

View Article Online View Journal

RSC Advances

This article can be cited before page numbers have been issued, to do this please use: A. Vidal-Ferran, H. Fernández-Pérez, P. Etayo, J. L. Núñez-Rico and B. Bugga, *RSC Adv.*, 2014, DOI: 10.1039/C4RA10432C.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Cite this: DOI: 10.1039/coxx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Ring-opening of Enantiomerically Pure Oxa-containing Heterocycles with Phosphorus Nucleophiles

Héctor Fernández-Pérez,^a Pablo Etayo,^a José Luis Núñez-Rico,^a Bugga Balakrishna,^a and Anton Vidal-Ferran^{*a,b}

Various oxa-containing heterocycles (*i.e.* enantiopure epoxide- and oxetane-based substrates) were subjected to ring-opening with phosphorus nucleophiles. The ring-opening reactions proceeded smoothly and the resulting 1,2-, and 1,3-phosphino alcohols were efficiently isolated as stable borane complexes. These derivatives arise from regio- and stereocontrolled syntheses based on ring-opening processes of 10 oxa-containing heterocycles. The regio- and stereochemistry of the resulting chiral products were

unequivocally confirmed in many cases via single-crystal X-ray diffraction analysis.

Introduction

Published on 30 October 2014. Downloaded by Temple University on 31/10/2014 13:26:36.

The design and preparation of enantiomerically pure ¹⁵ phosphorus compounds is of paramount importance in asymmetric catalysis research. These derivatives have typically been employed as chiral ligands in diverse transition metalmediated asymmetric transformations,¹ and more recently in enantioselective organocatalytic processes.² In this context, there ²⁰ is a demand for stereocontrolled, high-yielding synthetic

- strategies enabling straightforward access to structurally diverse phosphorus derivatives. Enantiomerically pure phosphino alcohols (also known as *hydroxy phosphines*) are an attractive type of phosphorus(III) compounds with major potential for
- ²⁵ asymmetric catalysis. Firstly, they are valuable chiral building blocks that can be easily transformed into other, more elaborate ligands—namely, hybrid bidentate phosphorus ligands.¹ Secondly, they can also be harnessed as direct precursors of hemilabile P–O ligands, which have found numerous applications ³⁰ in organometallic asymmetric catalysis.³
- Several stereoselective synthetic routes to these targets can be envisaged and, amongst them, stereocontrolled ring-opening of oxa-containing heterocycles by trivalent phosphorus nucleophiles appears to be an attractive route towards enantiomerically pure
- ³⁵ phosphino alcohol derivatives. Herein are reported new and optimised synthetic strategies dealing with the ring-opening of an array of structurally diverse enantiopure oxa-containing heterocycles. The regio- and stereochemistry of the resulting chiral products were unequivocally confirmed in most cases *via* ⁴⁰ single-crystal X-ray diffraction analysis.
- **Results and discussion**

Ring-opening of enantiopure 1,2-disubstituted epoxides

At the onset of our study, we initially selected enantiopure,

asymmetrically 1,2-disubstituted epoxides, which have scarcely 45 been explored as substrates in this chemistry,⁴ most likely due to the inherent difficulty of regiocontrol. Our group has been using the regio- and stereocontrolled ring-opening of enantiopure Sharpless epoxyethers⁵ by trivalent phosphorus nucleophiles as a key step for preparing diverse enantiomerically pure P–OP 50 ligands^{1c}, which in turn have enabled high enantioselectivity in diverse metal-mediated asymmetric transformations.⁶

We have already reported that ring-opening of the trans-1^{6a,c-i} (2*S*,3*S*)-1-alkoxy-3-phenyl-2,3-epoxides (or their enantiomers trans-(2R,3R)-1-alkoxy-3-phenyl-2,3-epoxides ent- $_{55}$ **1**^{6g,i}) with alkali metal dialkyl- or diarylphosphides is highly regioselective (rr = $94:6 \rightarrow 99:1$ 2/3). The products arising from ring-opening proved to be rather prone to oxidation: thus, in-situ protection as the borane complexes 2/3 allowed for easier handling and storage. The resultant borane derivatives of the anti-60 phosphino alcohols 2 (the major regioisomeric products) were isolated with high yield (63-87%) (see Scheme 1). Whilst the minor regioisomers 3 derived from epoxide $1a (R^1 = Me)$ or 1b $(R^1 = CPh_3)$ and lithium dicyclohexylphosphide were detected by NMR in the corresponding crude mixtures, only the one derived 65 from **1a** could be isolated and fully characterised.^{6h}

Recent research activities in this field have allowed for the growth of single crystals of several phosphine-borane alcohols **2** and analysis of their structure by X-ray diffraction (**2a** [$\mathbb{R}^1 = Me$, $\mathbb{R}^2_2 = Ph$], *ent-***2b** [$\mathbb{R}^1 = CPh_3$, $\mathbb{R}^2_2 = Ph$], **2c** [$\mathbb{R}^1 = Me$, $\mathbb{R}^2_2 = Cy$] ⁷⁰ and **2d** [$\mathbb{R}^1 = CPh_3$, $\mathbb{R}^2_2 = Cy$]).⁷ These studies have confirmed previously published results^{6a,c-h} on the regio- and absolute stereo-chemistry of the products derived from the ring-opening of *trans*-epoxides: *anti*-arrangement of the hydroxyl and phosphino functionalities, arising from a stereospecific S_N2 epoxide ring-⁷⁵ opening (inversion at the attacked carbon, and retention at the other one). This recently obtained crystallographic information.

This journal is © The Royal Society of Chemistry [year]

Scheme 1. Ring-opening of Sharpless epoxyethers with trivalent phosphorus nucleophiles.

⁵ Whilst a number of examples of ring-opening of *trans*-1,2disubstituted epoxides with phosphorus nucleophiles have been published thus far ^{4,6a,c-h} (most of them from our research group), studies of this chemistry involving their *cis*-analogues is, to the best of our knowledge, unreported. With the reactivity studies of ¹⁰ the ring-opening of *trans*-epoxyethers **1** in hand, the authors then turned their attention to the ring-opening of the *cis*-analogue **4**, as they considered that this chemistry would be a promising route to P–OP ligands being stereochemically different to those previously reported.⁶ It was envisioned that *cis*-1,2-disubstituted ¹⁵ epoxyethers should provide enantiomerically pure phosphineborane alcohol derivatives having a *syn* relative configuration of the phosphorus and hydroxyl groups.

Published on 30 October 2014. Downloaded by Temple University on 31/10/2014 13:26:36.

Scheme 2. Regio-alternation observed upon ring-opening of the *trans*-1,2-epoxide **1a** (top) and the *cis*-1,2-epoxide **4** (bottom) with KPPh₂.

The enantiopure cis-1,2-epoxide **4** was readily prepared following reported synthetic methodologies.⁸ The ring-opening of enantiopure cis-1,2-epoxide **4** with KPPh₂ under the reaction

conditions reported for the *trans* derivative **1a** revealed near-²⁵ complete reversion of the previously observed regiochemistry: in this case the major regioisomer was the phosphine-borane alcohol **5** (rr = 91:9 **5/6**⁹), which was isolated in 80% yield (Scheme 2).

