Photolysis of Tetrafluorohydrazine and Thiocarbonyl Chloride. Preparation of Dichlorodifluoraminomethanesulfenyl Chloride and Some Polyhalodifluoraminomethanes¹

L. M. Zaborowski and Jean'ne M. Shreeve

Contribution from the Department of Chemistry, University of Idaho, Moscow, Idaho 83843. Received December 15, 1969

Abstract: Photolysis of N₂F₄ and CSCl₂ produces a variety of products, including NF₂Cl₂CSCl, NF₂CCl₃, and NF₂-CFCl₂. The yields of NF₂Cl₂CSCl and NF₂CCl₃ are strongly influenced by reaction conditions. NF₂CF₃ can be prepared in good yield by the photolytic reaction of N₂F₄ with (CF₃)₂CO. Excess KF with NF₂Cl₂CSCl leads unexpectedly to CF₃N=SF₂. Thermolysis of NF₂CFCl₂ and mercury gives syn- and anti-FN=CFCl.

Photolysis reactions of tetrafluorohydrazine and a large number of aromatic hydrocarbons and olefins as well as acetylene lead to saturation by addition of the difluoramino radical.² Since other unsaturated systems are likely to behave in an analogous manner, thiophosgene (CSCl₂) was selected for study based on the reactivity of the >C=S group in the presence of ultraviolet light, which catalyzes the dimerization of CSCl₂ to a white, nonvolatile solid (eq 1).³

A number of products result from irradiating N₂F₄ and CSCl2, including the new sulfur(II) compound dichlorodifluoraminomethanesulfenyl chloride, NF2-Cl₂CSCl. Two other compounds synthesized during this study, trichlorodifluoraminomethane, NF2CCl3, and dichlorofluorodifluoraminomethane, NF₂CFCl₂, were revealed while this work was underway.4a We have further characterized these new compounds.

Experimental Section

Starting Materials. Thiophosgene (Pfaltz and Bauer, Inc.) was purified by a trap-to-trap distillation. Anhydrous KF was prepared from KF·2H₂O by dehydrating the salt at 200° for 12 hr in a vacuum oven. Tetrafluorohydrazine (Air Products Co.) and hexafluoroacetone (Pierce Chemicals) were used without further puri-

Caution! Care should be exercised in handling tetrafluorohydrazine since nitrogen-halogen compounds are known to exhibit explosive properties. Any apparatus used should be clean and free of organic materials.

General Procedures. Gases and volatile liquids were handled in a conventional Pyrex vacuum apparatus equipped with a Wallace

and Tiernan mechanical gauge. Gaseous starting materials and purified products were measured quantitatively by PVT techniques. Photolysis reactions were carried out in a 5-1. Pyrex vessel equipped with a water-cooled quartz probe. For gas chromatographic separations the columns were constructed of 0.25-in. aluminum or copper tubing packed with 20% Kel-F-3 polymer oil (3M Co.) on acid-washed Chromosorb P. In some cases, fractional condensation was used to effect crude separation. Molecular weight measurements were carried out by vapor density techniques with a Pyrex weighing vessel.

Infrared spectra were recorded with a Beckman IR-5A or Perkin-Elmer 621 spectrophotometer by using a 5-cm gas cell equipped with KBr windows or a 10-cm gas cell with AgCl windows. Fluorine-19 nmr spectra were obtained on a Varian HA-100 spectrometer. Mass spectra were obtained with a Perkin-Elmer Hitachi RMU-6E mass spectrometer at an ionization potential of 70 eV. The ultraviolet light source was a 450-W lamp equipped with a Vycor or Corex filter (Hanovia L-679A36, Engelhard Hanovia, Inc., Engelhard, N. J.).

