

ICR studies of some hydrogen atom abstraction reactions: X+ + H2 \rightarrow XH+ + H

J. K. Kim, L. P. Theard, and W. T. Huntress Jr.

Citation: The Journal of Chemical Physics **62**, 45 (1975); doi: 10.1063/1.430236 View online: http://dx.doi.org/10.1063/1.430236 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/62/1?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in

Allelectron molecular Dirac–Hartree–Fock calculations: Properties of the XH4 and XH2 molecules and the reaction energy $XH4 \rightarrow XH2+H2$, X=Si, Ge, Sn, Pb J. Chem. Phys. **96**, 1210 (1992); 10.1063/1.462208

Crossed beam studies of the hydrogen exchange reaction: The reaction of H and D atoms with T2 molecules J. Chem. Phys. **72**, 6265 (1980); 10.1063/1.439040

Hydrogen abstraction reactions by atomic fluorine. III. Temperature dependence of the intermolecular kinetic isotope effect for the thermal F+H2 reaction J. Chem. Phys. **63**, 2970 (1975); 10.1063/1.431707

Crossedbeam studies of the hydrogen exchange reaction: The reaction of H atoms with T2 molecules J. Chem. Phys. **59**, 3421 (1973); 10.1063/1.1680488

ThermalEnergy Ion—Neutral Reaction Rates. VII. Some HydrogenAtom Abstraction Reactions J. Chem. Phys. **46**, 2802 (1967); 10.1063/1.1841117

ICR studies of some hydrogen atom abstraction reactions: $X^+ + H_2 \rightarrow XH^+ + H^*$

J. K. Kim[†], L. P. Theard, and W. T. Huntress Jr.

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91103 (Received 19 June 1974)

Ion cyclotron resonance methods are used to identify and to measure the rate constants for the abstraction of a hydrogen atom from H_2 by CH^+ , CH_2^+ , CH_4^+ , N^+ , NH^+ , NH_2^+ , NH_3^+ , O^+ , OH^+ , H_2O^+ , CO^+ , N_2^+ , C_2^+ , and C_2H^+ ions. Although in most cases hydrogen atom abstraction is the only available exothermic pathway for these reactions at thermal energies, the rate constants measured show that except for O^+ , CO^+ , and N_2^+ , a large fraction of collisions between these ions and H_2 are not reactive. The rate constants measured range from a low of $(3\pm1) \times 10^{-13}$ cm³/sec for the NH_3^+ - H_2 reaction to $(1.73\pm0.04) \times 10^{-9}$ cm³/sec for the N_2^+ - H_2 reaction. These values compare to the Langevin value of about 1.5×10^{-9} cm³/sec for collisions between these ions and H_2 . An examination was also made for possible thermoneutral hydrogen atom exchange reactions for those ions which do not react with H_2 (CH_3^+ , CH_3^+ , NH_4^+ , H_3O^+ , H_2S^+ , H_3S^+). The only exchange reaction observed was for collisions between CD_3^+ ions and H_2 , for which a rate constant of $(5.1\pm0.5) \times 10^{-10}$ cm³/sec was measured.

I. INTRODUCTION

The reactions of ions in hydrogen are not only of fundamental interest, but are also important in present schemes for the synthesis of molecular species in dense interstellar clouds. For example, the loss processes involving the CH^t ion in clouds containing large quantities of H₂ are important for determining the relative abundances of the CH and CH* species observed in these regions.^{1,2} From the fundamental point of view, the abstraction of a hydrogen atom from H₂ by various ions represents a class of somewhat enigmatic reactions, since it appears that the occurrence of these reactions cannot be predicted on the basis of exothermicity.³ Unlike other simple atom transfer processes in ion-molecule collisions (such as proton transfer), exothermic hydrogen atom abstraction does not always occur with every ion-molecule collision, even if the process is exothermic and is the only available reaction pathway. This is contrary to the prevailing conception that exothermic ion-molecule reactions have no activation energy and therefore should occur with nearly every collision. Only proton transfer reactions appear to occur at the maximum rate given by the collision frequency.

Abstraction reactions of ions in hydrogen have been previously examined, ³⁻¹¹ but not without some experimental difficulties. Studies using conventional mass spectrometric techniques $^{6-11}$ generally involve ions with excess kinetic energy and suffer the difficulty that the reactant hydride ions are resynthesized in these mixtures by reaction of H_2^{\dagger} and H_3^{\dagger} ions with the neutral hydride additive. This latter problem can be especially acute for fragment ions with appearance potentials greater than the ionization potential of hydrogen, and in many cases prevents the identification of reactions and the measurement of rate constants. Measurements using the flowing afterglow technique^{3,4} neatly avert this problem by separating the ion formation and hydrogen addition regions. The ion kinetic energy distribution in flowing afterglow experiments is thermal at 300 °K, but only approximate rate constants have been reported for several of the reactions studied in this work.

