worauf unter Farbvertiefung Abscheidung einer Festsubstanz erfolgt. Nach Ansäuern mit 0,1 Mol Salzsäure wird eine zunächst dunkelgelbe Substanz isoliert, die nach Umkristallisieren aus Benzol/Äthanol, dann aus verdünnter Essigsäure farblose Kristalle bildet. Schmp. 191–192° (Zers.), Lit. 12: 182–183°; Ausb. 15,9 g = 56 % d. Th.

C₁₀H₁₁N₃O₃S₂ (285,4) Ber.: N 14,73 S 22,47; Gef.: N 14,51 S 22,20.

IR: 3230 und 3140 (NH), 2950 und 2500 (OH), 1930 (NR $_3^{\oplus}$)?, 1715 (Carboxyl C=O), 1650 (Hydrazid C=O), 1550 cm $^{-1}$ (Amid).

Anschrift: Dr. W. Hanefeld, 2 Hamburg 13, Laufgraben 28.

[Ph 563]

Joachim Knabe*) und Norbert Franz

Barbitursäurederivate, 20. Mitt.1)

Synthese und Konfiguration einiger chiraler 5-dialkylierter N-Methylbarbitursäuren**)

Fachrichtung Pharmazeutische Chemie der Universität des Saarlandes (Eingegangen am 2. April 1975)

Die disubstituierten Cyanessigsäuren 2 wurden in die Enantiomere gespalten und hieraus über die Ester 3 und die Iminobarbitursäuren 4 die chiralen Barbitursäuren 5 synthetisiert. Die absolute Konfiguration dieser Barbitursäuren und aller chiralen Synthesezwischenprodukte wird abgeleitet.

Synthesis and Configuration of Chiral 5-Dialkylated N-Methyl-Barbiturates

The disubstituted cyanoacetic acids 2 are resolved into the enantiomers. From these via the esters 3 and the imino-barbiturates 4 the chiral barbiturates 5 are synthesized. The absolute configuration of theses barbiturates and of all chiral intermediates is determined.

Die pharmakologische Untersuchung der in unserem Arbeitskreis seinerzeit durch direkte Razematspaltung hergestellten Enantiomere von Pronarcon (5a)²⁾ hatte ergeben, daß umgekehrt wie bei Hexobarbital³⁾⁴⁾ hier dem (-)-Enantiomer die größere narkotische Wirkung zukommt⁵⁾. Ziel der vorliegenden Arbeit war die Ermittlung

^{*} Herrn Prof. Dr. h.c. Hans Herloff Inhoffen zum 70. Geburtstag gewidmet.

^{**} Teilergebnis der Dissertation N. Franz, Saarbrücken 1974.

^{1 19.} Mitt.: J. Knabe und N. Franz, Arch. Pharmaz. 308, 313 (1975).

² J. Knabe und K. Philipson, Arch. Pharmaz. 299, 231 (1966).

³ G. Wahlström, Life Sci. 5, 1781 (1966).

⁴ W. Rummel, U. Brandenburger und H. Büch, Med. Pharmacol. exp. Therapeut. (Basel) 16, 496 (1967).

⁵ G. Wahlström, Acta pharmacol. toxicol. 26, 81 (1968).

der absoluten Konfiguration von 5a und einiger anderer 5-dialkylierter N-Methylbarbitursäuren.

Als Ausgangssubstanzen für die Synthese der chiralen 5-dialkylierten N-Methylbarbitursäuren wurden die dialkylierten Cyanessigester 1a-1c synthetisiert.

Die Verseifung der Ester 1a-1c ergab die disubstituierten Cyanessigsäuren 2a-2c, die mit den Enantiomeren des threo-1-Phenyl-2-amino-propandiols-(1,3) (threo-Base)⁺⁺⁾ in die enantiomeren Cyanessigsäuren 2a-2c gespalten wurden. Nach Veresterung der optisch aktiven Cyanessigsäuren mit Diazomethan zu den Methylestern 3a-3c erfolgte Kondensation mit N-Methylharnstoff zu den Iminobarbitursäuren 4a-4c, aus denen durch saure Hydrolyse die chiralen dialkylierten N-Methylbarbitursäuren 5a-5c erhalten wurden.

