A New Synthetic Route to Mesoionic Thiazoles

By Michèle Baudy and Albert Robert*

(Groupe de recherches de chimie structurale, E.R.A. 389, Université de Rennes, Avenue du Général Leclerc, Rennes, France)

Summary Mesoionic thiazoles are obtained in good yield by the reaction of gem-dicyano epoxides with thioamides in a neutral medium.

ANHYDRO-5-HYDROXYTHIAZOLIUM HYDROXIDES (3) are masked 1,3 dipoles and are useful synthetically in heterocyclic chemistry, 1 but only a few synthetic routes leading to them are known. 2 We report here a new synthetic route to the mesoionic compounds (3).

TABLE. Preparation of the mesoionic thiazoles (3)a

x	R^1	R²	M.p. (t/°C)	Yield (%)	$ \nu_{\rm C=O}/{\rm cm^{-1}} $ (CCl ₄)
H	Ph	Ph	270 ^b	72	1630
C1	Ph	$\mathbf{P}\mathbf{h}$	300	94	1630
NO_2	Ph	$\mathbf{P}\mathbf{h}$	273	70	1654
Cl	${ m Ph}$	$PhCH_2$	168	65	1625
NO_2	Ph	PhCH ₂	210	71	1638
Cl	Me	Ph	180	30	1716, 1 62 8
NO_2	Me	Ph	280	60	1644

 $^{\rm a}$ Combustion analyses and mass spectra of the compounds herein are in agreement with this structure. $^{\rm b}$ Ref. 5.

The gem-dicyano-epoxides³ (1) react in solution in dioxan or acetone with stoicheiometric quantities of the

thioamides (2) (Scheme 1).4 In most cases the reaction is complete after 24 h at room temperature and the meso-

ionic thiazoles (3) are obtained after evaporation. They are usually deep red, with the ring carbonyl i.r. band in the

Scheme 2. For (3), δ (Me) 2·48(s); for (4); δ (CH) 5·18(s), δ (CH₂) 4·34 (ABq, J_{AB} 2·5 Hz). All signals disappear on addition of CD₃CO₂D.

range² 1620—1650 cm⁻¹ (Table). It is interesting that compound (3; X = Cl, $R^1 = Me$, $R^2 = Ph$) shows two carbonyl bands in solution in CCl4, whereas the solid (Nujol mull) shows only one band, at 1623 cm⁻¹. Its n.m.r. spectrum (CHCl₃) shows the existence of a tautomeric equilibrium (3) ⇒ (4) (Scheme 2).

This result suggests that the compound obtained by Ohta

et al., 5 is not a mesoionic compound (3; X = H, $R^1 = Me$, $R^2 = Ph$). The unusually high value of the carbonyl band $1710 \, \mathrm{cm^{-1}}$ (KBr) observed for this compound, is in best agreement with a tautomeric form similar to (4).

(Received, 31st October 1975; Com. 1228.)

- ¹ K. T. Potts, E. Houghton, and U. P. Singh, Chem. Comm., 1969, 1129; J. Org. Chem., 1974, 39, 3627; K. T. Potts, J. Baum, and E. Houghton, J. Org. Chem., 1974, 39, 3631; S. Nakazawa, T. Kiyosawa, K. Hirakawa, and H. Kato, J.C.S. Chem. Comm., 1974,
- ² M. Ohta and H. Kato, 'Sydnones and Other Mesoionic Compounds,' in 'Non-benzoid Aromatics,' ed. J. P. Snyder, Academic Press, New York, 1969.
- The gem-dicyano-epoxides (1) were obtained quantitatively in a few minutes, by the reaction of NaClO with α-cyano-acrylonitriles: J. J. Pommeret and A. Robert, Tetrahedron, 1971, 27, 2977.
 This reaction is comparable with the reaction of (1) and with thiourea, leading to 2-amino-4-thiazolinones.
- must be similar; M. Ferrey, A. Robert, and A. Foucaud, Compt. Rend., 1973, 277C, 1153.

 M. Ohta, H. Chosho, C. Shin, and K. Ichimura, J. Chem. Soc. Japan, 1964, 85, 440.