Preparation of NF₂Cl₂CSCl, NF₂CCl₃, and NF₂CFCl₂. N₂F₄ and CSCl₂ were photolyzed under a variety of conditions (Table I) resulting in various yields of the desired compounds. Other products found in these reactions included N_2 , cis- N_2F_2 , NF_2Cl , SiF_4 , $(NO)_2$ -SiF₆, SO₂, SOF₂, S, CF₄, CF₃Cl, CF₂Cl₂, CFCl₃, CCl₄, Cl₃CSCl, CS₂, Cl₂, COS, and C₂S₂Cl₄. A crude separation resulted from passing the photolysis products through a series of traps at -47, -78, -120, and -195°. Each trap contained a mixture of products with NF₂Cl₂CSCl stopping at -47°, NF₂CCl₃ at -78°, and NF₂-CFCl₂ at -120°. Pure NF₂Cl₂CSCl was obtained by gas chromatography with a 3-ft Kel-F-3 column; NF2CCl3 required a 7-ft column, and NF2CFCl2 a 24-ft column.

 $\label{eq:continuous_properties} \textbf{Properties} \quad \textbf{of} \quad NF_2Cl_2CSCl. \quad \text{Dichlorodifluoraminomethanesul-}$ fenyl chloride is a light yellow liquid at room temperature with an odor similar to that of Cl₈CSCl. It has a vapor pressure of 8 mm at room temperature and reacts slowly with glass but rapidly with mercury. For these reasons a vapor pressure study was not attempted. NF₂Cl₂CSCl gives a single broad peak in the ¹⁹F nmr at ϕ -49.9 (CCl₃F internal standard). The infrared spectrum (8 mm of pressure in a 10-cm cell with AgCl windows) is (cm⁻¹): 1013 (m), 923 (m), 895 (s), 873 (s), 844 (s), 775 (w), 628 (m), 541 (m). The principal peaks in the mass spectrum corresponded to the ions S+, Cl+, CS+ (100%), ClCN+, F_2NC+ , SCl+, ClCS+, FNCCl+, $NCCl_2+$, F_2NCCl_2+ , F_2NCCl_2+ , F_2NCCl_2+ , F_2NCl_2+ , although very weak, were noted at mass numbers 201, 203, 205, and 207. NF_2Cl_2CSCl also gave a SiF_3 ⁺ peak resulting from attack on the glass inlet system of the mass spectrometer. All chlorine-containing fragments gave the correct isotopic peaks and relative intensities. Basic hydrolysis of NF₂Cl₂CSCl was used to obtain aqueous solutions for elemental analysis. H₂O₂ was added to the hydrolysis products to oxidize sulfide to sulfate. Fluorine was determined using a specific ion electrode (Orion Research, Inc., Model 94-09). Sulfur and chlorine were both determined gravimetrically as barium sulfate and silver chloride, respectively.

Anal. Calcd for NF₂Cl₂CSCl: S, 15.84; Cl, 52.54; F, 18.75. Found: S, 15.24; Cl, 52.30; F, 18.46.

NF₂Cl₂CSCl + KF. Anhydrous KF was pretreated with hexafluoroacetone (with acetonitrile as solvent) to form the adduct KOCF(CF₈)₂ which was thermally decomposed to finely divided

⁽¹⁾ Presented in part at the Northwest Regional Meeting of the American Chemical Society, Salt Lake City, Utah, June 1969.
(2) (a) J. K. Ruff, Chem. Rev., 67, 665 (1967); (b) D. T. Meshri and

<sup>J. M. Shreeve, J. Amer. Chem. Soc., 90, 1711 (1968).
(3) H. Tilles, "The Chemistry of Organic Sulfur Compounds,"
Vol. 2, N. Kharasch and C. Y. Meyers, Ed., Pergamon Press, London,</sup>

^{1966,} p 311.

(4) (a) V. A. Ginsburg, K. N. Smirnov, and M. N. Vasil'eva, Zh. Obshch. Khim., 39, 1333 (1969); (b) NF₂CCl₂, bp 41°; (c) NF₂CCl₂F, bp 18°; (d) infrared of NF₂CCl₂F: 1415, 1150, 1042, 925, 910, 725

