Deacylations and Syntheses of Some 9-Acylfluorenes

Takao Kimura, Masahiro Minabe,* Motohiro Tsubota, and Kazuo Suzuki Department of Industrial Chemistry, Faculty of Engineering, Utsunomiya University, Ishiicho, Utsunomiya 321-31 (Received August 14, 1976)

Deacylations of substituted 9-acetyl-, 9-propionyl-, 9-benzoyl-fluorene, and 9-fluorenyl 9-methyl-9-fluorenyl ketones were studied; the reactivity of deacylation was enhanced by the substitution of the 9-hydrogen atom on 9-acetylfluorene. The reaction of 9-acetylfluorene with ethyl nitrate afforded 9-aci-nitrofluorene.

Deacylation promoted by a base has been known already to occur in the active methylene to which an acyl group is attached. In fluorene derivatives, 9-benzoyl-fluorene (1) gave fluorene (2) and benzoic acid, 1) and 9-chloro-9-acetylfluorene (3) afforded 9,9'-bifluorenyl (4).2) The present work deals with the deacylation of 9-acylfluorenes in order to clarify the reactivities on the 9-carbon atom of fluorenes.

Deacetylation of 9-acetylfluorene (5)³⁾ yielded 2 and ethyl acetate; the yield of 2 increased (28—96%) with the increase of base concentration (1—20%) and with the extension of the reaction time (1—10 h). The deacetylation may be explained by the nucleophilic attack of ethoxide anion on the cationic carbon atom of carbonyl in 5 to form the intermediary carbanion (A) as the reverse-Claisen-type condensation (Scheme 1).

The deacylation of some 9-acylfluorenes was carried out as shown in Table 1. The substituent effect in the deacylation of 9-propionyl- (6),⁴⁾ 2-ethyl-9-acetyl- (7), and 2-bromo-9-acetylfluorene (8) was observed to be less significant in comparison with that of 5. The reaction of 9,9-dibenzoylfluorene (9)⁵⁾ with base afforded 1, which was further converted to 2 by debenzoylation.

The elimination was accelerated remarkably in the deacetylation of 3, 9-methyl- (10),⁶⁾ and 9-hydroxy-9-acetylfluorene (11).⁷⁾ The ethoxide anion may be able to attack on the two positions of 5, that is, the 9-carbon

and the carbonyl carbon atoms. The 9-acetylfluoren-9-ide anion would be stabilized by resonance as enolate anion and 5 is less reactive under these conditions. The substitution on the 9-position of 5 prevents the attack on this position and results in the significant formation of the elimination product.

The reaction of **5** with ethyl nitrate in the presence of sodium ethoxide gave pure 9-aci-nitrofluorene⁸⁾ in good yield. The ethoxide anion removes a proton from the 9-position on the **5**. The resulting carbanion may afford the intermediary 9-nitro-9-acetylfluorene by an attack of ethyl nitrate, and this was converted to 9-aci-nitrofluorene by the action of a second ethoxide anion and by the tautomeric effect of the nitro group (Scheme 2).

The deacetylation of the substrate containing an electron-attracting group proceeds more readily than that having an electron-releasing group. Actually, the progress of the deacylations for 3 and also for 10 was followed by means of gas chromatography; the 10 still remained in a considerable amount (37%) at the reaction step in which all the 3 had been consumed. Chloride 3 gave 9,9'-bifluorenylidene (46%) and 4 (trace), and the ethylene was reduced to 4 under similar conditions.

The reactivity of the carbonyl group in 9-t-butyl-9-acetylfluorene (12) is hindered by the bulky substituent

^{*} To whom inquiries should be addressed.

Table 1. Characterization and deacylation of 9-acylfluorenes

	Characterization		Deacylation	
Compound	$^{1} ext{H-NMR}$ chemical shift*) $\delta(ext{ppm})$; J (Hz)	v(C=O) on IR spectrum (cm ⁻¹)	Fluorene %	Recovd
5	1.60 (-CH ₃); 4.78 (>CH-)	1698	42 (2)	45
6	0.78 (-CH ₃ , J =6.3); 1.75(-CH ₂ -); 4.64 (>CH-)	1700	42 (2)	38
7	1.26 (-CH ₃ , J =6.0); 1.46 (-COCH ₃) 2.67 (-CH ₂ -); 4.59 (>CH-)	; 1701	45 (2-Ethyl-)	45
8	1.65 (-CH ₃); 4.75 (>CH-)	1698	55 (2-Bromo-) ^{b)}	
9	•	1680	23(1); 26(2)	
1	5.37 (>CH-)	1681	66 (2)	26
10	1.37 (-CH ₃); 1.57 (-COCH ₃)	1702	94 (9-Methyl-)	trace
11	1.54 (-CH ₃); 4.78 (-OH)	1700	96 (9-Hydroxy-)	trace
12	0.99 (-CH ₃); 1.36 (-COCH ₃)	1699	34 (9- <i>t</i> -Butyl-)	57
13	2.19 (-CH ₃); 2.87 (-CH ₂ -, J =4.8); 4.45 (>CH-)	1707	, , ,	99

