Rhenium-catalyzed [2 + 2] Cycloadditions of Norbornenes with Internal and Terminal Acetylenes

Yoichiro Kuninobu,* Peng Yu, and Kazuhiko Takai*

Division of Chemistry and Biochemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530

(Received June 27, 2007; CL-070686; E-mail: kuninobu@cc.okayama-u.ac.jp; ktakai@cc.okayama-u.ac.jp)

Treatment of norbornenes with internal and terminal acetylenes in the presence of a catalytic amount of $[ReBr(CO)_3(thf)]_2$ gave cyclobutene derivatives in good to excellent yields.

[2 + 2] Cycloadditions of olefins with acetylenes is one of the most powerful tools to synthesize cyclobutene derivatives. Following Woodward–Hoffman rules, [2 + 2] cycloaddition reactions usually proceed under UV-irradiation conditions. However, using transition-metal complexes sometimes enables the reaction to be promoted without UV-irradiation. There have been many reports on metal-mediated¹ or catalyzed [2 + 2] cycloadditions of norbornenes with acetylenes; the following metal complexes have been used: ruthenium,² iron,³ cobalt,⁴ rhodium,⁵ nickel,⁶ palladium,⁷ and copper.⁸ Recently, we have been investigating the catalytic abilities of rhenium complexes.^{9,10} In the process, we found that a rhenium complex also has the ability to catalyze [2 + 2] cycloadditions between norbornenes and acetylenes.

By treatment of norbornene (1a) with dimethyl but-2ynedioate (2a) in the presence of a rhenium complex, [Re-Br(CO)₃(thf)]₂, as a catalyst, [2 + 2] cycloaddition reaction proceeded and cyclobutene derivative **3a** was formed in 30% yield (Table 1, Entry 1). Another rhenium complex, ReBr(CO)₅, also provided **3a** in the same yield.¹¹ To the best of our knowledge, this is the first example of rhenium-catalyzed [2 + 2] cycloaddition between a norbornene derivative and an acetylene.

To improve the yield of **3a**, several additives were examined (Table 1). The yield of **3a** did not increase by addition of various Lewis acids and bases (Table 1, Entries 2–10). However, when *tert*-butyl isocyanide was added, the yield of **3a** was increased (Table 1, Entry 11). Benzyl isocyanide and 2,6-dimethylphenyl isocyanide also provided **3a** in moderate yields, respectively (Table 1, Entries 12 and 13). By using a bulky isocyanide, 2,6-diisopropylphenyl isocyanide, cyclobutene derivative **3a** was obtained in 71% yield (Table 1, Entry 14).¹²

By increasing the amounts of the rhenium catalyst, [Re-Br(CO)₃(thf)]₂, and 2,6-diisopropylphenyl isocyanide, the yield of cyclobutene derivative **3a** was increased slightly (Table 2, Entry 1). Norbornadiene (**1b**) also gave the corresponding cyclobutene **3b**; however, the yield of **3b** was low (Table 2, Entry 2). In this reaction, a 1:2-adduct was not formed. Treatment of benzonorbornadiene (**1c**) with acetylene **2a** provided cyclobutene **3c** in 68% yield (Table 2, Entry 3). When the reaction was conducted at higher temperature (150 °C), the yield of **3c** increased to 92% yield (Table 2, Entry 4).

Next, we investigated the reactivities of several acetylenes (Table 3). Diethyl but-2-ynedioate (**2b**) also afforded **3d**; however, the yield of **3d** was low (Table 3, Entry 1). By using acetylenes having a phenyl or an alkyl group, **2c** and **2d**, also pro-

A		[R⊢ CO₂Me —	eBr(CO addit	0) ₃ (thf)] ₂ (2.5 mol %) ive (5.0 mol %)	CO ₂ Me
1a	2a		toluene, 115 °C, 24 h 3a		
Entry	Additive	Yield/% ^b	Entry	Additive	Yield/% ^b
1	none	30	8	benzonitrile	5
2	Sc(OTf) ₃	30	9	N,N-dimethylimidazolidinone	10
3	Y(OTf) ₃	28	10	tetrahydrothiophene	1
4	In(OTf) ₃	36	11	t-BuNC	43
5	PPh3	5	12	PhCH ₂ NC	52
6	N,N-dimethylaniline	5	13	2,6-Me ₂ C ₆ H ₃ NC	58
7	pyridine	1	14	2,6- <i>i</i> -Pr ₂ C ₆ H ₃ NC	71

Table 1. Investigation of various additives^a

^a**2a** (2.0 equiv.). ^{b1}H NMR yield.