The unusual regiochemical outcome found in the ring-opening product of the *cis*-epoxyether **4** was unequivocally confirmed by ³⁰ X-ray diffraction analysis (Figure 1, left).⁷ This technique enabled identification of the *syn* arrangement of the alcohol and the phosphine-borane groups, and of the absolute (2*S*,3*S*) configuration of these substituents. These results agree with a stereospecific, $S_N 2$ epoxide ring-opening of epoxyether **4** (*i.e.* ³⁵ inversion at the attacked carbon, and retention at the other one).

The aforementioned results indicate that, under the same reaction conditions, the regiochemical outcome of the ring opening of 1,2-disubstituted epoxides is mainly controlled by the relative disposition of the substituents in the starting epoxides. 40 There are several literature reports evidencing that cis-1,2epoxides generally offer lower regioselectivity than do the corresponding *trans* isomers,¹⁰ though a near-complete reversion of the regiochemical outcome between a cis- and transdisubstituted epoxide was unexpected. A proven justification to 45 the reversion of the regiochemical outcome cannot be provided. However, the authors hypothesise that this behaviour may be a combination of electronic and steric effects. Ring-opening at the benzylic position may predominate in *trans*-epoxides 1 due to stabilisation of the transition state by resonance effects involving 50 the attacked carbon and the coplanar phenyl ring (Scheme 2). On the contrary, such resonance stabilisation effects cannot probably be met in the ring-opening of *cis*-epoxide 4, as the CH₂OMe group prevents the phenyl ring adopting the required conformation in the corresponding transition state for effective 55 resonance effects (Scheme 2). Such rationalisation has been reported for the ring-opening of related epoxides.¹¹

Ring-opening of trisubtituted epoxides

With regard to other types of epoxides as starting materials for this chemistry, we turned our attention to natural products, as the 60 chiral pool remains an attractive and economic source for enantiomerically pure, highly functionalised compounds. For instance, diastereomeric mixtures of limonene oxides 7 have been subjected to ring-opening with phosphorus nucleophiles,¹² and the expected phosphino alcohols were isolated as air-sensitive 65 solids that required immediate transformation into the corresponding phosphine oxides^{12a} or into a number of metal complexes.^{12b} Unfortunately, the resulting products preserve the original C=C bond from the limonene skeleton, which might pose a problem in future applications of these compounds (or their 70 derivatives) as catalysts in transformations involving reagents that normally add to carbon-carbon unsaturated bonds. Interestingly, ring-opening reactions of the saturated limonene oxide's analogue 8 (also known as carvomenthene oxide, 8,9*dihydrolimonene* 1,2-epoxide or p-menthene oxide) by 75 phosphorus nucleophiles have not been reported in the literature.

The required epoxide **8** was prepared following a reported procedure from limonene oxide **7** by chemoselective hydrogenation of **7** in THF using catalytic amounts of PtO₂ (Scheme 3).¹³ The desired enantiopure carvomenthene oxide **8** was obtained in quantitative yield and in the original diastereomeric ratio (47:53 *cis/trans*, as determined by ¹H NMR).

65

Figure 1 (Left) Crystal structure of 5. (Right) Crystal structure of 9 (ORTEP drawings showing thermal ellipsoids at 50% probability). Non-relevant hydrogen atoms have been omitted for clarity.

⁵ However, the resultant carvomenthene oxide diastereoisomers could not be separated by silica gel column chromatography. Ring-opening of enantiomerically pure (4*S*)-carvomenthene 1,2-epoxides 8 (as diastereoisomeric mixture: *ca.* 1:1 *cis/trans*) with KPPh₂ (0.53 equiv. with respect to the overall mixture; 1.0 equiv.
¹⁰ with respect to *trans-*8) proceeded smoothly at -78 °C to 0 °C (Scheme 3). Diastereoisomer *cis-*8 remained mostly unreacted under ring-opening conditions and could be easily separated from product 9 by column chromatography. The ring-opening reaction was totally regioselective and proceeded exclusively through 1s attack of C-2 in *trans-*8 by diphenylphosphide. After *in situ* protection, the enantiopure borane-protected 1,2-phosphino alcohol 9 was isolated in 74% yield as a single regioisomer.

Structural characterisation of **9** with standard spectroscopic techniques was complemented with X-ray diffraction analysis ²⁰ (Figure 1, right), which confirmed both the regiochemistry and the absolute configuration of the resultant product. The chair-like conformation observed in the solid state (Figure 1, right) for the borane-protected phosphino alcohol **9** evidenced the 1,2-diaxial-*trans* orientation of the hydroxyl and phosphine-borane ²⁵ functionalities at C-1 and C-2, respectively, in the cyclohexane ring in the solid state, with the isopropyl substituent at the C-4 stereocentre exhibiting an equatorial disposition.

trans-8

cis-8

1) KPPh₂ (0.53 equiv.)

2) BH₃·THF (3.0 equiv.) 0 °C → rt

cis-8

(unreacted epoxide)

THF, -78 °C → 0 °C

8

(trans/cis = 53:47)

3) H₂O

PtO2 (3% w/w), THF

1 atm H₂, rt, 15 h, quant. yield

(trans/cis = 53:47)

30

Scheme 4. Ring-opening of (*S*)-styrene oxide with MPPh₂.

Use of commercially available KPPh₂ as nucleophile gave almost complete regioselectivity (rr 11/12 = 97:3), regardless of the order of addition of the reactants (Table 1, entries 1 and 2). ⁷⁰ Under these conditions, the major regioisomer 11 was isolated in up to 86% yield (entry 2), whereas the minor one, 12, was isolated in a maximum of only 3% yield (entry 2). The structure of product 11 could be unambiguously confirmed by X-ray diffraction analysis.⁷ Conversely, when Muller's procedure^{12a} was ⁷⁵ followed, the minor regioisomer 12 was obtained in a markedly higher proportion (rr 11/12 = 88:12); this method involved dropwise addition of *n*BuLi to a solution of the starting epoxide 10 and HPPh₂ in THF previously cooled to -78 °C (Table 1, entry 3). Using Muller's procedure, compounds 11 and 12 were ⁸⁰ isolated in 74% and 12% yield, respectively, after column chromatography.