Table I. Preparation of NF₂Cl₂CSCl, NF₂CCl₃, and NF₂CFCl₂

	Reagent				Yield	(purified produ	uct)
N_2F_4	CSCl ₂	Other	Filter	Timea	NF ₂ Cl ₂ CSCl	NF ₂ CCl ₃	NF ₂ CFCl
10.4 ^b	20.0		Corex	3.5	6.2°	<5	<5
10.5	29.6		Corex	2	21.6	<5	<5
9.9	29.5		Vycor	2	10.5	<5	<5
7.3	20.5	Cl ₂ 10.0	Corex	5.4	0	16.7	5
8.6	17.1	Cl ₂ 8.6	Vycor	2.4	0	15.2	5
10.7	20.2	SOCl ₂ 13.6	Corex	4	7.9	<5	<5
10.4	20.2	SOCl ₂ 13.6	Vycor	2	29.4	0	0

^a Hours. ^b Millimoles. ^c Per cent based on N₂F₄ consumed.

KF and (CF₈)₂CO. NF₂Cl₂CSCl (0.61 g, 0.003 mol) and excess KF were allowed to react at room temperature in a 30-ml metal bomb for three days. The volatile products were separated on a 24-ft Kel-F-3 column and the major component was found to be trifluoromethyliminosulfur diffuoride (>70% yield). CF₈N=SF₂ was identified by its infrared spectrum,⁶ mass spectrum,⁶ molecular weight (calcd, 153.08; found, 152.7), and ¹⁹F nmr (CF₈, triplet at 47.97 ppm and SF₂, quartet at -52.01 ppm relative to internal CCl₃F, relative peak areas 2.92:2.0, respectively, $J_{F-F} = 10.1$ cps).

Properties of NF₂CCl₃. Trichlorodifluoraminomethane exists as a colorless liquid at room temperature and is stable in glass toward mercury up to 55° and is not hydrolyzed by the moisture in the air. Heating NF2CCl3 at 110° with mercury for 3 hr resulted in formation of FN=CCl2 as the only volatile product. The melting point of NF₂CCl₃ was found to be -21° and a boiling point of 56° 4b was indicated by the Clausius-Clapeyron equation, $\log P_{\rm mm} = 8.17 - 1740/T^{\circ}{\rm K}$. Vapor pressure data are as follows (*T*, °K; *P*, mm): 242.5, 10.2; 265.6, 40.5; 273.0, 62.2; 285.3, 115.6; 287.8, 130.0; 297.1, 218.7; 304.5, 300.8; 310.0, 373.8; 311.8, 400.8; 317.0, 485.9; 320.8, 560.2; 324.8, 644.7. The molar heat of vaporization is 7.50 kcal and the Trouton constant is 22.8. The experimental molecular weight was found to be 170.5 (calcd, 170.4). NF₂CCl₃ gives a single broad peak in the ¹⁹F nmr at $\phi = 50.8$. The infrared spectrum (10 mm pressure in a 5-cm cell with KBr windows) is (cm⁻¹): 1024 (m), 912 (s), 884 (vs), 853 (s), 638 (m). The principal peaks in the mass spectrum corresponded to the ions Cl $^+$, CCl $^+$, FNC $^+$, NF $_2$ $^+$, FCCl $^+$, F $_2$ NC $^+$, FNCCl $^+$, CCl $_2$ $^+$, F $_2$ CCl $^+$, Cl $_2$ CN $^+$, F $_2$ NCCl $^+$, CFCl $_2$ $^+$, FNCCl $_2$ $^+$, CCl $_3$ $^+$ (100%), F2NCCl2+, FNCCl3+. All chlorine-containing fragments gave the correct isotopic peaks and relative intensities.