Table 2. Reactions between norbornene 1 and dimethyl but-2ynedioate $(2a)^a$

^a**2a** (2.0 equiv.) ^bIsolated yield. The yield determined by ¹H NMR is reported in parentheses.

duced the corresponding cyclobutene derivatives **3e** and **3f** in 57 and 77% yields, respectively (Table 3, Entries 2 and 3). It is usually difficult to obtain cyclobutene derivatives from terminal acetylenes.^{13,14} By using a rhenium catalyst, cyclobutene derivatives **3g–3j** were also obtained from terminal acetylenes **2e–2h** (Table 3, Entries 4–7). In these reactions, trimerization products of acetylenes were not detected.

The proposed reaction mechanism is as follows (Scheme 1):

Table 3. Reactions between norbornadienes 1 and acetylenes 2^{a}

1 1	↓ + R-=	$= -R' = \frac{[\text{ReBr}(\text{CO})_3(\text{thf})]_2 (5.0 \text{ m})_2}{2}$	nol %)	R' 3
Entry	Norbornene	Acetylene	Temp/°C	Yield/% ^b
1	1c	EtO ₂ CCO ₂ Et 2b	150	3d 40 (45)
2 ^c	1c	MeO ₂ CPh 2c	180	3e 57 (60)
3	1c	MeO ₂ CMe 2d	150	3f 77 (82)
4	1c	MeO ₂ CH 2e	150	3g 76 (77)
5	1c	EtO ₂ CH 2f	150	3h 72 (73)
6	1c	он 2g	150	3i 22 (41)
7	1b	Ph	115	3j 17 (20)

^a**2a** (2.0 equiv.) ^bIsolated yield. The yield determined by ¹H NMR is reported in parentheses. ^cBenzonorbornadiene (2.0 equiv.), acetylene (1.0 equiv.), ReBr(CO)₅ was used as a catalyst.

Scheme 1. Proposed mechanism of the formation of cyclobutene derivatives.

(1) coordination of a norbornene and an acetylene to a rhenium center; (2) formation of a rhenacyclopentene intermediate;^{9f,15,16}
(3) reductive elimination.

In summary, we have succeeded in the [2 + 2] cycloaddition of norbornenes with both internal and terminal acetylenes using a rhenium complex, [ReBr(CO)₃(thf)]₂, as a catalyst and an isocyanide, 2,6-diisopropylphenyl isocyanide, as an additive. Recently, we have reported rhenium-catalyzed insertion of acetylenes into a carbon–carbon single bond of non-strained cyclic compounds under mild conditions.^{9f} In the first step of the ring-enlargement, we have postulated the formation of a rhenacyclopentene intermediate by the reaction of the rhenium catalyst, a β -keto ester and a terminal acetylene. To the best of our knowledge, this is the first example of rhenium-catalyzed [2 + 2] cycloaddition, and this result supports the mechanism for the ring-enlargement.

References and Notes

- a) M. Frank-Neumann, M. Miesch, L. Gross, *Tetrahedron Lett.* 1990, *31*, 5027. b) D. Neville, W. S. Murphy, *Tetrahedron Lett.* 1996, *37*, 5221.
- 2 a) T. Mitsudo, K. Kokuryo, Y. Takegami, J. Chem. Soc., Chem.

Commun. **1976**, 722. b) T. Mitsudo, T. Kondo, *Synlett* **2001**, *3*, 309. c) P. Alvarez, J. Gimeno, E. Lastra, S. Garcia-Granda, J. F. Van der Maelen, M. Bassetti, *Organometallics* **2001**, *20*, 3762. d) A. Tenaglia, L. Giordano, *Synlett* **2003**, 2333. e) K. Villeneuve, W. Tam, *Angew. Chem., Int. Ed.* **2004**, *43*, 610. f) P. Liu, R. W. Jordan, S. P. Kibbee, J. D. Goddard, W. Tam, *J. Org. Chem.* **2006**, *71*, 3793.

