

Bioorganic & Medicinal Chemistry Letters 11 (2001) 3143-3146

Discovery, Total Synthesis, HRV 3C-Protease Inhibitory Activity, and Structure–Activity Relationships of 2-Methoxystypandrone and Its Analogues

Sheo B. Singh,^{a,*} Pia L. Graham,^b Robert A. Reamer^a and Michael G. Cordingley^b

^aMerck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA ^bMerck Research Laboratories, West Point, PA 19486, USA

Received 28 August 2001; accepted 24 September 2001

Abstract—2-Methoxystypandrone, a naphthoquinone, was isolated from a Chinese herb *Polygonum cuspidatum* by bioassay guided fractionation using HRV 3C-protease assay. It showed an IC₅₀ value of 4.6 μ M and is moderately selective. A new 10-step, total synthesis of 2-methoxystypandrone was accomplished in 45% overall yield using a Diels–Alder approach. Several analogues of this compound were prepared. Isolation, synthesis and HRV 3C-protease structure–activity relationships of these compounds have been described. © 2001 Elsevier Science Ltd. All rights reserved.

Human rhinoviruses (HRVs) are members of the picornavirus family of viruses and are the single most significant causative agents of the common cold.¹ More than 100 serotypes of these viruses are known and they typically infect upper respiratory tract in humans and target nasal epithelial cells. A 220 kDa polypeptide is translated by the positive-sense viral RNA genome upon entry into the host cell. This polypeptide is proteolytically processed by virus-specific proteases (HRV 2A and HRV 3C) to afford structural and functional proteins that are required for replication of HRV.² HRV 3C-protease, a cysteine protease, is responsible for the polypeptide cleavage between Q-G amino acids and plays a critical role in the replication cycle of HRVs and thus constitutes a potential therapeutic target for the control of HRVs and common cold.^{2,3} AG-7088, one of the inhibitors of this enzyme is in phase II clinical development for the treatment against the infections of HRVs.4

Screening of natural product extracts against HRV 3Cprotease using a small peptide containing Q-G scissile bond as a substrate led to the discovery of thysanone $(1)^5$ as a novel inhibitor from an extract of a fungus, *Thysanophora penicilloides*. Continued screening revealed potent HRV 3C-protease activity in the extracts of Chinese herb, Polygonum cuspidatum. The bioassay guided fractionation of the extract led to the isolation of three compounds identified as 2-methoxystypandrone (2), emodin (3), and methoxyemodin (4). The compound 2 showed IC₅₀ value of $4.6 \,\mu\text{M}$ in HRV 3C-protease assay. The present paper describes the discovery, structure, a new total synthesis, HRV 3C-protease inhibitory activity, and SAR of 2methoxystypandrone and related compounds.

Isolation and Structure

Sephadex LH 20 chromatography of a 1:1 CH₃OH– CH₂Cl₂ extract (100 mg) of *P. cuspidatum* followed by chromatographies on silica gel and reversed-phase C-8 HPLC yielded **2** (1 mg), **3** (5 mg), and **4** (2 mg). The structure of **2** was elucidated as 2-methoxystypandrone by comparison of spectral data (UV, IR, and ¹H NMR).⁶ The structures of **3** and **4** were determined by comparison with authentic samples.

0960-894X/01/\$ - see front matter \odot 2001 Elsevier Science Ltd. All rights reserved. P11: S0960-894X(01)00648-5

^{*}Corresponding author. Tel.: + 1-732-594-3222; fax: + 1-732-594-6880; e-mail: sheo_singh@merck.com

Synthesis of 2-Methoxystypandrone

The quantity of 2-methoxystypandrone isolated from the plant extract was very small and resupply of the compound for further biological evaluations had to be accomplished by a total synthesis. A 14-step total 9% overall yielding synthesis of this compound was reported by Hughes and Sargent.^{6b} However, we decided to design a new synthesis that would be more amenable for analogue synthesis for SAR. In our synthetic approach we took advantage of the regio-selective Diels–Alder reactions⁷ of suitably substituted chloro-benzoquinone and appropriately substituted *O*-silyloxy butadiene followed by oxidation for the construction of the naphthoquinone. A 10-step 45% overall yielding synthesis (Scheme 1) of **2** follows.