The ee values for regioisomers **11** and **12** varied significantly depending on the reaction conditions—basically, on the order of reagent addition, as evidenced by Table 1. Addition of KPPh₂ to ⁸⁵ the epoxide **10** proved to be a reliable and robust method for

9 (74% yield)

(single regioisomer, rr > 99:1)

Scheme 3. Hydrogenation of *cis/trans*-limonene 1.2-epoxides 7 to form

cis/trans-carvomenthene 1,2-epoxides 8 and subsequent ring-opening

with KPPh₂

Ir] Journal Name, |

Ring-opening of enantiopure monosubstituted epoxides

Altough ring-opening of enantiopure monosubstituted epoxides by trivalent phosphorus nucleophiles has already been ³⁵ studied,¹⁴ we also turned our attention to the ring-opening of the terminally-monosubstituted styrene oxide 10. Several research groups have reported the use of the diphenylphosphide anion for ring-opening of racemic^{12c,15} or enantiomerically pure styrene oxide.¹⁶ With the exception of Pellon^{15c}, who described the 40 reaction as being totally regioselective, no regioselectivity issues were considered by the authors, who simply accounted for the formation of the regioisomer resulting from nucleophilic attack of MPPh₂ at the unsubstituted carbon of styrene oxide. Among literature reports, only Muller et al. took into account the 45 formation of regioisomeric mixtures of ring-opened products derived from (S)-10 and LiPPh₂. They found a regioisomer ratio (rr) of 70:30, which they determined by ³¹P NMR analysis of the crude mixture.12a

Prompted by the lack of systematic investigation into the ⁵⁰ regio- and stereochemistry of the ring-opening of enantiomerically pure styrene oxide **10** with MPPh₂, the authors of the present article revisited this transformation. Using Muller's procedure^{12a} as a reference and the general conditions indicated in Scheme 4, we studied the influence of the diphenylphosphide ⁵⁵ source, and the order of addition between the nucleophile (HPPh₂/nBuLi or KPPh₂) and the electrophile ((*S*)-styrene oxide (**10**)¹⁷). The results are summarised in Table 1.

As shown in Table 1, all the ring-opening reactions were highly regioselective (rr = $88:12 \rightarrow 97:3 \ 11/12$), enabling gram ⁶⁰ scale isolation of the phosphine-borane alcohol **11**, which was formed by nucleophilic attack of diphenylphosphide anions at the unsubstituted carbon of (*S*)-styrene oxide **10**, in high yield (74–86% yield). This regiochemistry was consistent with literature reports:^{15–16} compound **11** was the major regioisomer.

Page 3 of 9

Table 1. Regisselective mig openning of (5) stylene oxide (10) using alkan metal diplehylphosphiles (in 1 m ₂ , in = R of El).						
Entry	Reaction conditions ^{<i>a</i>}	rr ^b (11/12)	Major regioisomer (11):		Minor regioisomer (12):	
			Yield ^c	$ee^{d}(\%)$	Yield ^c	ee^{d} (%)
1	KPPh ₂ added to 10	97:3	78	99	e	_ e
2	10 added to KPPh ₂	97:3	86	96	3	86
3	nBuLi added to 10/HPPh ₂	88:12	74	98	12	98 (> 99) ^f

Table 1. Regioselective ring-opening of (S)-styrene oxide (10) using alkali metal diphenylphosphides (MPPh₂; M = K or Li).

^a For general reaction conditions, see Scheme 4 and the Experimental Section. ^b Regioisomer ratio (rr) determined by ¹H NMR analysis of the crude mixture. ^c Isolated yield of pure compound. ^d Determined by HPLC analysis of isolated pure product using chiral stationary phases. ^e Product not isolated. ^f 5 Compound **12** was isolated in 10% yield and in > 99% ee after two recrystallisations.

obtaining the major regioisomer **11** in enantiomerically pure form (99% ee) on the gram scale (Table 1, entry 1). Surprisingly, the reverse order of addition was detrimental to the enantiomeric ¹⁰ purity of compounds **11** and **12** (Table 1, entry 2): their enantiopurity (96% and 86% ee, respectively) was lower than that of the starting material (99% ee).¹⁷ These results indicate that a defect of the nucleophile with respect to the epoxide throughout the reaction (conditions indicated in entry 1) is beneficial for ¹⁵ avoiding erosion of the optical purity of the final products *via* undesired processes (*i.e.* metallation of the carbon alpha to oxygen and/or S_N1 epoxide ring-opening).

Under Muller's conditions^{12a} the ee for either compound **11** or **12** (*ca.* 98% ee for both compounds; Table 1, entry 3) was very ²⁰ close to that of the starting material. Interestingly, the enantiopurity of **12** (isolated under the previous conditions in 12% yield and in 97.7% ee, Table 1) was enhanced by recrystallisation (10% yield, > 99% ee). Accordingly, this study enabled synthesis of significant quantities of compounds **11** and ²⁵ **12**, isolated as single regioismers in enantiomerically pure form,

under optimised reaction conditions.

Published on 30 October 2014. Downloaded by Temple University on 31/10/2014 13:26:36.

Ring-opening of enantiopure oxetanes

Considering the importance of introducing structural and ³⁰ stereochemical diversity into enantiomerically pure phosphineborane alcohols, we finally envisaged that 1,3-phosphino alcohol derivatives could be available by ring-opening of largermembered oxa-containing heterocycles than epoxides (*i.e.* oxetanes) with phosphorus nucleophiles. Reports on the ring-³⁵ opening of these type of compounds are very scarce in the literature.¹⁸

Accordingly, the enantiopure (*R*)-2-phenyloxetane 13^{19} was selected as the model substrate. Ring-opening of (*R*)-2-phenyloxetane 13 with KPPh₂ (1 equiv.) proceeded smoothly at 40 -30 °C to rt (Scheme 5). Unlike enantiomerically pure styrene oxide 10, full conversion was not accomplished under these conditions (68% conv.), however the ring-opening was regioselective and proceeded through attack at the oxetane unsubstituted carbon alpha to oxygen. After *in situ* protection, the

⁴⁵ enantiopure borane-protected 1,3-phosphino alcohol 14 was obtained in 47% yield. The isolated yield of 14 could be increased up to 63%, respectively, by using 3 equiv. of KPPh₂. The use of LiPPh₂ (generated from HPPh₂ and *n*BuLi) instead of KPPh₂ did not bring any advantage, as the conversion and ⁵⁰ isolated yield were lower than those observed for KPPh₂ under

the same reaction conditions.

Scheme 5. Ring-opening of (R)-2-phenyloxetane with MPPh₂.

Conclusions

Efficient and convenient syntheses of diverse, enantiomerically pure, borane-protected 1,2-, and 1,3-phosphino alcohols have been developed. The regioselective ring-opening of diversely substituted, enantiomerically pure epoxides and oxetanes with nucleophilic phosphorus reagents provided ready access to or structurally diverse 1,2-, and 1,3-phosphino alcohols derivatives with full stereocontrol. Noteworthy examples include synthetic routes starting from chiral pool-derived carvomenthene oxide. The authors of this work are currently endeavouring to use these phosphorus derivatives as chiral building blocks for the preparation of new ligands for asymmetric catalysis.