Synthese der chiralen Cyanessigsäuremethylester 3a-3c

Vorstufe für die Cyanessigester 1a und 1b ist der Isopropylidencyanessigester⁶⁾, der sich in Äthanol mit Pd/C glatt zu Isopropylcyanessigsäureäthylester hydrieren ließ. Hieraus wurde mit 2,3-Dibrompropen-(1) in 77 proz. Ausbeute 1a erhalten, mit 1-Brompropan entstand analog 1b. 1c wurde aus α -Cyanpropionsäureäthylester durch Äthylierung nach ⁷⁾ in 25 proz. Ausbeute (bez. auf Propionsäure) erhalten.

Die Cyanessigsäuren 2a-2c wurden durch Verseifung von 1a-1c mit 10 proz. äthanol. KOH nahezu quantitativ erhalten. 2b und 2c sind i. Vak. ohne Zersetzung

⁺⁺ Wir danken der Firma C. F. Boehringer und Sohn, Mannheim, für die Überlassung größerer Mengen der threo-Basen.

⁶ G. Komppa, Ber. dtsch. chem. Ges. 33, 3530 (1900).

⁷ C. de Hoffmann und E. Barbier, Bl. Soc. chim. Belge 45, 565 (1936).

destillierbar, 2a wurde über das Na-Salz gereinigt. Aus den Säuren 2a-2c ließen sich mit den Enatiomeren der threo-Base die Enantiomere gewinnen. Sie wurden mit Diazomethan in guter Ausbeute in die chiralen Methylester 3a-3c überführt.

Synthese der Barbitursäuren 5a-5c

Die Synthese der Barbitursäuren 5a-5c durch Kondensation der Ester 1a-1c bzw. 3a-3c mit Methylharnstoff verlief unter Standardbedingungen⁸) in sehr unterschiedlichen Ausbeuten. Es zeigte sich, daß die Variation der Mengen an Methylharnstoff und Alkalialkoholat die Ausbeute nur wenig beeinflußt, wohl aber die Reaktionstemperatur und -dauer. Die Kondensation von 3c war in kurzer Zeit abgeschlossen; durch Hydrolyse mit $2 \text{ N H}_2 \text{ SO}_4$ entstand 5c. Zur Kondensation von 3b mußte die Reaktionszeit gegenüber der Standardvorschrift⁸) wesentlich verlängert werden. Es entstand sonst in größerem Ausmaß als Nebenprodukt das Monokondensationsprodukt Propyl-isopropylcyan- ω -N-methylacetureid, das bei 2240 cm^{-1} noch die C=N-Bande enthält.

Bei Verlängerung der Reaktionszeit auf das 12fache wurde in guter Ausbeute 4b erhalten, das sich durch mehrstündiges Erhitzen mit 5 N H_2 SO₄ in 5b überführen ließ. Die Kondensation von 3a ergab bei 6stündiger Reaktionszeit ein Gemisch von 18 % 4a und 8 % des entsprechenden dialkylierten Cyan- ω -N-methylacetureids. Beide Substanzen ließen sich nach einem Verfahren von Conrad und Zart⁹ trennen. Als Hauptprodukt der Kondensation von (—) 3a wurde in 23 proz. Ausbeute (—)-1 N-Methyl-5-isopropyl-5-acetonyl-barbitursäure [(—)-6] isoliert. Razemisches 6 wurde von anderen Autoren¹⁰) als möglicher Metabolit von 5a synthetisiert. Die Struktur von 6 wurde durch IR- und NMR-Spektren und durch das 2,4-Dinitrophenylhydrazon gesichert.

Eine Verschärfung der Reaktionsbedingungen bei der Kondensation von 1a oder 3a brachte keine Verbesserung der Ausbeute, sondern eine Zunahme von Konkurrenzreaktionen. Das DC zeigte die Entstehung von mindestens 10 Produkten. Die Konstanten der synthetisierten Verbindungen sind im Versuchsteil in Tab. 2 und 3 zusammengestellt.

⁸ J. Knabe und D. Strauß, Arch. Pharmaz. 305, 54 (1972).

⁹ M. Conrad und A. Zart, Liebigs Ann. Chem. 340, 335 (1905).

¹⁰ A. Ravn-Jonsen und H. Hjeds, Dansk Tidsskr. Farm. 42, 289 (1968).