Thus, Diels–Alder reaction of 1-trimethylsilyloxy-1, 3butadiene⁸ (5) with 2-methoxy-5-chloro-benzoquinone (6) in refluxing benzene followed by Jones oxidation afforded naphthoquinone (7) in 88% yield. MOM protection of the phenolic group produced compound 8 in 99% yield, which was reduced with sodium dithionite and alkylated with dimethyl sulfate to give trimethyl ether (9) in 97% yield. Deprotection of the MOM ether

Scheme 1. Reagents and conditions: (i) Benzene, reflux, 24 h; (ii) Jones oxidation; rt, 20 min; (iii) MOMCl, DIPEA, CH_2Cl_2 , 0 °C to rt, 16 h; (iv) (a) Sodium dithionite, dioxane–H₂O, 1:1, rt, 15 min; (b) KOH, dimethyl sulfate, rt, 2 h; (v) dioxane–MeOH–H₂O–H₂SO₄, 3:6:2:0.8, rt, 16 h; (vi) Ac₂O, C₅H₅N, rt, 20 h; (vii) BF₃·Et₂O, 60 °C, 35 min; (viii) Ac₂O, C₅H₅N, rt, 20 h; (ix) CAN (excess), CH₃CN–H₂O, 3:1, 30 min; (x) KOH, MeOH–H₂O, 6:1, 0.5 min, 6 N HCl.

turned out to be challenging but was efficiently accomplished by using a mixture of dioxane–MeOH–H₂O– H₂SO₄ (3:6:2:0.8), which gave deprotected product **10** in 99% yield after chromatography. Standard acetylation of compound **10** furnished compound **11** in 93% yield. Fries rearrangement of compound **11** with BF₃·Et₂O at 60 °C exclusively produced *ortho*-acetylated product **12** in 85% yield (vide infra), which was acetylated to give acetate **13** in 95% yield. Oxidation of compound **13** with ceric ammonium nitrate (CAN) in a mixture of CH₃CN–H₂O yielded⁹ 78% of *para*-quinone **14**, which upon saponification furnished **2** which was identical (TLC, HPLC, ¹H NMR) to natural product 2-methoxystypandrone.

Fries Rearrangement

BF₃·Et₂O catalyzed Fries rearrangement of compound 11 produced stable BF₂-adduct 15 (Scheme 2) which was purified by silica gel chromatography and was characterized by spectral analysis.¹⁰ It showed a molecular ion at m/z 338 (with m/z 337, which was 20% of m/z 338 peak). The ¹¹B NMR spectrum showed one signal for the boron nucleus at δ 0.20 (relative to external reference of BF₃·Et₂O at δ 0.0). The ¹⁹F NMR spectrum of 15 showed two signals for equivalent fluorine atoms at δ –147.52 and δ –147.59 (relative to internal C_6F_6 at δ –163.0) in a 1:4 ratio consistent with the natural abundance ratios of ¹⁰B and ¹¹B, respectively. In addition, the broad band decoupled ¹³C NMR spectrum of 15 showed two triplets at δ 193.9 (J=1.7 Hz) and δ 171.1 (J=2.2 Hz) due to covalent bonding of the boron atom to CH_3CO and the aromatic oxygen. The hydrolysis of the adduct in water was slower (45% conversion in 30 min and 100% after overnight as observed by ¹H NMR analysis in CD_2Cl_2 and addition of D_2O) and was fast in MeOH.

Scheme 2.

Sources of Analogues

Compound 16 (Table 1) was prepared by standard acetylation of compound 7. Compounds 17 and 18 were prepared by a method described by Jung et al.¹¹ Compound 19 was isolated as an occasional by-product of the Jones oxidation reaction during preparation of 7. 5-Hydroxy-7-methyl-1,4-naphthoquinone (20) was prepared by analogous cycloaddition reactions of 5 with 2-chloroquinone followed by oxidation. Compounds 21–26 were acquired from Aldrich Chemical Company. Xanthomegnin (27) was obtained from our internal collections.