Experimental Section

General Information

All syntheses were done using chemicals as purchased from 70 commercial sources, unless otherwise stated. All manipulations and reactions were run under inert atmosphere in anhydrous solvents by using standard Schlenk-type techniques. Glassware was dried under vacuum and heated with a heat gun before use. All solvents were dried by using a Solvent Purification System 75 (SPS). Silica gel 60 (230-400 mesh) was used for column chromatography. NMR spectra were recorded in CDCl₃ unless otherwise cited, using a 400 MHz or 500 MHz spectrometer. ¹H NMR and ¹³C NMR chemical shifts are quoted in ppm relative to residual solvent peaks, whereas ³¹P{¹H} NMR chemical shifts are 80 quoted in ppm relative to 85% phosphoric acid in water and ¹¹B{¹H} NMR chemical shifts are quoted in ppm relative to BF₃·OEt₂ in CDCl₃. High resolution mass spectra (HRMS) were recorded by using a ESI method in positive mode. Enantiomeric excess (ee) values were determined by HPLC, using chiral 85 stationary phases in a chromatograph equipped with a diode array

4 | Journal Name, [year], [vol], 00-00

Published on 30 October 2014. Downloaded by Temple University on 31/10/2014 13:26:36.

UV detector. Unless otherwise specified, materials were obtained from commercial suppliers and were used without further purification: *cis/trans*-(1*S/R*,2*R/S*,4*S*)-limonene 1,2-epoxide (7), (*S*)-styrene oxide (10). Compounds 4^8 and 13^{19} were prepared s according to the cited literature procedures.

X-Ray Data: Single crystals of enantiopure compounds 2a, *ent*-2b, 2c, 2d, 5, and 11 suitable for X-ray diffraction analysis were grown by slow diffusion of *n*-hexane into EtOAc solutions of ¹⁰ each compound at room temperature. Single crystals of enantiopure compound 9 suitable for X-ray diffraction analysis were grown by slow diffusion of *n*-hexane into DCM solutions of the compound at room temperature. For more details on the X-Ray analysis see the Supporting Information. CCDC 931316-

- ¹⁵ 931319, 931321, 931323 and 931325 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.
- 20 (1S,2S)-2-(Diphenylphosphino borane)-3-methoxy-1-phenyl-1-propanol (5): A 0.5 M solution of KPPh₂ in THF (7.4 mL, 3.72 mmol) was added dropwise by syringe (over 5 min) to a flamedried Schlenk flask under Ar atmosphere containing a solution of the *cis*-(2*R*,3*S*)-1,2-epoxy methyl ether 4^8 (0.51 g, 3.10 mmol) in 25 anhydrous THF (25.0 mL) cooled to -30 °C. The mixture was stirred for 1 h, and then allowed to slowly reach room temperature, which took ca. 4 h. It was then stirred for another 1 h at room temperature. After this time, a 1.0 M solution of BH₃·THF in THF (9.3 mL, 9.30 mmol) was added dropwise 30 (over *ca*. 15 min) by syringe to the reaction mixture previously cooled to -10 °C. The mixture was stirred for 30 min at -10 °C, and then allowed to warm to room temperature. It was then stirred for another 1 h. The reaction mixture was carefully quenched with water (25 mL) and diluted with EtOAc (15 mL). ³⁵ After the phases were separated, the resulting aqueous phase was extracted with EtOAc (2 x 25 mL). The combined organic layers were washed with brine (2 x 50 mL), dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. Based on ¹H and ³¹P{¹H} NMR analyses, the crude product was found 40 to comprise a 91:9 mixture of compound 5 and compound 6,
- respectively. Purification of the resulting residue by silica gel column chromatography (CombiFlash[®] system, 40 g SiO₂ cartridge, 1st eluent: hexanes, 2nd eluent: 20:80 EtOAc/hexanes, 3rd eluent: 50:50 EtOAc/hexanes) afforded 0.91 g (80% isolated
- ⁴⁵ yield) of pure borane-protected phosphino alcohol **5** (major regioisomer) as a sticky foamy white solid. The minor regioisomer **6** could only be isolated in impure form and small quantities (*ca.* 30 mg, *ca.* 3% isolated yield). Data for the major regioisomer **5**: $[\alpha]_D^{25} = +78.4$ (*c* 1.24, CHCl₃). IR (neat): $v = 2000^{10}$ (*a*) $v = 1000^{10}$ (*b*) $v = 1000^{10}$ (*c* 1.24) $v = 1000^{10}$ (*c* 1.
- ⁵⁰ 3486 (O–H), 2382 (B–H, BH₃) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 0.72–1.76 (m, 3H, BH₃), 2.82–2.99 (m, 1H, OH), 2.88 (s, 3H, OMe), 3.00–3.23 (m, 3H, CH₂OMe and CH–PPh₂), 5.19 (bdd, J = 8.6 and 8.6 Hz, 1H, CH–OH), 7.22–7.39 (m, 5H, 5H_{arom}), 7.39–7.52 (m, 6H, 6H_{arom}), 7.74–7.93 (m, 4H, 4H_{arom})
- ⁵⁵ ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃): δ = 44.4 (d, J_{C-P} = 31.4 Hz, CH–PPh₂), 58.2 (OMe), 69.5 (CH₂–OMe), 73.0 (d, J_{C-P} = 1.5 Hz, CH–OH), 126.7 (CH_{arom}), 128.0 (CH_{arom}), 128.3 (d, J_{C-P} = 10.0 Hz, CH_{arom}), 128.3 (CH_{arom}), 128.4 (d, J_{C-P} = 10.5 Hz, CH_{arom}), 128.9 (d, J_{C-P} = 53.2 Hz, C_q arom–P), 129.5 (d, J_{C-P} =

⁶⁰ 53.4 Hz, $C_{q \text{ arom}}$ -P), 130.8 (d, $J_{C-P} = 1.1$ Hz, CH_{arom}), 130.9 (d, $J_{C-P} = 2.6$ Hz, CH_{arom}), 132.9 (d, $J_{C-P} = 9.3$ Hz, CH_{arom}), 133.3 (d, $J_{C-P} = 8.9$ Hz, CH_{arom}), 141.8 (d, $J_{C-P} = 8.4$ Hz, $C_{q \text{ arom}}$) ppm. ³¹P{¹H} NMR (162 MHz, CDCl₃): $\delta = 22.5-25.0$ (m, Ph₂P \rightarrow BH₃) ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃): $\delta = 65$ (-40.5)-(-35.7) (m, Ph₂P \rightarrow BH₃) ppm. HRMS (ESI⁺): m/z calcd. for C₂₂H₂₆BO₂PNa [M + Na]⁺ 386.1698; found 386.1687.

cis/trans-(1S/R.2R/S.4S)-carvomenthene (8): 1.2-epoxide Adams' catalyst PtO2 (140 mg, ca. 3% w/w) was loaded into a 70 two-necked flask containing a solution of a 47:53 cis/trans diastereomeric mixture of 7 (4.65 g, 30.2 mmol) in anhydrous THF (68.0 mL). The reaction flask was connected to a H_2 balloon, and the reaction mixture was vigorously stirred under atmospheric pressure of H₂ for 15 h at room temperature. After 75 this period, the reaction mixture was diluted with hexanes (20 mL) and filtered through a Celite® 521 pad, which was washed with EtOAc (60 mL). The filtrate was concentrated under vacuum to afford 4.68 g (100% isolated yield) of pure carvomenthene 1,2epoxide 8 as a colorless liquid. Compound 8 was obtained as a ⁸⁰ diastereomeric mixture comprising *cis*-8 and *trans*-8 in a *cis/trans* ratio of 47:53 (determined by ¹H NMR). The physical and spectroscopic data obtained for this diastereomeric mixture agree with literature reports.13