Properties of NF₂CFCl₂. Dichlorofluorodifluoraminomethane is a colorless gas at room temperature and melts at -96° . NF₂-CFCl2 is not hydrolyzed by the moisture in air but reacts slowly with mercury. The boiling point was found to be 14°40 from a Clausius-Clapeyron plot which is described by the equation log $P_{\rm mm} = 7.80 - 1411/T^{\circ} \text{K}$. Vapor pressure data are as follows $(T, {^{\circ}}\text{K}; P, \text{mm})$: 209.5, 12.1; 220.8, 25.7; 230.3, 47.6; 237.3, 72.6; 243.0, 99.7; 246.5, 122.6; 252.8, 165.2; 262.0, 261.8; 268.3, 347.1; 273.0, 423.1; 274.3, 448.9; 277.0, 498.3. The molar heat of vaporization is 6.46 kcal and the Trouton constant is 22.5. experimental molecular weight was found to be 153.4 (calcd, 153.9). Two resonances were observed in the 19F nmr, a triplet (relative areas of 1:1.95:1) at ϕ 55.55 assigned to the CF fluorine and a broad overlapping doublet centered at ϕ -40.45 assigned to the NF₂ group. The relative areas of the NF2 and CF resonances were found to be 1.93:1 and $J_{F-F} = 15.8$ cps. The infrared spectrum^{4d} (10 mm pressure in a 5-cm cell with KBr windows) is (cm⁻¹): 1147 (s), 1068 (m), 952 (s), 907 (s), 780 (w), 649 (m). The following ions are identified in the mass spectrum: CF+, NF+, Cl+, FCN+, CCl⁺, ClCN⁺, FNCF⁺, FCCl⁺, CF₈⁺, FNCCl⁺, CCl₂⁺, ClCF₂⁺, F₂NCCl⁺, CFCl₂⁺ (100%), FNCCl₂⁺, F₂NCFCl⁺. All chlorinecontaining fragments gave the correct isotopic peaks and relative intensities.

NF₂CFCl₂ + Hg. NF₂CFCl₂ (0.20 g, 1.30 mmol) and excess mercury were stirred at 100°, in a 125-cc glass vessel fitted with a Teflon stopcock (Kontes Glass Co.), for 6 hr. The volatile products consisted of FN=CF₂ (9%), syn-FN=CFCl (39%) and anti-FN=CFCl (52%), plus minor amounts of SiF₄, FN=CCl₂, and unreacted NF₂CFCl₂ (0.14 mmol). The FN=CFCl isomers were identified by their infrared and ¹⁹F nmr spectra.⁷ FN=CF₂⁷ and FN=CCl₂ were both identified by their infrared spectra.

 $N_2F_4 + (CF_3)_2CO$. N_2F_4 (0.457 g, 4.4 mmol) and $(CF_3)_2CO$ (0.73 g, 4.4 mmol) were photolyzed through a Vycor filter until all the tetrafluorohydrazine had reacted. The reaction mixture was passed through traps at -130 and -195° . The -195° trap contained NF_2CF_3 (\sim 57.5% yield) and minor amounts of N_2F_4 . The product was identified by its infrared8 and ^{19}F nmr9 spectra.

Results and Discussion

As is recorded in Table I, the yield of NF_2Cl_2CSCl formed by the photolysis of N_2F_4 and $CSCl_2$ varies markedly depending upon experimental conditions. $CSCl_2$ decomposes to compounds such as Cl_2 , S, CCl_4 , and CS_2 , and dimerizes according to (1) in the presence of ultraviolet light. Thus, when the molar ratio of $CSCl_2$ to $\cdot NF_2$ is increased by one-half, the yield of NF_2Cl_2CSCl is tripled when a Corex filter is used.

Since NF₂Cl₂CSCl involves an additional atom of chlorine per molecule of product formed, a second source of chlorine radicals should improve the efficiency of the reaction. The addition of elemental chlorine to the reaction mixture precludes the formation of NF₂Cl₂CSCl since chlorination of CSCl₂ to form trichloromethanesulfenyl chloride (Cl₃CSCl) occurs rapidly at room temperature.³ Then Cl₃CSCl apparently reacts with N₂F₄ to form NF₂CCl₃. The best yields of NF₂Cl₂CSCl are obtained when sulfinyl chloride is added to the reaction mixture followed by photolysis using a Vycor filter. Previously, we have concluded that SOCl₂ is decomposed slowly to ·Cl when photolyzed through Vycor (essentially unaffected if a Corex filter is used).¹⁰ Apparently, under these

⁽⁵⁾ M. Lustig and J. K. Ruff, Inorg. Chem., 4, 1444 (1965).
(6) W. C. Smith, C. W. Tullock, R. D. Smith, and V. A. Engelhardt,
J. Amer. Chem. Soc., 82, 551 (1960).