Konfiguration der Barbitursäuren 5a-5c und der Synthesezwischenprodukte

Bei der katalytischen Hydrierung von (+)-5a wurde unter gleichzeitiger Enthalogenierung (-)-5b erhalten. Damit wurde ein früherer Befund¹¹⁾ bestätigt, wonach (+)-5a und (-)-5b gleiche Konfiguration besitzen. Die Konfiguration von 5c läßt sich aus der bekannten Konfiguration von 2c ableiten. Nach Knabe und Plisch¹²⁾ ist (+)-2c R-konfiguriert. Bei der gerichteten Kondensation von daraus hergestelltem R(-) 3c erhält man die Barbitursäure (+)-5c, für die sich S-Konfiguration ableiten läßt.

Nachdem so die absolute Konfiguration von (+)-5c feststeht, können mit Hilfe des *Freudenbergschen* Verschiebungssatzes¹³⁾ die Konfigurationen der Barbitursäuren 5a und 5b und damit gleichzeitig die aller Synthesezwischenprodukte abgeleitet werden. Abb. 1 zeigt die Änderung der molaren Drehung beim Übergang von den Cyanessigsäuren 2 über deren Methylester 3 in die Iminobarbitursäuren 4 zu den Barbitursäuren 5.

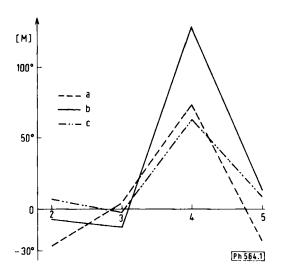


Abb. 1: Änderung der molaren Drehung beim Übergang von 2 über 3 und über 4 zu 5.

Aus Abb. 1 läßt sich ablesen, daß (+)-5b und (+)-5c die gleiche Konfiguration besitzen, (-)-5a ist auf chemischem Wege mit (+)-5b korreliert. (+)-5c besitzt S-Konfiguration, (-)-5a und (+)-5b sind damit ebenfalls S-konfiguriert. 5a ist somit die erste von uns synthetisierte chirale Barbitursäure, bei der das in Äthanol (-)-drehende

¹¹ W. Geismar, Dissertation Saarbrücken 1968.

¹² J. Knabe und J. Plisch, Tetrahedron Letters (London) 1973, 745.

¹³ K. Freudenberg, Mh. Chem. 85, 537 (1954).

Enantiomer S-konfiguriert ist. Die Übereinstimmung der Konfiguration von (-)-5a, (+)-5b und (+)-5c wird durch die ORD-Spektren, die in Abb. 2 wiedergegeben sind, bestätigt. Die R-Konfiguration von (+)-5a wurde inzwischen auch durch Röntgenstrukturanalyse nachgewiesen¹⁴).

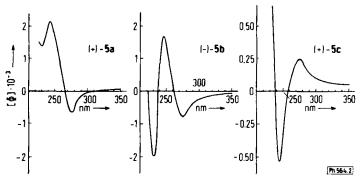


Abb. 2: ORD-Spektren von (+)-52, (-)-5b und (+)-5c.

In Tab. 1 sind die absoluten Konfigurationen der Barbitursäuren 5a-5c und der Synthesezwischenprodukte zusammengestellt.

Tab. 1: Absol. Konfiguration von 2, 3, 4 und 5a-c

Verbdg.	Konf.	Verbdg.	Konf.	
(-) 2a	R	(+) 4b	R	
(+) 3a	R	(+) 5b	S	
(+) 4a	R	(+) 2c	R	
(-) 5a	S	(-) 3c	R	
(-) 2b	R	(+) 4c	R	
(-) 3b	R	(+) 5c	S	

Wir danken dem Fonds der Chemie für die Förderung dieser Untersuchungen.

Beschreibung der Versuche

Monoalkylierte Cyanessigester

Isopropylcyanessigester

306,4 g (2 Mol) Isopropyliden-cyanessigester 6) wurden in 350 ml Äthanol mit 6 g 10 proz. Pd/C unter H₂ bis zur Sättigung (80 min., H₂-Aufnahme 48,5 l) geschüttelt. Nach Einengen wurde in Äther aufgenommen, mit 3 proz. HCl und Wasser gewaschen und nach Trocknen über Mg SO₄

¹⁴ K. Fischer und E. Wilhelm, Privatmitteilung; Dissertation E. Wilhelm, Saarbrücken 1974.