85 (1R,2R,4S)-2-(Diphenylphosphino borane)-4-isopropyl-1methyl-cyclohexanol (9): A 0.5 M solution of KPPh₂ in THF (27.5 mL, 13.7 mmol) was added dropwise by syringe (over 15 min) to a flame-dried Schlenk flask under Ar atmosphere containing a solution of a 47:53 cis/trans diastereomeric mixture 90 of 8 (4.00 g, 25.9 mmol of mixture containing 13.7 mmol of trans-8) in anhydrous THF (40.0 mL) cooled to -78 °C. The mixture was stirred for 1 h, and then allowed to slowly reach 0 °C, which took around 4 h. It was then stirred for another 1 h at 0 °C. After this time, a 1.0 M solution of BH₃·THF in THF (41.2 95 mL, 41.2 mmol) was added dropwise (over ca. 30 min) by syringe to the previous reaction mixture maintained at 0 °C. The mixture was subsequently allowed to warm to room temperature, and then stirred for another 1 h. The reaction mixture was carefully quenched with water (100 mL) and diluted with EtOAc 100 (50 mL). After the phases were separated, the resulting aqueous phase was extracted with EtOAc (2 x 80 mL). The combined organic layers were washed with brine (2 x 150 mL), dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. ¹H and ³¹P{¹H} NMR analyses of the crude mixture 105 confirmed the complete regioselectivity of the ring-opening process to the formation of compound 9 as a single regioisomer and evidenced that the diastereoisomer cis-8 of the starting epoxide remained unreacted. Purification of the resulting residue by silica gel column chromatography (CombiFlash[®] system, 120 ¹¹⁰ g SiO₂ cartridge, 1st eluent: hexanes, 2nd eluent: 10:90 EtOAc/hexanes, 3rd eluent: 30:70 EtOAc/hexanes) afforded 3.59 g (74% isolated yield) of pure borane-protected phosphino alcohol 9 as a foamy white solid. M.p. 49.0–51.6 °C. $[\alpha]_D^{26}$ = -42.1 (c 0.86, CHCl₃). IR (neat): v = 3483 (O–H), 2389 (B–H, ¹¹⁵ BH₃) cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 0.64$ (d, J = 6.6 Hz, 3H, $CH(Me)_2$), 0.82 (d, J = 6.7 Hz, 3H, $CH(Me)_2$), 0.97–1.56 (m, 3H, BH₃), 1.15 (s, 3H, Me-C-OH), 1.39-1.53 (m, 3H, CH₂ and CH-CH(Me)₂), 1.55-1.71 (m, 3H, CH₂ and CH(Me)₂), 1.76-1.94 **RSC Advances Accepted Manuscript**

Journal Name, [year], [vol], 00-00 | 5

This journal is © The Royal Society of Chemistry [year]

RSC Advances Accepted Manuscript

(m, 2H, CH_2), 2.56 (bs, 1H, OH), 3.00 (ddd, J = 13.0, 8.9 and 3.9 Hz, 1H, CH-PPh₂), 7.40-7.55 (m, 6H, 6H_{arom}), 7.75-7.91 (m, 4H, $4H_{arom}$) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 20.3 (CH(Me)₂), 20.4 (CH(Me)₂), 24.9 (CH₂), 26.6 (Me-C-OH), 28.1 $_{5}$ (CH₂), 28.3 (CH(Me)₂), 37.0 (d, J_{C-P} = 5.2 Hz, CH₂), 39.1 (d, $J_{C-P} = 5.1$ Hz, CH–CH(Me)₂), 41.8 (d, $J_{C-P} = 27.5$ Hz, CH–PPh₂), 73.1 (d, J_{C-P} = 4.5 Hz, C–OH), 128.0 (d, J_{C-P} = 53.7 Hz, $C_{q \text{ arom}}$ -P), 128.5 (d, J_{C-P} = 9.9 Hz, CH_{arom}), 128.7 (d, J_{C-P} = 9.5 Hz, CH_{arom}), 130.1 (d, J_{C-P} = 56.5 Hz, $C_{q arom}$ -P), 130.9 (d, ¹⁰ J_{C-P} = 2.4 Hz, CH_{arom}), 131.3 (d, J_{C-P} = 2.1 Hz, CH_{arom}), 132.1 (d, $J_{C-P} = 8.2$ Hz, CH_{arom}), 134.0 (d, $J_{C-P} = 8.8$ Hz, CH_{arom}) ppm. ³¹P{¹H} NMR (162 MHz, CDCl₃): $\delta = 17.0-21.2$ (m, $Ph_2P \rightarrow BH_3$) ppm. ¹¹B{¹H} NMR (128 MHz, CDCl₃): $\delta =$ (-40.2)-(-32.2) (m, Ph₂P \rightarrow BH₃) ppm. HRMS (ESI⁺): m/z calcd. 15 for $C_{22}H_{32}BOPNa [M + Na]^+ 376.2218$; found 376.2234.