⁽⁷⁾ D. H. Dybvig, Inorg. Chem., 5, 1795 (1966).

⁽⁸⁾ R. K. Pearson and R. D. Dresdner, J. Amer. Chem. Soc., 84, 4743 (1962).

⁽⁹⁾ W. S. Brey, Jr., and J. B. Hynes, "Fluorine Chemistry Reviews," Vol. 2, P. Tarrant, Ed., Marcel Dekker, Inc., New York, N. Y., 1968, p 111.

⁽¹⁰⁾ L. M. Zaborowski, K. E. Pullen, and J. M. Shreeve, *Inorg. Chem.*, **8**, 2005 (1969).

$$\cdot NF_2 + CSCl_2 \xrightarrow{h\nu} F_2NCS \cdot \xrightarrow{\cdot Cl} F_2NCSCl$$

$$Cl \qquad Cl$$

$$Cl \qquad Cl$$

$$Cl \qquad Cl$$

$$Cl \qquad Cl$$

$$\cdot \text{Cl} + \text{CSCl}_2 \xrightarrow{h\nu} \text{Cl}_3 \text{CS} \cdot \xrightarrow{\cdot \text{NF}_2} [\text{Cl}_3 \text{CSNF}_2] \longrightarrow \text{F}_2 \text{NCSCl} \quad (3)$$

conditions SOCl2 leads to ·Cl which, accompanied by the generated ·NF₂, results in formation of NF₂Cl₂CSCl at a more rapid rate than Cl₃CSCl which is always found in the product mixture. The effect of the added Cl from SOCl₂ is very pronounced when the yield of NF₂Cl₂CSCl is compared with that obtained through Vycor earlier. Formation of NF₂Cl₂CSCl via (2) seems a likely route although (3) should be considered. Seel¹¹ suggested that stepwise fluorination of Cl₃CSCl with KF occurs via a Cl₃CSF intermediate, rapidly followed by molecular rearrangement to Cl2FCSCl until complete fluorination is accomplished. Therefore, (3) seems possible but Cl₃CSNF₂ is never detected. Varying conditions seem to have little effect on the yield of NF₂CCl₂F.

Dichlorodifluoraminomethanesulfenyl chloride is a moderately reactive compound with physical properties which resemble Cl₃CSCl. Identification was made by mass spectrum (peaks assigned to CS+, SCl+, F2NCCl2+, and F₂NCl₂CSCl⁺), infrared spectrum (S-Cl stretch at 541 cm⁻¹;¹² N-F stretches at 1013 and 895 cm⁻¹), elemental analysis, and ¹⁹F nmr. The single broad NF₂ resonance at ϕ – 49.9 compares favorably with NF₂CCl₃ at ϕ -50.8. If the other isomer, Cl₃CSNF₂, were formed, the NF₂ resonance would be shifted much farther downfield as in F_3 CSN F_2 at $\phi - 103.1^{13}$ or even to lower field, as suggested by the data in Table II.

Table II. 19F Nmr of NF₂CF_xCl_{3-x} and NF₂CF₂CF_xCl_{3-x} (x = 0, 1, 2, 3)

Compound	Chemi NF ₂	ical shift α-F	is, φ β-F	Coup	ling co Hz	nstants,
NF ₂ CF ₃ ° NF ₂ CF ₂ Cl° NF ₂ CFCl ₂ NF ₂ CCl ₃	-18.5 -27.8 -40.5 -50.8	84.1 62.0 55.6			0 0 15.8	
a b c NF ₂ CF ₂ CF ₃ ° NF ₂ CF ₂ CF ₂ Cl° NF ₂ CF ₂ CFCl ₂ ° NF ₂ CF ₂ CCl ₃ °	-16.3 -17.9 -20.7 -27.0	119.9 116.9 113.8 108.0	81.8 69.7 72.8	$ \begin{array}{c} J_{a-b} \\ \approx 0 \\ \approx 0 \\ \approx 0 \end{array} $	J _a -c 10 10.0 14.0	$J_{b-c} \approx 1$ 2.3 7.2