a) Measured in CDCl₃ or CCl₄. b) In addition, 2-bromo-9-acetyl-9-hydroxyfluorene (2%, mp 154—155 °C, IR: (OH) 3460; (C=O) 1704 cm⁻¹) and 2,2'-dibromo-9,9'-diacetyl-9 9'-bifluorenyl (0.3%, mp 238—240 °C, IR: (C=O) 1705 cm⁻¹) were isolated.

Table 2. Characterization and deacylation of 9-acylfluorenes

Compound	Characterization]	Deacylation
	¹ H-NMR chemical shift δ (ppm) (Solvent)	v (C=O) on IR spectrum (cm ⁻¹)	Time h	Products (%)
16	1.78 (-CH ₃); 4.52 (>CH-) (Pyridine- d_5)	1700	1	2 (31); 17 (10); 18 (31); 9-Methylfluorene (9); Recovd (42)
16			10	2 (58); 17(22); 18 (30); 9-Methylfluorene (41)
18	$1.69 \text{ (-CH}_3); 1.04 \text{ (-CH}_3, \\ J=7.0 \text{ Hz}); 3.97 \text{ (-CH}_2-) \\ \text{(CCl}_4)$	1721	10	9-Methylfluorene (18); 17 (14); Recovd (67)
19	3.63 (-CH ₃); 4.71 (>CH-) (CCl ₄)	1729	10	2 (8); 20 (57); Ethyl ester of 20 (10)

from the approach of an attacking ethoxide ion, therefore, the yield of 9-t-butylfluorene⁹⁾ decreased. No deacetylation was observed in the cases of 9-acetonylfluorene (13)¹⁰⁾ and 2-acetylfluorene.¹¹⁾ This finding shows that deacylation occurs when the acyl group is attached directly to the active 9-position of fluorenes. The anomalous lower field (2.19 ppm) of the methyl chemical shift of 13 compared with that (1.60 ppm) of 5 is ascribed to the predominant conformation of 13 and 5; the mobile methyl group of 13 may be located further away from the shield zone of the aromatic rings than that of 5.

The reaction of 9,9'-diacetyl-9,9'-bifluorenyl (14)²⁾ afforded dehydrate compound 15 accompanied by 4 (Scheme 3); 15 would be formed by the intramolecular aldol-type condensation.

The same reaction of 9-fluorenyl 9-methyl-9-fluorenyl ketone (16) yielded 2, 9-methylfluorene, 9-methylfluorene-9-carboxylic acid (17),¹²⁾ and its ethyl ester (18),¹³⁾ as summarized in Table 2. The ester 18 gave 9-methylfluorene and 17. Similarly, methyl fluorenyl-9-carboxylate (19) yielded 2, the corresponding carboxylic acid (20), and its ethyl ester. The ratio of the yields of these products indicates that 16 cleaves into 9-fluorenide anion and 18, but not into 9-methylfluoren-9-ide anion and an ester of 20; this may be attributed to

the stability of the 9-fluorenide anion formed, which is greater than that of the methyl derivative.

Experimental

All the melting points are uncorrected. The instruments used in this experiment have been described elsewhere.¹¹⁾

Deacylation of 9-Acylfluorene. General Procedure: Sodium metal (1.15 g) was treated with 33 ml of dry ethanol, then 5 mmol of substrate was added, and the mixture was refluxed for 10 h under an atmosphere of dry nitrogen. Upon cooling, the reaction mixture was poured into 150 ml of 3% hydrochloric acid and the resulting precipitate was purified by a combination of alumina-column chromatography, vacuum sublimation, and recrystallization.

Reaction of 14 with Sodium Ethoxide. A 2.070 g portion of 14 was refluxed with 3.4 g of sodium ethoxide in 330 ml of dry benzene for 10 h to give 0.450 g of 3-methyl-4,5-bis(2,2'-biphenylylene)-2-cyclopenten-1-one (15), 0.012 g of 4, and 0.010 g of fluorenone. Mp of 15: 233.5—234.5 °C. IR: (C=O) 1694 cm⁻¹. Mass: m/e 396 (M+), 381, and 352. NMR (benzene- d_6): δ 1.29 (3H, s), 6.47 (1H, s), and 6.65—7.35 (16H, m) ppm. Found: C, 90.96; H, 5.17%. Calcd for $C_{30}H_{20}O$: C, 90.88; H, 5.09%.