(S)-2-(Diphenylphosphino borane)-1-phenylethanol (11; see Table 1, entry 1): A 0.5 M solution of KPPh₂ in THF (32.6 mL, 16.3 mmol) was added dropwise (over 15 min) by syringe to a 20 flame-dried Schlenk flask under Ar atmosphere containing a solution of (S)-styrene oxide 10 (2.00 g, 16.3 mmol) in anhydrous THF (40.0 mL) cooled to -78 °C. The mixture was stirred for 1 h, and then allowed to slowly reach 0 °C, which took ca. 4 h. It was then stirred for another 1 h at 0 °C. After this time, a 1.0 M 25 solution of BH3. THF in THF (16.3 mL, 16.3 mmol) was added dropwise (over ca. 30 min) by syringe to the previous reaction mixture, maintained at 0 °C. The mixture was subsequently allowed to warm to room temperature, then stirred for another 1 h, carefully quenched with water (100 mL) and diluted with 30 EtOAc (50 mL). After the phases were separated, the aqueous phase was extracted with EtOAc (2 x 80 mL). The combined organic layers were washed with brine (2 x 150 mL), dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. Based on ¹H NMR analysis, the crude product was 35 found to comprise a 97:3 mixture of compound 11 and compound 12, respectively. Purification of the resulting residue by silica gel column chromatography (CombiFlash[®] system, 120 g SiO₂ cartridge, 1st eluent: hexanes, 2nd eluent: 10:90 EtOAc/hexanes) afforded 4.06 g (78% isolated yield) of pure borane-protected 40 phosphino alcohol 11 (major regioisomer) as a crystalline white solid. The minor regioisomer 12 was not isolated. The enantiomeric purity of the isolated pure compound 11 was determined to be 99.0% ee by HPLC analysis on a chiral stationary phase. HPLC conditions were optimised for the 45 racemate of 11, prepared from racemic styrene oxide rac-10 and are the following ones: Daicel Chiralpak[®] AD-H (25 cm x 0.46 cm x 5 µm), 95:5 n-hexane/2-propanol, 1.0 mL/min, 216 nm, $t_R(R) = 33.4 \text{ min}, t_R(S) = 40.1 \text{ min}.$ Data for the major regioisomer **11**: M.p. 94.4–99.3 °C. $[\alpha]_D^{26} = +46.2$ (*c* 1.10, CHCl₃). IR (neat): $_{50} v = 3507 (O-H), 2407 \text{ and } 2366 (B-H, BH_3) \text{ cm}^{-1}$. ¹H NMR (500 MHz, CDCl₃): $\delta = 0.85 - 1.70$ (m, 3H, BH₃), 2.69 (ddd, J = 14.9, 12.7 and 2.4 Hz, 1H, CHH-PPh₂), 2.79 (ddd, J = 14.9, 9.7 and 8.0 Hz, 1H, CHH-PPh₂), 3.03 (bs, 1H, OH), 5.12 (ddd, J = 9.7, 9.6 and 2.4 Hz, 1H, CH-OH), 7.25-7.31 (m, 1H, 1H_{arom}), 55 7.31–7.38 (m, 4H, 4H_{arom}), 7.43–7.57 (m, 6H, 6H_{arom}), 7.70–7.78 (m, 4H, 4 H_{arom}) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 37.1 (d, J_{C-P} = 34.0 Hz, CH₂-PPh₂), 69.6 (CH-OH), 125.5 (CH_{arom}), 127.9 (CH_{arom}), 128.6 (CH_{arom}), 128.8 (d, J_{C-P} = 55.5 Hz, C_q _{arom}-P), 128.9 (d, J_{C-P} = 10.2 Hz, CH_{arom}), 129.0 (d, J_{C-P} = 10.1

⁶⁰ Hz, *C*H_{arom}), 129.5 (d, J_{C-P} = 57.4 Hz, $C_{q \text{ arom}}$ -P), 131.3 (d, J_{C-P} = 2.1 Hz, CH_{arom}), 131.5 (d, J_{C-P} = 2.0 Hz, CH_{arom}), 132.0 (d, J_{C-P} = 9.7 Hz, CH_{arom}), 132.4 (d, J_{C-P} = 9.2 Hz, CH_{arom}), 143.8 (d, J_{C-P} = 11.3 Hz, $C_{q \text{ arom}}$) ppm. ³¹P{¹H} NMR (202 MHz, CDCl₃): δ = 14.3–16.1 (m, $Ph_2P \rightarrow BH_3$) ppm. ¹¹B{¹H} NMR (160 MHz, $_{65}$ CDCl₃): δ = (-41.0)-(-37.0) (m, Ph₂P→BH₃) ppm. HRMS (ESI⁺): m/z calcd. for C₂₀H₂₂BOPNa [M + Na]⁺ 342.1435; found 342.1419.

(R)-2-(Diphenylphosphino borane)-2-phenylethanol (12; see 70 Table 1, entry 3): A 2.5 M solution of nBuLi in hexanes (6.5 mL, 16.3 mmol) was added dropwise by syringe (over 15 min) to a flame-dried Schlenk flask under Ar atmosphere containing a solution of (S)-styrene oxide 10 (2.00 g, 16.3 mmol) and HPPh₂ (2.8 mL, 16.3 mmol) in anhydrous THF (40.0 mL) cooled to -7875 °C. The mixture was stirred for 1 h, and then allowed to slowly reach 0 °C, which took around 4 h. It was then stirred for another 1 h at 0 °C. After this time, a 1.0 M solution of BH₃·THF in THF (16.3 mL, 16.3 mmol) was added dropwise (over ca. 30 min) by syringe to the previous reaction mixture maintained at 0 °C. The ⁸⁰ mixture was subsequently allowed to warm to room temperature. and then stirred for another 1 h. The reaction mixture was carefully quenched with water (100 mL) and diluted with EtOAc (50 mL). After the phases were separated, the resulting aqueous phase was extracted with EtOAc (2 x 80 mL). The combined 85 organic layers were washed with brine (2 x 150 mL), dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. Based on ¹H NMR analysis, the crude product was found to comprise an 88:12 mixture of compound 11 and compound 12, respectively. Purification of the resulting residue ⁹⁰ by silica gel column chromatography (CombiFlash[®] system, 120 g SiO₂ cartridge, 1st eluent: hexanes, 2nd eluent: 10:90 EtOAc/hexanes, 3rd eluent: 30:70 EtOAc/hexanes) afforded 3.85 g (74% isolated yield) of pure borane-protected phosphino alcohol 11 (major regioisomer) as a crystalline white solid and 95 0.60 g (12% isolated yield) of pure borane-protected phosphino alcohol 12 (minor regioisomer) as a foamy white solid. The enantiomeric purity of the isolated pure compounds 11 and 12 was determined to be 97.6% ee (S enantiomer) and 97.7% ee (R enantiomer), respectively, by HPLC analysis on chiral stationary 100 phases. Two subsequent recrystallisations from diluted solutions of 12 in the solvent mixture 1:4 Et₂O/*n*-hexane (150 and 100 mL of mixture used for the first and second recrystallisation, respectively) by refrigerating the latter solutions overnight at 5 °C furnished the minor regioisomer 12 with 10% yield (0.50 g 105 isolated) and in greater than 99% ee. HPLC conditions were optimised for the racemate of 12, prepared from racemic styrene oxide rac-10, and comprise: Daicel Chiralcel® OD-H (25 cm x 0.46 cm x 5 µm), 95:5 n-hexane/2-propanol, 1.0 mL/min, 216 nm, $t_R(S) = 20.7$ min, $t_R(R) = 23.6$ min. Data for the minor ¹¹⁰ regioisomer **12**: M.p. 103.5–107.0 °C. $[\alpha]_D^{26} = -161.2$ (*c* 1.11, CHCl₃). IR (neat): v = 3416 (O–H), 2399 (B–H, BH₃) cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 0.69-1.49$ (m, 3H, BH₃), 1.79 (bs, 1H, OH), 4.01 (ddd, J = 14.2, 8.9 and 5.1 Hz, 1H, CH–PPh₂), 4.06-4.16 (m, 1H, CHH-OH), 4.24-4.34 (m, 1H, CHH-OH), 115 7.15–7.27 (m, 7H, 7H_{arom}), 7.32–7.39 (m, 3H, 3H_{arom}), 7.50–7.61 (m, 3H, $3H_{arom}$), 7.91–7.98 (m, 2H, $2H_{arom}$) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 46.2 (d, J_{C-P} = 29.2 Hz, CH–PPh₂), 62.9 (d, $J_{C-P} = 10.4$ Hz, CH_2 –OH), 127.5 (d, $J_{C-P} = 55.7$ Hz, C_q This journal is © The Royal Society of Chemistry [year]

Published on 30 October 2014. Downloaded by Temple University on 31/10/2014 13:26:36.