When an excess of anhydrous potassium fluoride is allowed to react with NF₂Cl₂CSCl at 25°, the unexpected compound CF₃N=SF₂ is found to be the major product (>70% yield). This is an unusual rearrangement in that, in addition to fluorination, the nitrogen atom is shifted between the carbon and sulfur. This product is not easily rationalized. However, when N₂F₄ and CF₃SSCF₃ are heated at 225° for 16 hr, CF₃N=SF₂ is formed. 13

With the synthesis of NF₂CCl₃ and NF₂CFCl₂, the series $NF_2CF_xCl_{3-x}$ (x = 0, 1, 2, 3) is now complete. As is shown in Table II, when chloring is successively substituted for fluorine, both the NF₂ and CF resonances are shifted farther downfield. A similar trend is noted in other families, e.g., NF₂CF₂CF_xCl_{3-x} (x = 0, 1, 2, 3), and may be attributed to delocalization of electron density into available d orbitals on chlorine, which deshields the fluorine atoms. The data also indicate that additional chlorine atoms increase the magnitude of spin-spin coupling constants. The NF-CF coupling for NF₂CFCl₂ seems reasonable in light of the increase in J values from NF₂CF₂CF₂Cl to NF₂CF₂CFCl₂. The surprisingly large coupling of 15.8 Hz can be explained in terms of a steric effect assuming the major contribution to spin-spin splitting results from direct-through-space interaction. 14

The volatilities of the compounds NF₂CCl₃ and CCl₄, and NF₂CCl₂F and CFCl₃, are similar, and, as the data in Table III show, this holds true for other low

Table III. Comparison of Volatility of X-Cl and X-NF₂ Compounds

	Volatility			
Compound	1 mm	Вр		
Cl ₃ C-Cl	-50°	77°		
Cl ₃ C-NF ₂	-60°	56°		
Cl ₂ FC-Cl	−84°	24°		
Cl ₂ FC-NF ₂	−92°	19°		
CIC—CI	−93 °	8°		
CIC-NF2	-102°	-5°		
NF ₂ -Cl	-161°	-104°		
NF ₂ -NF ₂	−179°	-117°		

molecular weight compounds when an NF2 group is substituted for chlorine. Also, as the molecular weight of the X group increases, the volatilities of the NF2 and Cl compounds approach each other. For example, NF₂Cl₂CSCl and Cl₃CSCl both have a vapor pressure of 8 mm at room temperature. Therefore, NF2 compounds may be expected to be as volatile or slightly more volatile than their chlorine analogs.

NF₂CFCl₂ is a useful starting material for the preparation of its imine derivatives by heating with mercury. The reaction is about 50% complete after 1 week at 25°. The products are a 50-50 mixture of syn- and anti-FN=CClF and traces of FN=CF₂ and FN=CCl₂. After 6 hr at 100°, reaction is nearly complete, with the anti form present in slightly larger amounts. This suggests that the anti isomer has greater thermodynamic stability, which is surprising, since cis-N₂F₂ seems to be the thermodynamically favored form. If the NF₂-

⁽¹¹⁾ F. Seel, W. Gombler and R. Budenz, Angew. Chem., Int. Ed. Engl., 6, 706 (1967). (12) A. Haas and D. Oh, Chem. Ber., 100, 480 (1967).

⁽¹³⁾ E. C. Stump, Jr., and C. D. Padgett, Inorg. Chem., 3, 610 (1964).

⁽¹⁴⁾ L. Petrakis and C. H. Sederholm, J. Chem. Phys., 35, 1243 (1961).

 $CFCl_2$ -mercury mixture is heated above 150°, decomposition occurs, with SiF_4 and N_2 the principal volatile products.

Acknowledgments. Fluorine research at the University of Idaho is sponsored by the National Science

Foundation and the Office of Naval Research. The HA-100 nmr spectrometer was funded in part by grants from the National Science Foundation and the Max C. Fleischmann Foundation. We thank Mr. Ron De-Marco and Mr. J. A. Johnson for mass spectra.