The ICR ion trapping technique used in this work¹² allows for the direct measurement of the decay of reactant ions with time, and has the advantage that thermal energy rate constants are easily and accurately obtained from simple kinetics. This technique is coupled in this work with continuous rf double resonance ejection of the H_2^+ ion formed by electron impact of H_2 in hydride-hydrogen gas mixtures. This capability for mass-selective ion ejection is unique to ICR methods and is required in this case in order to prevent the formation of ions by reactions of H_2^+ and H_3^+ ions with the hydride additive in these mixtures. The time dependence of the primary parent and fragment ions can then be followed without interference from secondary ion formation.

II. EXPERIMENTAL

The ICR ion trapping technique used for measuring thermal energy rate constants has been previously described. ^{12, 13} The decay of the primary ions with time yields the rate constant for the reaction with the neutral gas present. Figure 1 shows a semilogarithmic plot of the decay of the CH⁺ and CH₂ ion signals in methane both with and without added hydrogen. The hydrogen was added through a second sample inlet, and the added hydrogen pressure was measured using the capacitance manometer-ion gauge procedure as previously described.¹³ Without added hydrogen, the slope of the decay plots in Fig. 1, when divided by the methane neutral density, yield the rate constants for the reaction of CH⁺ and CH_2^+ ions with CH_4 . The difference in slope between these and the decay plots with added hydrogen, when divided by the added neutral hydrogen density, yield the rate constants for the reaction of CH⁺ and CH⁺₂ ions with H₂.

The rate constants for the reaction of CH^* , CH_2^* , N^* , NH^* , NH_2^* , O^* , OH^* , N_2^* , C_2^* , and C_2H^* ions with hydrogen were determined using the procedure outlined above (Table I). These ions are not produced by H_2^* or H_3^* ions in the mixtures used, and the results obtained were unaffected by continuous rf ejection of the H_2^* ions. However, without H_2^* ion ejection the behavior of the

45

FIG. 1. Semilogarithmic plots of the decay of the CH⁺ and CH⁺₂ ion intensities with time in ion trapping experiments on (1) circles, methane alone, CH₄ pressure 1.65×10⁻⁶ Torr, and (2) crosses, with 2.15×10⁻⁶ Torr of H₂ added for a total of 3.70 ×10⁻⁶ Torr.

 CO^{+} , CH_{3}^{+} , CH_{4}^{+} , NH_{3}^{+} , and $H_{2}O^{+}$ ions are considerably affected on addition of H_2 . These ions are formed by H_2^+ or H_3^+ ions in the mixtures used, and two methods were used to eliminate these secondary processes. In the first method electron energies below the I. P. of H_2 were used, and in the second method an electron energy of 40 eV was used with continuous cyclotron ejection of the H_2^* ion (which also prevents formation of H_3^* ions). Complete ejection of the H_2^* ion is verified when further increases in rf irradiation power at the cyclotron frequency of H_2^* results in no further reduction of the total ion signal. The rate constants obtained by either of these methods are identical, but the data obtained by H_{2}^{*} ion ejection are more precise because of the much larger ion signal which can be obtained at high electron energies. The errors quoted are for precision only. The estimated accuracy of the measurements is estimated to be on the order of 10-15%.

The reactions with H_2 indicated by the ion trapping experiments were confirmed by performing standard ICR double resonance ejection experiments.¹³ For the ions which do not react with H_2 , upper limits for the rate constants were obtained by using standard continuous-drift ICR methods at electron energies below the I. P. of H_2 . The neutral hydride was admitted to the spectrometer at low pressures where little or no reaction between ions and the neutral hydride are observed (short drift times, ~ 1-2 msec). Hydrogen (or D_2) was then added to pressures as high as 2×10^{-3} Torr and the upper

limit determined from the ratio of intensities of the m + 1 ion (or m + 1 and m + 2 ions in the case of added D_2) to the m ion. Better upper limits can be obtained by searching for the product ion than by searching for small differences in slopes in semilogarithmic ion decay plots. Short reaction times are also required in order to prevent formation of the m + 1 ion by reactions with the neutral hydride itself (rather than with H_2) so that the ion trapping mode is not applicable in this case.

The upper limits for the abstraction reactions of CH_3^* , H_2S^* , $CH_3NH_2^*$, and CH_3OH^* ions with H_2 (or D_2) were determined by the continuous-drift ICR method given above. For several ions that are not reactive with hydrogen, the possibility of hydrogen atom exchange in nonreactive collisions was examined using this same method (Table II). In order to examine for exchange reactions of protonated ions (NH_4^* , H_3O^* , H_3S^* , and CD_5^*), the neutral hydride gas was added at high pressures where extensive reaction results in nearly complete conversion of primary ions to the protonated (deuteronated) ion. Hydrogen (or D_2) is then added as before to examine for the exchange reaction (Fig. 2).

III. RESULTS AND DISCUSSION

A. Methane-hydrogen mixtures

The CH^{*}, CH^{*}₂, CH^{*}₃, and CH^{*}₄ ions were obtained by electron impact of CH₄. Figure 1 illustrates the measurement of the rate constants for the reactions

$$CH^{+} + H_2 - CH_2^{+} + H , \qquad (1)$$

$$CH_{2}^{+}+H_{2} \rightarrow CH_{3}^{+}+H$$
(2)

FIG. 2. Conventional ICR spectra of (a) NH₃ at 2.9×10^{-5} Torr, (b) same as (a) with 9.2×10^{-4} Torr of added D₂. Electron energy 13.5 eV, drift time 1.5×10^{-3} sec. From the lack of change in relative intensities of the m/e = 18 and 19 ions with added D₂, an upper limit of $\sim 1 \times 10^{-13}$ cm³/sec is obtained for the reaction NH₄⁴ + D₂ \rightarrow NH₃D⁴ + HD,

TABLE I. Reactions of ions with hydrogen.