6 | Journal Name, [year], [vol], 00-00

arom-P), 127.7 (d, $J_{C-P} = 2.0$ Hz, CH_{arom}), 128.0 (d, $J_{C-P} = 53.7$ Hz, $C_{q arom}$ -P), 128.2 (d, $J_{C-P} = 10.2$ Hz, CH_{arom}), 128.4 (d, $J_{C-P} = 1.7$ Hz, CH_{arom}), 129.0 (d, $J_{C-P} = 10.0$ Hz, CH_{arom}), 129.9 (d, $J_{C-P} = 1.7$ Hz, CH_{arom}), 131.0 (d, $J_{C-P} = 2.6$ Hz, CH_{arom}), 131.5 (d, $J_{C-P} = 4.6$ Hz, CH_{arom}), 131.0 (d, $J_{C-P} = 2.6$ Hz, CH_{arom}), 131.5 (d, $J_{C-P} = 8.7$ Hz, CH_{arom}), 131.5 (d, $J_{C-P} = 8.6$ Hz, CH_{arom}), 134.0 (d, $J_{C-P} = 1.7$ Hz, $C_{q arom}$) ppm. ³¹P{¹H} NMR (202 MHz, CDCl₃): $\delta = 21.2-22.7$ (m, Ph₂P \rightarrow BH₃) ppm. ¹¹B{¹H} NMR (160 MHz, CDCl₃): $\delta = (-48.9)-(-38.2)$ (m, Ph₂P \rightarrow BH₃) ppm. HRMS (ESI⁺): m/z calcd. for C₂₀H₂₂BOPNa ¹⁰ [M + Na]⁺ 342.1435; found 342.1425.

(*R*)-3-(Diphenylphosphino borane)-1-phenyl-1-propanol (14): A 0.5 M solution of KPPh₂ in THF (2.2 mL, 1.14 mmol) was added dropwise by syringe (over 5 min) to a flame-dried Schlenk 15 flask under Ar atmosphere containing a solution of the (R)-2phenyloxetane 13 (0.051 g, 0.38 mmol) in anhydrous THF (3.2 mL) cooled to -30 °C. The mixture was stirred for 1 h, and then allowed to slowly reach room temperature, which took ca. 4 h. It was then stirred for another 1 h at room temperature. After this 20 time, a 1.0 M solution of BH3•THF in THF (1.14 mL, 1.14 mmol) was added dropwise (over *ca*. 15 min) by syringe to the reaction mixture previously cooled to -10 °C. The mixture was stirred for 1 h at -10 °C, and then allowed to warm to room temperature. It was then stirred for another 3 h. The reaction mixture was 25 carefully quenched with water (3 mL) and diluted with EtOAc (5 mL). After the phases were separated, the resulting aqueous phase was extracted with EtOAc (2 x 5 mL). The combined organic layers were washed with brine (2 x 6 mL), dried over anhydrous MgSO₄, filtered, and concentrated under reduced ³⁰ pressure. Based on ¹H and ³¹P{¹H} NMR analyses of the crude mixture, the regioisomer 15 was not detected. Purification of the resulting residue by silica gel column chromatography (CombiFlash[®] system, 12 g SiO₂ cartridge, 1st eluent: hexanes, 2nd eluent: 30:70 EtOAc/hexanes) afforded 0.080 g (63% 35 isolated yield) of pure borane-protected phosphino alcohol 14 as a sticky foamy white solid. The physical and spectroscopic data obtained for the compound 14 agree with literature reports.²⁰

Acknowledgements

⁴⁰ The authors thank *MINECO* (grant CTQ2011-28512), *DURSI* (grant 2014SGR618) and the ICIQ Foundation for financial support. Dr. J. Benet-Buchholz and E. C. Escudero are acknowledged for X-ray crystallographic data.

Notes and references

- ⁴⁵ ^a Institute of Chemical Research of Catalonia (ICIQ), Avgda. Països Catalans 16, 43007 Tarragona, Spain. Fax: (+) 34 977928228; E-mail: <u>avidal@iciq.cat;</u> Homepage: <u>http://www.iciq.es/portal/359/Vidal.aspx</u> ^b Catalan Institution for Research and Advanced Studies (ICREA),
- Passeig Lluís Companys 23, 08010 Barcelona, Spain. Homepage: 50 <u>http://www.icrea.cat/Web/ScientificForm.aspx?key=288</u>
- [†] Electronic Supplementary Information (ESI) available: X-Ray analysis data of enantiopure compounds **2a**, *ent*-**2b**, **2c**, **2d**, **5**, **9** and **11**, and copies of ¹H, ¹³C, ³¹P and ¹¹B NMR spectra for all newly reported compounds.