destilliert. Ausbeute: 283,6 g (91,5 % d. Th.); Sdp._{0.6} 56° (Lit. 15) Sdp.₈ 89–91°) IR-Daten: (Film auf KBr) $\nu_{\rm C\equiv N}$ 2250 cm $^{-1}$; $\nu_{\rm C=O}$ 1750 cm $^{-1}$

Methyl-cyanessigester

wurde nach⁷⁾ aus 111 g (1,5 Mol) Propionsäure über α-Brompropionsäure und α-Cyanpropionsäure dargestellt. Ausbeute: 54,5 g (28,6 % d. Th. bez. auf Propionsäure); Sdp. 18 90° (Lit. 7) Sdp. 10.5 93-94°).

C₆H₉NO₂ (127,1) Ber.: C 56,7 H 7,14 N 11,0; Gef.: C 56,6 H 7,16 N 10,8.

Dialkylierte Cyanessigester 1a-1c

Die monoalkylierten Ester wurden mit 1 Äquiv. Na in absol. Äthanol in die Na-Salze überführt. Danach wurden die frisch destillierten Alkylierungsmittel (10 proz. Überschuß) zugetropft und das Gemisch zum Rückfluß erhitzt. Der Alkohol wurde weitgehend abgezogen, der Rückstand mit dem 3fachen Vol. Wasser versetzt, mit verd. HCl angesäuert und die rohen Ester 1a-1c in Äther geschüttelt. Die rohen Ester 1a und 1b wurden vor der Destillation zur Entfernung monoalkylierter Ester mit kalter 5 proz. NaOH behandelt.

Verb.	Monoalk. Ester	Alkylhalogenid	Reaktions- dauer h	Ausbeute %
la	Isopropylcyanessig- ester	2,3-Dibrompropen-(1)	4,5	77
1 b		1-Brompropan	14	88
1c	Methylcyanessig- ester	Äthylbromid	6	85

- 1a $C_{11}H_{16}NO_2$ Br (274,2) Ber.: C 48,2 H 5,88 N 5,1; Gef.: C 48,1 H 5,82 N 5,1.
- 1b $C_{11}H_{19}NO_2$ (197,3) Ber.: C 67,0 H 9,71 N 7,1; Gef.: C 66,6 H 9,61 N 7,1.

Dialkylierte Cyanessigsäuren 2a-2c

Die Verseifung der Ester 12-1c erfolgte mit 10 proz. äthanol. KOH. Zur Isolierung der Cyanessigsäuren wurde die kalte Verseifungslösung in das 1-3fache Volumen Eiswasser eingerührt, mit HCl oder H₂ SO₄ angesäuert und die Säuren ausgeäthert.

Zur Reinigung wurde die Säure 2a mit gesättigter NaHCO₃-Lsg. aus der Ätherphase extrahiert, die wäßrige Phase mit 18 proz. HCl angesäuert und die Cyanessigsäure in Äther aufgenommen. Nach Trocknen über Na₂SO₄ und Abziehen des Äthers wurde aus Benzol/Petroläther kristallisiert. Zur Reinigung der Säuren 2b und 2c wurde die getrocknete ätherische Lsg. eingeengt und die Säuren destilliert.

¹⁵ E. R. Alexander u. A. C. Cope, J. Amer. chem. Soc. 66, 886 (1944).

Verb.	Äquiv. KOH	Temp.	Reaktionszeit	Ausbeute %
2a	1,1	40°	40 min.	76
2b	2,4	Rückfl.	4 h	91
2c	1,1	Rückfl.	6 h	100

- 2a C₉H₁₂NO₂Br (246,1) Ber.: C 43,9 H 4,91 N 5,7; Gef.: C 43,7 H 4,84 N 5,7.
- 2b C₉H₁₅NO₂ (149,2) Ber.: C 63,9 H 8,93 N 8,3; Gef.: C 64,2 H 9,05 N 7,8.

Razematspaltungen

Die razemischen Säuren 2a-2c wurden mit den Antipoden des threo-1-Phenyl-2-amino-propandiols-(1,3) (Threobase) in die Enantiomere gespalten. Razemische bzw. mit einem Enantiomer angereicherte Säure wurde mit der äquimolaren Menge der Spaltbase im angegebenen Lösungsmittel gelöst und das Kristallisat bis zur Schmelzpunktkonstanz umkristallisiert.