Reaction of 5 with Ethyl Nitrate. A soln of 2.08 g of 5, 1.82 g of ethyl nitrate, and 0.68 g of sodium ethoxide in 20 ml of dry ethanol was refluxed for 2 h. Upon cooling, 100 ml of

benzene and 150 ml of water were added to the reaction mixture and the aqueous layer was neutralized with hydrochloric acid to yield 1.53 g of 9-aci-nitrofluorene, mp 154 °C (dec). IR: (OH) 2770; (NO₂) 1653, 1441 cm⁻¹.

2-Ethyl-9-acetylfluorene (7). Compd 7 was prepared by means of the same procedure as used for 5 in a 34% yield, bp 142—144 °C/2 Torr (uncorr.). Mass: m/e 236 (M⁺).

2,4-Dinitrophenylhydrazone, mp 200—202 °C. IR: (NH) 3320; (NO₂) 1614, 1589 cm⁻¹. Found: C, 66.68; H, 4.95; N, 13.58%. Calcd for $C_{23}H_{20}O_4N_4$: C, 66.33; H, 4.84; N, 13.46%.

2-Bromo-9-acetylfluorene (8). The title compd was obtained by the same method as described above, yield 30%, mp 66—67 °C. Mass: m/e 288, 286 (M⁺), 245, 243, and 207. Found: C, 62.95; H, 3.64%. Calcd for $C_{15}H_{11}OBr$: C, 62.74; H, 3.86%.

9-t-Butyl-9-acetylfluorene (12). Compd 12 was obtained by a procedure similar to that of 10 in a 39% yield, mp 76.5—77 °C. Mass: m/e 264 (M⁺), 249, 221, 208, 206, 191, and 165. Found: C, 86.73; H, 7.77%. Calcd for $C_{19}H_{20}O$: C, 86.32; H, 7.63%.

9-Acetonylfluorene (13). This compd was synthesized by the reaction of α -(9-fluorenyl)acetyl chloride with methylmagnesium iodide in the presence of cadmium chloride: yield 58%, mp 62—63 °C (lit, 10) mp 57 °C). Mass: m/e 222 (M+), 179, and 165.

9-Fluorenyl 9-Methyl-9-fluorenyl Ketone (16). To a soln of 9-methyl-9-lithiofluorene (prepared from 0.96 g of lithium chips, 9.4 g of butyl bromide, and 10.3 g of 9-methylfluorene in 100 ml of xylene) was added dropwise 12.0 g of 9-fluorenyl-carbonyl chloride in 60 ml of xylene at 0 °C with stirring for

30 min, then the mixture was boiled for 1 h to afford 6.45 g of 16, mp 226—227.5 °C. Mass: m/e 372 (M⁺), 179, and 165. Found: C, 90.27; H, 5.57%. Calcd for $C_{28}H_{20}O$: C, 90.29; H, 5.41%.

References

- 1) P. Pféiffer and E. Lübbe, Ber., 63, 762 (1930).
- 2) E. J. Greenhow, A. S. Harris, and E. N. White, *J. Chem. Soc.*, **1954**, 3116.
 - 3) I. Von and E. C. Wagner, J. Org. Chem., 9, 155 (1944).
- 4) S. Wawzonek and E. Dufek, J. Am. Chem. Soc., 78, 3530 (1956).
- 5) G. W. H. Scherf and R. K. Brown, Can. J. Chem., 39, 1613 (1961).
- 6) E. J. Greenhow, D. McNeil, and E. N. White, J. Chem. Soc., 1952, 986.
- 7) G. F. Hennion and B. R. Fleck, J. Am. Chem. Soc., 77, 3253 (1955).
- 8) C. D. Nenitzescu and D. A. Isăcescu, *Ber.*, **63**, 2484 (1930).
- 9) F. A. L. Anet and P. M. G. Bavin, Can. J. Chem., **34**, 991 (1956).
- 10) J. A. Gautier, M. Miocque, and H. Moskowitz, Bull. Soc. Chim. Fr., 1965, 1740; Chem. Abstr., 63, 8280 (1965).
- 11) M. Minabe, M. Yoshida, M. Fujimoto, and K. Suzuki, J. Org. Chem., **41**, 1935 (1976).
- 12) E. J. Greenhow, E. N. White, and D. McNeil, *J. Chem. Soc.*, **1953**, 3099.
- 13) P. M. G. Bavin, Anal. Chem., 32, 554 (1960).