Compd	Structure	HRV3C (IC ₅₀ , μM)	Papain (IC ₅₀ , μ M)	Compd	Structure	HRV3C (IC ₅₀ , μM)	Papain (IC ₅₀ , µM)
1	но он о он	47	NT	19	C CHa	10.5	NT
2	O OH O O OH O O OCH3	4.6	23	20	OH OF	6.4	NT
3	он о он	>150	NT	21	O OCH3	26	NT
4	OH O OH	>150	NT	22	Он	> 150	NT
7	OH O OCH3	2.4	NT	23		21	76% (29 µM)
14	O OAC O O OCH ₃	8.1	33	24	∩ L P°	8.2	67% (120 μM)
16	OAc O OCH3	40	NT	25	C↓↓°	1.4	24% (91 µM)
17	O OMe O OMe O OMe O	124	NT	26		46.5	45% (18 µM)
18	O OH O O OH O OH	> 150	NT	27		6	NT

Table 1. List of compounds and biological activities

NT, not tested.

Structure–Activity Relationship

2-Methoxystypandrone (2) was evaluated in HRV 3Cprotease HPLC assay.^{2a} It showed an IC₅₀ value of $4.6\,\mu\text{M}$ and the inhibition was time dependent. In order to measure the selectivity of this compound against other cysteine proteases, it was evaluated against papain. It showed 5-fold selectivity for HRV 3C-protease over papain (Table 1). Naphthoquinone without acetyl substitution (cf. 7) was 2-fold more potent than the corresponding acetylated compound 2. Acetylation of the phenolic group caused 2-fold reduction (cf. 14) compared to the parent compound 2 and over 16-fold reduction (cf. 16) compared to compound 7. Elimination of either phenolic (19) or methoxy (cf. 20) groups from 7 caused 5- or 3-fold diminution of the HRV 3Cprotease activity. Elimination of both the methyl and the hydroxy groups of 7 caused more significant reduction in HRV 3C-protease activity (cf. 21) but the elimination of methoxy group (cf. 23), the third substituent, did not have any deleterious effect on the potency (26 vs 21μ M). However, it appears that the elimination of all three substituents (cf. 23) led to the elimination of the selectivity for HRV 3C-protease. The transposition of the methoxy group from C-2 to C-3 caused significant reduction in the activity (14 vs 17). Complete loss of the activity was observed when the methoxy group was replaced with a hydroxy group (21 vs 22) and (14, 17 vs 18). The ortho-quinones were generally more potent than corresponding para-quinones (23 vs 24). The size of the quinones has little effect on the protease activity. For example, complex tricyclic naphthoquinones such as thysanone (1) and xanthomegnin (27) showed IC_{50} values of 47 and 6µM, respectively. Substituted 1,4anthraquinones such as emodin (3) and methylemodin (4) were inactive. In contrast the simple 9,10-phenathraquinone was the most active compound of the series and showed an IC₅₀ value of $1.4 \,\mu\text{M}$ with a high degree of selectivity. Chrysenequinone (26) showed a modest activity (IC₅₀ 46.5 μ M). The activity profiles of 1,4-quinones (cf. 2) and 1,2-quinones (cf. 25) were different. The former compound showed a time dependent inhibition which was not affected by preincubation reaction with DTT whereas the latter is

a time dependent inhibitor but inhibition is potentiated by reaction with DTT.

2-Methoxystypandrone and other active compounds reported in this letter contain reactive sites, which is consistent with most of the inhibitors of HRV 3C-protease reported in the literature that also possess the Michael addition site including clinical candidate AG-7088.^{3,4} The mode of action of these inhibitors are through irreversible inactivation of the enzyme.

In summary, we have described the discovery, efficient synthesis and HRV 3C-protease activity of 2-methoxy-stypandrone and analogues. In addition, we also described and compared the activities of *ortho*- versus *para*-quinones. It appears that the mode of action of the two classes of compounds is different.

Acknowledgements

The authors are thankful to Mr. Greg Koch for providing papain activity data, Ms. Debbie Zink for mass spectral analysis, Drs. Michael Goetz and George Albers-Schonberg for their generous support.