Zur Isolierung der optisch aktiven Säuren 2a-2c wurde das Diastereoisomerensalz in 10 proz. Mineralsäure gelöst, die Cyanessigsäure in Äther aufgenommen und die Ätherphase mit 1 proz. Mineralsäure und Wasser gewaschen. Die weitere Isolierung erfolgte wie bei den razemischen Säuren.

Verb.	Spaltbase	Lsgmittel	SalzSchmp.°	Ausbeute %
(+) 2a	(+)-Threobase	Wasser oder	149-156 (Wasser)	46
(-) 2a	(-)-Threobase	Aceton/Äther	145-155	
(+) 2b	(-)-Threobase	Wasser	165	52
(-) 2b	(+)-Threobase	Wasser	165	56
(+) 2c	(-)-Threobase	Methanol/Äther (1:3)	146	30

Konstanten der optisch aktiven und razemischen Säuren s. Tab. 2.

Optisch aktive dialkylierte Cyanessigsäuremethylester 3a-3c

Die optisch aktiven Cyanessigsäuren 2a-2c wurden unter Rühren mit ätherischer Diazomethanlsg, versetzt bis Gelbfärbung bestehen blieb. Reinigung erfolgte durch Destillation.

Verb.	aus	Ausbeute %	3a	C ₁₀ H ₁₄ NO ₂ B	Br (260,1)	Ber.: C 46,2 H 5,42 N 5,4
					(+)	Gef.: C 46,2 H 5,48 N 5,5
(+) 3a	(–) 2a	93			(–)	Gef.: C 46,2 H 5,49 N 5,3
(-) 3a	(+) 2a	89				
(+) 3b	(+) 2b	84	3ь	$C_{10}H_{17}NO_2$	(183,3)	Ber.: C 65,5 H 9,32 N 7,6
(-) 3b	(-) 2 b	83			(+)	Gef.: C 65,5 H 9,28 N 7,6
(-) 3c	(+) 2c	93			(–)	Gef.: C 65,7 H 9,40 N 7,9
Weitere	Daten s.	Tab. 2.	3с	C ₇ H ₁₁ NO ₂	(141,2)	Ber.: C 59,6 H 7,85 N 9,9
				_	(-)	Gef.: C 59,4 H 7,90 N 9,9

Razemische und optisch aktive 6-Iminobarbitursäuren 4a-4c

Die Kondensation der Ester 1a-1c bzw. 3a-3c mit Methylharnstoff und 2 Äquiv. 10 proz. Na-Äthylat- bzw. Na-Methylatlösung in absol. Äthanol bzw. Methanol ergab die razemischen bzw. die optisch aktiven 6-Iminobarbitursäuren. Die Alkoholatlösung wurde tropfenweise zur Lösung der beiden anderen Komponenten bei 50-70° Badtemp. zugegeben. Das Gemisch wurde anschließend zum Rückfluß erhitzt.

Verb.	Ester	Methylharn- stoff (Äquiv.)		Ausbeute %	krist. aus
4a	la	5	6 h	18	Äthanol/
(+) 4a	(+) 3a	4	2 h	9	Wasser
(-) 4a	(-) 3a	5	11 h	6	
4b	1b	5	16 h	ca. 50	Öl
(+) 4b	(–) 3b	5	24 h	41	Äthanol/
(-) 4b	(+) 3b	5	24 h	46	Wasser
4c	1c	4	22 h	22	Äthylacetat/
(+) 4c	(-) 3c	4	2 h	49	Äther

Zur Isolierung der 6-Iminobarbitursäuren wurde das Lösungsmittel abgezogen, der Rückstand in Eiswasser aufgenommen und zur Entfernung von Neutralstoffen mit Äther und Petroläther ausgeschüttelt. Die wäßrige Phase wurde mit Essigsäure neutralisiert und die Iminobarbitursäure mit NaHCO₃-Lsg. gefällt und abfiltriert bzw. mit Äther oder CHCl₃ extrahiert.