- See, for example, the following references and those cited therein: (a) A. Börner, ed., *Phosphorus Ligands in Asymmetric Catalysis*, 1st edn., Wiley-VCH, Weinheim, 2008; Vols. I-III; (b) P. W. N. M. van Leeuwen, P. C. J. Kamer, C. Claver, O. Pamies and M. Dieguez, *Chem. Rev.*, 2011, **111**, 2077; (c) H. Fernández-Pérez, P. Etayo, A. Panossian and A. Vidal-Ferran, *Chem. Rev.*, 2011, **111**, 2119; (d) J. Wassenaar and J. N. H. Reek, *Org. Biomol. Chem.*, 2011, **9**, 1704; (e) S. Luehr, J. Holz and A. Boerner, *ChemCatChem*, 2011, **3**, 1708; (f) P. Etayo and A. Vidal-Ferran, *Chem. Soc. Rev.*, 2013, **42**, 728; (g) M. Raynal, P. Ballester, A. Vidal-Ferran and P. W. N. M. van Leeuwen, *Chem. Soc. Rev.*, 2014, **43**, 1660; (h) M. Raynal, P. Ballester, A. Vidal-Ferran and P. W. N. M. van Leeuwen, *Chem. Soc. Rev.*, 2014, **43**, 1734.
- See, for example, the recent review and the references cited therein:
 C. Gomez, J.-F. Betzer, A. Voituriez and A. Marinetti, *ChemCatChem*, 2013, 5, 1055.
- 3 See, for example, the recent reviews on hemilabile P–O ligands that follow and the references cited therein: (a) D. K. Dutta and B. Deb, *Coord. Chem. Rev.*, 2011, **255**, 1686; (b) W.-H. Zhang, S. W. Chien and T. S. A. Hor, *Coord. Chem. Rev.*, 2011, **255**, 1991.
- 4 For seminal reports, see: (a) H. Brunner and A. Sicheneder, Angew. Chem. Int. Ed. Engl., 1988, 100, 718; (b) F. Gorla, A. Togni, L. M. Venanzi, A. Albinati and F. Lianza, Organometallics, 1994, 13, 1607.
- 5 Prepared according to the literature procedures described in: A. Vidal-Ferran, A. Moyano, M. A. Pericàs and A. Riera, J. Org. Chem., 1997, 62, 4970.
- (a) H. Fernández-Pérez, M. A. Pericàs and A. Vidal-Ferran, Adv. 6 Synth. Catal., 2008, 350, 1984; (b) S. M. A. Donald, A. Vidal-Ferran and F. Maseras, Can. J. Chem., 2009, 87, 1273; (c) H. Fernández-Pérez, S. M. A. Donald, I. J. Munslow, J. Benet-Buchholz, F. Maseras and A. Vidal-Ferran, Chem. Eur. J., 2010, 16, 6495; (d) A. Panossian, H. Fernández-Pérez, D. Popa and A. Vidal-Ferran, Tetrahedron: Asymmetry, 2010, 21, 2281; (e) H. Fernández-Pérez, P. Etayo, J. L. Núñez-Rico and A. Vidal-Ferran, Chim. Oggi, 2010, 28, XXVI; (f) J. L. Núñez-Rico, H. Fernández-Pérez, J. Benet-Buchholz and A. Vidal-Ferran, Organometallics, 2010, 29, 6627; (g) P. Etayo, J. L. Núñez-Rico, H. Fernández-Pérez and A. Vidal-Ferran, Chem. Eur. J., 2011, 17, 13978; (h) P. Etayo, J. L. Núñez-Rico and A. Vidal-Ferran, Organometallics, 2011, 30, 6718; (i) J. L. Núñez-Rico, P. Etayo, H. Fernández-Pérez and A. Vidal-Ferran, Adv. Synth. Catal., 2012, 354, 3025; (j) J. L. Núñez-Rico and A. Vidal-Ferran, Org. Lett., 2013, 15, 2066; (k) J. L. Núñez-Rico, H. Fernández-Pérez and A. Vidal-Ferran, Green Chem., 2014, 16, 1153.
- 7 See the Electronic Supporting Information (ESI) for details.
- 8 For the experimental procedures leading to **4** and the corresponding analytical methods, see: X. Caldentey, X. C. Cambeiro and M. A. Pericàs, *Tetrahedron*, 2011, **67**, 4161. and the relevant references cited therein.
- 9 Regioisomer ratio determined by ¹H and ³¹P{¹H} NMR analyses of the crude mixture.
- 10 For selected examples, see ref 8 and: (a) M. Chini, P. Crotti, L. A. Flippin, C. Gardelli, E. Giovani, F. Macchia and M. Pineschi, *J. Org. Chem.*, 1993, **58**, 1221; (b) X. Caldentey and M. A. Pericàs, *J. Org. Chem.*, 2010, **75**, 2628.
- 11 P. Cuadrado, A. M. Gonzalez-Nogal and M. A. Sarmentero, *Chem. Eur. J.*, 2004, **10**, 4491.
- 12 See, for example, the following references: (a) G. Muller and D. Sainz, J. Organomet. Chem., 1995, 495, 103; (b) C. Mattheis and P. Braunstein, J. Organomet. Chem., 2001, 621, 218; (c) D. L. Fox, A. A. Robinson, J. B. Frank and R. N. Salvatore, Tetrahedron Lett., 2003, 44, 7579.
- 13 K. Mori, Tetrahedron: Asymmetry, 2006, 17, 2133.
- 14 For selected examples: (a) S. Deerenberg, H. S. Schrekker, G. P. F. van Strijdonck, P. C. J. Kamer, P. W. N. M. van Leeuwen, J. Fraanje and K. Goubitz, *J. Org. Chem.*, 2000, **65**, 4810; (b) D. J. Brauer, P.

Published on 30 October 2014. Downloaded by Temple University on 31/10/2014 13:26:36.

Machnitzki, T. Nickel and O. Stelzer, *Eur. J. Inorg. Chem.*, 2000, 65; (c) J. Duran, D. Oliver, A. Polo, J. Real, J. Benet-Buchholz and X. Fontrodona, *Tetrahedron: Asymmetry*, 2003, **14**, 2529; (d) C. Ciardi, A. Romerosa, M. Serrano-Ruiz, L. Gonsalvi, M. Peruzzini and G. Reginato, *J. Org. Chem.*, 2007, **72**, 7787; (e) C. Hegedüs, H. Gulyás, A. Szöllosy and J. Bakos, *Inorg. Chim. Acta*, 2009, **362**, 1650.

- (a) E. N. Tsvetkov, N. A. Bondarenko, I. G. Malakhova and M. I. Kabachnik, *Synthesis*, 1986, 198; (b) H. B. Kagan, M. Tahar and J. C. Fiaud, *Tetrahedron Lett.*, 1991, **32**, 5959; (c) P. Pellon, *Tetrahedron Lett.*, 1992, **33**, 4451; (d) H. B. Kagan, M. Tahar and J. C. Fiaud, *Bioorg. Med. Chem.*, 1994, **2**, 15.
- 16 (a) R. Jiang, W. He, P.-a. Wang, X.-y. Li and S.-y. Zhang, *Fenzi Cuihua*, 2006, **20**, 207; (b) I. Arribas, S. Vargas, M. Rubio, A. Suarez, C. Domene, E. Alvarez and A. Pizzano, *Organometallics*, 2010, **29**, 5791.
- 17 The enantiomeric purity of (*S*)-styrene epoxide upon delivery from the commercial supplier was investigated: the advertised enantiopurity was 98% ee, which was confirmed (98.5% ee) by HPLC analysis on a chiral stationary phase. HPLC conditions were optimised for racemic styrene oxide and then applied to (*S*)-styrene oxide, as received from Aldrich[®] [Daicel Chiralpak[®] IA (25 cm x 0.46 cm x 5 μ m), 99:1 *n*-hexane/2-propanol, 0.60 mL/min, 254 nm, $t_R(R) = 9.1 \text{ min}, t_R(S) = 10.1 \text{ min}].$
- 18 To the best of the authors' knowledge, only one example of ringopening of enantiopure oxetanes with phosphides has been reported: O. Pàmies, M. Diéguez, G. Net, A. Ruiz and C. Claver, *Chem. Commun.*, 2000, 2383.
- 19 For the experimental procedure leading to (*R*)-2-phenyloxetane 13 and the corresponding analytical methods, see: D. I. Coppi, A. Salomone, F. M. Perna and V. Capriati, *Chem. Commun.*, 2011, 47, 9918 and the references cited therein.
- 20 S. Deerenberg, P. C. J. Kamer and P. W. N. M. van Leeuwen, Organometallics, 2000, 19, 2065.

Published on 30 October 2014. Downloaded by Temple University on 31/10/2014 13:26:36.

TABLE OF CONTENTS ENTRY

Borane complexes of phosphino alcohols were efficiently obtained by ring-opening of oxa-containing heterocycles with phosphorus nucleophiles.