References and Notes

1. (a) Gwaltney, J. M., Jr. In *Viral Infection of Man: Epidemiology and Control*, 2nd ed.; Evans, E. A., Ed.; Plenum: New York, 1982; p 491. (b) Couch, R. B. In *Fields Virology*, 3rd ed.; Fields, B. N., Knipe, D. M., Howley, P. M., Chanock, R. M., Melnick, J. L., Monath, T. P., Roizman, B., Straus, S. E., Eds.; Lippincott-Raven: Philadelphia, 1996; Vol. 1, p 713. 2. (a) Cordingley, M. G.; Register, R. B.; Callahan, P. L.; Garsky, V. M.; Colonno, R. J. *J. Virol.* **1989**, *63*, 5037. (b) Cordingley, M. G.; Callahan, P. L.; Garsky, V. M.; Sardana, V. V.; Colonno, R. J. *J. Biol. Chem.* **1990**, *265*, 9062.

3. For a recent review, see: Dragovich, P. S. Exp. Opin. Ther. Pat. 2001, 11, 177.

- 4. Graul, A.; Castaner, J. Drugs Future 2000, 25, 9.
- 5. (a) Singh, S. B.; Cordingley, M. G.; Ball, R. G.; Smith, J. L.;

Dombrowski, A. W.; Goetz, M. A. *Tetrahedron Lett.* **1991**, *32*, 5279. (b) For synthesis and absolute stereochemistry, see Donner, C. D.; Gill, M. *Tetrahedron Lett.* **1999**, *40*, 3921.

6. (a) Kimura, Y.; Kozawa, M.; Baba, K.; Hata, K. *Planta Med.* **1983**, *48*, 164. (b) Hughes, A. B.; Sargent, M. V. J. *Chem. Soc., Perkin Trans. 1* **1989**, 449.

7. (a) Boisvert, L.; Brassard, P. *Tetrahedron Lett.* **1983**, *24*, 2453. (b) Boisvert, L.; Brassard, P. *J. Org. Chem.* **1988**, *53*, 4052.

8. Ishida, A.; Mukaiyama, T. Bull. Chem. Soc. Japan 1977, 50, 1161.

9. Experimental details. Aqueous solution of CAN (300 mg in 0.4 mL H₂O) was added drop wise (in 1 h) to a CH₃CN solution of **13** (50 mg in 0.4 mL CH₃CN). After 3 h stirring at rt the reaction mixture was diluted with 10 mL H₂O, extracted with CH₂Cl₂ and chromatographed on silica gel column. Elution with 49:1 CH₂Cl₂–MeOH afforded 35 mg of **14** as a chromatographically homogeneous yellow powder.

10. **15**: HREIMS (*m*/*z*) 338.1143 (calcd for $C_{16}H_{17}O_5BF_2$:338.1136), ¹H NMR (400 MHz, CD₂Cl₂) δ , 2.60 (3H, d, *J*=1.9 Hz), 2.79 (3H, s), 3.82 (3H, s), 4.02 (3H, s), 4.03 (3H, s), 6.58 (1H, s), 7.26 (1H, m), ¹³C NMR (100 MHz, CD₂Cl₂) 25.1, 28.3, 56.7, 57.1, 61.6, 95.6, 109.3, 114.4, 117.3, 134.4, 136.1, 136.7, 158.2, 160.7, 171.1 (t, *J*=2.2 Hz), 193.9 (t, *J*=1.8 Hz). **12**: ¹H NMR (250 MHz, CD₂Cl₂) δ , 2.34 (3H, d, *J*=0.8 Hz), 2.56 (3H, s), 3.84 (3H, s), 3.97 (3H, s), 4.05 (3H, s), 6.60 (1H, s), 7.31 (1H, t, *J*=0.8 Hz), 9.78 (1H, br s).

11. Jung, M. E.; Lowe, J. A., III; Lyster, M. A.; Node, M.; Pfluger, R. W.; Brown, R. W. *Tetrahedron* **1984**, *40*, 4751.