4a	$C_{11}H_{16}N_3O_2Br$	(302,2)	Ber.: C 43,7	H 5,34	N 13,9
		raz. 4a	Gef.: C 43,7	H 5,38	N 13,9
		(+) 4a	Gef · C 43 7	H 5 33	N 13 8

4b	$C_{11}H_{19}N_3O_2$	(225,3)	Ber.: C 58,6	H 8,50	N 18,7
		(+) 4b	Gef.: C 58,7	H 8,62	N 18,6
		(-) 4 b	Gef.: C 58,9	H 8,64	N 18,6
4c	$C_8H_{13}N_3O_2$	(183,2)	Ber.: C 52,4	H 7,15	N 22,9
		raz. 4c	Gef.: C 52,4	H 7,12	N 23,0
		(+) 4c	Gef.: C 52.8	H 7,24	N 23.2

Trennung von 4a und α-Isopropyl-α-(2'-bromallyl)-α-cyan-ω-N-methylacetureid nach 9)

2,3 g des bei der Kondensation von 0,02 Mol 1a erhaltenen Gemisches wurden in 18 proz. HCl/Äthylacetat (1 + 1) gelöst, die org. Phase abgetrennt und mit 18 proz. HCl gewaschen. Kristallisation aus Äthanol/Wasser ergab 0,5 g des dialkylierten Cyan- ω -N-methylacetureides (8,3% d. Th. bezogen auf 1a); Schmp. 173-174°.

IR-Daten: (KBr) $\nu_{\text{C}=N}$ 2240 cm⁻¹; $\nu_{\text{C}=\text{C}}$ 1628 cm⁻¹; $\nu_{\text{C}=\text{O}}$ 1690 cm⁻¹; $\nu_{\text{NH(A mid)}}$ 3350, 3230, 3120 cm⁻¹

Die wäßrige saure Phase wurde nach Ausschütteln mit Äthylacetat mit NH₄OH schwach alkalisiert und das ausgefallene 4a aus Äthanol/Wasser kristallisiert. Ausbeute: 1,1 g (18,2 % d. Th.). Daten s. Tab. 3.

(-)-1N-Methyl-5-isopropyl-5-acetonyl-barbitursäure (6)

Das bei der Kondensation von 0,044 Mol (-)3a mit Methylharnstoff nach Versetzen mit NaHCO₃ und Abtrennen des ausgefallenen Gemisches von (-)4a und halb ringgeschlossenem Produkt erhaltene Filtrat wurde je 1 mal mit Äther, Äthylacetat und Chloroform ausgeschüttelt. Die vereinigten org. Phasen wurden eingeengt und der Rückstand in 50 proz. H₂SO₄ 5 h zum Sieden erhitzt; das Reaktionsprodukt wurde aus Äthanol/Wasser umkristallisiert. Ausbeute: 2,4 g (22,7 % d. Th.). C₁₁H₁₆N₂O₄ (240,3) Ber.: C 55,0 H 6,71 N 11,7; Gef.: C 54,7 H 6,73 N 11,5. 2,4-Dinitrophenylhydrazon Schmp. 221° und 232° (cis-trans-Isomere); weitere Daten s. Tab. 3.

Razemische und optisch aktive N-Methyl-barbitursäuren 5a-5c

Die 6-Iminobarbitursäuren 4a-4c wurden mit H₂SO₄ in die Barbitursäuren 5a-5c überführt.

Verb.	6-Iminoba	rb. H ₂ SO ₄	Temp.°	Reaktions- dauer	Ausbeute %
5a	4a	4 N	80	4h	45
(+) 5a	(-) 4a	4 N	130	4h	72
(–) 5	ı (+) 4a	4 N	130	4h	44
5b	4b	5 N	120	5h	48 bez. auf 1b
(+) 5b	(+) 4b	5 N	120	4h	78
(–) 51	o(-) 4b	5N	120	4h	80
5c	4c	2 N	100	0,5h	63
(+) 5c	(+) 4c	2 N	100	0,5h	82

Die aus der Verseifungsisg. auskristallisierten rohen Barbitursäuren 5a-5c wurden aus Äthanol/-Wasser (5a und 5b) bzw. Wasser (5c) umkristallisiert.

