reducing agent) and 6A,-7,
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6A,-18, 6B-11 and 8A-59 [when Na(Hg) was used].’
Compounds 1A-14, 1A-16, 1A-31, 2A-8, 2A-9, 2A-15,
2A-16, 2C-14, 6B-9, 6B-14, 6B-15, 7B-54 and 7B-56
were formed in the OM-DM reaction of 1A-8 and
1A-9.” The reaction of 1A-9 with 'O, afforded 1A-32,
1A-33 and 1A-45. The treatment of 1A-8 and 1A-9 with
m-CPBA led to 1A-34, 1A-35, 1A-36 and 1A-37, and the
ring-opening reaction of these with BF;—Et,O at 0°C
yielded 1A-41 and 6A,-42, among other compounds.®
In the ozonolysis reaction of 1A-7, 1A-8 and 1A-9, com-
pounds 1A-43, 1A-20, 1A-21, 1A-19, 10-19 and 10-43
were formed. Compounds 1A-10, 8A-60 and 8B-60 were
obtained by OM-DM reaction of 1A-3 and 1A-22 by
oxidation of 1A-14 with PDC.! Compounds 1A-25,

1A-27, 1A-30, 5-9, 5-7, 5-26, 5-38, 5-39 and 5-40 were
obtained in different hydroboration—-oxidation reactions
on 1A-7 and 1A-9.! The thermal isomerization of 1A-9
yielded 1A-44. The ozonolysis and subsequent reduction
of 1A-44 yielded 1A-51 and 1A-50, respectively, and the
reaction of 1A-44 with m-CPBA afforded 1A-46, 1A-48,
1A-49 and 9-47.' Similar reaction of 1A-50 with
m-CPBA led to 9-63.! The acetylation of 1A-43 using
DMAP as catalyst provided a mixture of enol acetates
1A-52 and 1A-53.* Compound 2B-44 was obtained in
the reaction of compound 6A,-44 with POCI;, and
compounds 7A,-54, TA,-55, 7A,-57, TA,-58, 7A,-54,
7A,-57 and 7A,-58 resulted from the OM—-DM reaction
of cis-abienol (6A,-9).!
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