- 3 A. Greco, A. Carbonaro, G. Dall'Asta, J. Org. Chem. 1970, 35, 271.
- 4 K. C. Chao, D. K. Rayabarapu, C.-C. Wang, C.-H. Cheng, J. Org. Chem. 2001, 66, 8804.
- 5 T. Shibata, K. Takami, A. Kawachi, Org. Lett. 2006, 8, 1343.
- 6 M. Lautens, L. G. Edwards, W. Tam, A. J. Lough, J. Am. Chem. Soc. 1995, 117, 10276.
- 7 B. M. Trost, M. Yanai, K. Hoogsteen, J. Am. Chem. Soc. 1993, 115, 5294.
- 8 Y. Takenaka, H. Ito, M. Hasegawa, K. Iguchi, *Tetrahedron* 2006, 62, 3380.
- 9 a) Y. Kuninobu, A. Kawata, K. Takai, J. Am. Chem. Soc. 2005, 127, 13498. b) Y. Kuninobu, A. Kawata, K. Takai, Org. Lett. 2005, 7, 4823. c) Y. Kuninobu, Y. Tokunaga, A. Kawata, K. Takai, J. Am. Chem. Soc. 2006, 128, 202. d) Y. Kuninobu, Y. Nishina, M. Shouho, K. Takai, Angew. Chem., Int. Ed. 2006, 45, 2766. e) Y. Kuninobu, Y. Nishina, K. Takai, Org. Lett. 2006, 8, 2891. f) Y. Kuninobu, A. Kawata, K. Takai, J. Am. Chem. Soc. 2006, 128, 11368. g) Y. Kuninobu, Y. Nishina, C. Nakagawa, K. Takai, J. Am. Chem. Soc. 2006, 128, 12376. h) Y. Kuninobu, Y. Inoue, K. Takai, Chem. Lett. 2006, 35, 1376.
- Rhenium-catalyzed reactions have also been reported by other groups, see: a) F. E. Kühn, A. Scherbaum, W. A. Herrmann, J. Organomet. Chem. 2004, 689, 4149. b) M. R. Luzung, F. D. Toste, J. Am. Chem. Soc. 2003, 125, 15760. c) K. A. Nolin, R. W. Ahn, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 12462. d) H. Kusama, H. Yamabe, Y. Onizawa, T. Hoshino, N. Iwasawa, Angew. Chem., Int. Ed. 2005, 44, 468. e) L. L. Ouh, T. E. Müller, Y. K. Yan, J. Organomet. Chem. 2005, 690, 3774.
- 11 This reaction did not proceed using Re₂(CO)₁₀, ReBr(CO)₃-(2,2'-bipyridyl), Re(C₅Me₅)(CO)₃, ReCl₃, ReCl₃(PMe₂Ph)₃, ReCl₃O(PPh₃)₂, and Re₂O₇.
- 12 The role of isocyanides is not clear. However, addition of the isocyanide inhibited the polymerization of acetylenes.
- 13 Ruthenium complexes, RuCl₂(PPh₃)₃ and RuH₂(CO)(PPh₃)₃, which are sometimes employed as catalysts to promote [2 + 2] cycloadditions of norbornenes with acetylenes, did not give cyclobutene derivatives **3g** and **3h**.
- 14 For ruthenium-catalyzed [2 + 2] cycloadditions using terminal acetylenes, see: T. Mitsudo, H. Naruse, T. Kondo, Y. Ozaki, Y. Watanabe, *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 580. However, the yields of cyclobutenes are low because of cyclic trimerization of acetylenes.
- 15 There are some reports on transition-metal-catalyzed synthesis of [2+2] cycloadducts by the reactions between bicyclic alkenes and acetylenes via metalacyclopentene intermediates, see: a) T. Mitsudo, K. Kokuryo, T. Shinsugi, Y. Nakagawa, Y. Watanabe, Y. Takegami, J. Org. Chem. 1979, 44, 4492. b) D.-J. Huang, D. K. Rayabarapu, L.-P. Li, T. Sambaiah, C.-H. Cheng, Chem. Eur. J. 2000, 6, 3706. c) K. C. Chao, D. K. Rayabarapu, C.-C. Wang, C.-H. Cheng, J. Org. Chem. 2001, 66, 8804.
- 16 In this step, the orientation of the acetylene is not clear.
- 17 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/index.html.