5a	$C_{11}H_{15}N_2O_3Br$	(303,2)	Ber.:	C 43,6	H 4,99	N 9,2
		(+)	Gef.:	C 43,2	Н 4,94	N 9,3
		(-)	Gef.:	C 43,5	H 5,04	N 8,8
5b	C ₁₁ H ₁₈ N ₂ O ₃	(226,3)	Ber.:	C 58,4	Н 8,02	N 12,4
		raz.	Gef.:	C 58,3	H 8,11	N 12,3
		(+)	Gef.:	C 58,1	H 7,91	N 12,2
		(-)	Gef.:	C 58,2	Н 8,04	N 12,7
5c	C ₈ H ₁₂ N ₂ O ₃	(184,2)	Ber.:	C 52,2	Н 6,57	N 15,2
	0 12 2 0	raz.	Gef.:	C 52,3	H 6,61	N 14,9
		(+)	Gef.:	C 51,9	H 6,64	N 15,1

Katalytische Hydrierung von (+) 5a zu (-) 5b

400 mg (1,3 mMol) (+) 5a wurden nach 11) in 12 ml Methanol gelöst und 30 min. unter H_2 mit 0,15 g 10 proz. Pd/C bei Raumtemp. geschüttelt. Der Katalysator wurde abfiltriert, das Filtrat eingeengt und der Rückstand aus Äthanol/Wasser umkristallisiert. Ausbeute: 190 mg (64 % d. Th.); Schmp. 97-98° (Lit. 11) Schmp. 86-88°); Mischschmp. mit (-) 5b: 97,5°; $[\alpha]_D^{21} = -6,9^\circ$; (Lit. 11) $[\alpha]_D^{20} = -7,43^\circ$).

Tab. 2: Cyanessigsäuren 2 und -Ester 1 und 3

Verb.		Sdp.°/Torr	Schmp.°	[α] _D (Temp.)
1a		110/0,8		
		77/0,8		
16		113-114 /11-1216) 	
		93-94 /20		-
1c		84-85 /127)		
	raz.	Zersetzung	12-73	
2a	(+)		46-50	+10,66° (20)
	(-)		46-49	-10,7° (20)
		120-121 /0,53	51-52	
	raz.	168-169 /1316)	40-48 ¹⁶⁾	

¹⁶ E. Fischer und E. Flatau, Ber. dtsch. chem. Ges. 42, 2981 (1909).

Fortsetzung Tab. 2

Verb.		Sdp. °/Torr	Schmp.°	[α] _D (Temp.)°
<u> </u>			93-95	+3,0° (22)
2b	(+)		94-9516)	$\alpha_{\rm D}^{20}$ = +0,28° 10 proz. Lsg. ¹⁶)
	 		92-94,5	-3,2° (21)
	(-)		9016)	
		89-90 /0,35	47-50	
raz.	raz.	104/0,4 ¹⁷⁾	42,517)	
2c	(+)		Öl	+5,49° (23)
		92/0,2 ¹⁷⁾	44 ¹⁷⁾	+4,56° (20) ¹⁷⁾
	(+)	124/1,8		+1,5° (20)
3a	(-)	88/0,3		-1,5° (22)
24	(+)	58/0,3		+6,9° (25)
3ъ	(-)	57/0,27		-7,1° (20)
3c	(-)	42/0,5		-1,42° (25)

Tab. 3: Iminobarbitursäuren 4 und Barbitursäuren 5

Verb.		Schmp. °	[α] _D (Temp.)°	
42	raz.	198-199		
	(+)	193-194	+24,4°	(23)
4b	raz.	Öl		
	(+)	126	+57,0°	(23)
	(-)	126	-58,1°	(22)

¹⁷ J. Plisch, Diplomarbeit, Saarbrücken 1972.

Fortsetzung Tab. 3

Verb.		Schmp. °	[α] _D (Temp.)°	
4c	raz.	144-145		
	(+)	131	+34,3°	(24)
5a	raz.	115-116		
	(+)	127-128	+7,3°	(22)
		120 ²⁾	+5,7°2)	
	(-)	128	-7,7°	(25)
		120 ²⁾	-6,0° ²⁾	
5b	raz.	83-84		
		82-8311)		
	(+)	97	+6,2°	(21)
	(-)	97	-6,8°	(22)
		86-8811)	-7,43°11)	
5c	гаz.	117-118	-	
	(+)	108-109	+4,4°	(23)
6	raz.	138-13910)		
	(-)	169-170	-9,45°	(23)

Spezifische Drehungen: Lichtelektrisches Präzisionspolarimeter LEP A2, Carl Zeiss; absol. Äthanol. ORD-Spektren: Cary-Spektralpolarimeter, Modell 60, Methanol. Schmelzpunkte: Kofler-Heiztisch-Mikroskop und Mettler FP 1.