ΔH (kcal/mole) Reaction		Rate constant ^a (10 ⁻⁹ cm ³ /sec)	Lit. values	E _a (kcal/mole)	
-14	$CH^* + H_2 \rightarrow CH_2^* + H$	1.01±0.04	0.58, ⁷ (0.49) ^{7,b}	0.2	
-21	$\mathrm{CH}_2^{\star} + \mathrm{H}_2 \longrightarrow \mathrm{CH}_3^{\star} + \mathrm{H}$	0.72 ± 0.04	0.23, ⁷ (0.31) ^{7,b}	0.4	
+66	$CH_3^{\bullet} + H_2 \rightarrow CH_4^{\bullet} + H$	≤0,0005		>4.1	
0	$CH_4^+ + H_2 \rightarrow CH_5^+ + H$	0.041 ± 0.002		2.2	
- 14	$N^* + H_2 \rightarrow NH^* + H$	0.48 ± 0.02	0.47 ⁴	0.7	
-26	$NH^{+} + H_2 \rightarrow NH_2^{+} + H$	0.95 ± 0.10	$\sim 2:0^4$	0.3	
-29	$NH_2^+ + H_2 \rightarrow NH_3^+ + H$	0.12 ± 0.02	0.254	1.5	
-23	$NH_3^+ + H_2 \rightarrow NH_4^+ + H$	(3 \pm 1) \times 10 ⁻⁴ , b	$(\leq 5 \times 10^{-4}), 4 (0.076)^{10, b}$	5.1	
- 10	$O^+ + H_2 \rightarrow OH^+ + H$	1.58 ± 0.04	2.0^{3}	~ 0	
		$(1.32 \pm 0.03)^{c}$			
-27	$OH^{+} + H_2 \rightarrow H_2O^{+} + H_2$	1.05 ± 0.08	$\sim 1.5^{3}$	0.2	
- 38	$H_2O^* + H_2 \rightarrow H_3O^* + H_3O^*$	0.61 ± 0.03	$\sim 1.4,^3$ (0.41), ^{10,b} (0.64) ^{6,d}	0.5	
- 48	$CO^* + H_2 \rightarrow COH^* + H$	1.39 ± 0.04	$2.0,^{3}(1.5),^{5,b}(1.5),^{9,b}(0.72)^{8,b}$	0.1	
- 57	$N_2^* + H_2 \rightarrow N_2 H^* + H$	1.73 ± 0.05	1.7, ³ 2.1, ¹¹ (1.7) ^{5,b}	~ 0	
-23	$C_2^{+} + H_2 \rightarrow C_2 H^{+} + H$	1.12 ± 0.11		0.2	
- 30	$C_2H^+ + H_2 \rightarrow C_2H_2^+ + H$	0.78 ± 0.05		0.4	
- 5	$CH_3NH_2^* + D_2 \rightarrow CH_3NH_2D^* + H$	≤0.0005		> 4.1	
- 12	$CH_3OH^+ + D_2 \rightarrow CH_3OHD^+ + H$	≤0.0005		> 4.1	

^aErrors quoted are for precision only.

^bFor reaction with D₂.

^eFor O⁺ ions from O_2 , where approximately 28% of the ions are excited.

^dFor the reaction $D_2O^* + H_2$.

by the trapped ion method in CH_4-H_2 mixtures. The rate constant for the reaction

$$CH_{4}^{\dagger} + H_{2} \rightarrow CH_{5}^{\dagger} + H$$
(3)

was also measured in this manner, and the results are given in Table I. The values obtained for k_1 and k_2 do not agree well with the early work of Munson *et al.*,⁷ probably because the average ion kinetic energy was much higher in their experiments. The occurrence of

THESE IS EXCHANGE FEACIOUS WITH HYDROGES	TABLE II.	Exchange	reactions	with	hydrogen.
--	-----------	----------	-----------	------	-----------

Reaction	Rate constant (10 ⁻⁹ cm ³ /sec)	Lit. values.
$CD_5^{\bullet} + H_2 \rightarrow CD_4H^{\bullet} + HD$	≤0.0005	
$CD_4^{\bullet} + H_2 \rightarrow CD_3H^{\bullet} + HD$	≤0.001	
$CD_3^* + H_2 \rightarrow CH_2H^* + HD$ $\rightarrow CDH_2^* + D_2$	0.51 ± 0.05	(0.55) ^{16,a}
$\mathrm{NH}_4^* + \mathrm{D}_2 \rightarrow \mathrm{NH}_3\mathrm{D}^* + \mathrm{HD}$	≤0.0001	
$NH_3^{\bullet} + D_2 \rightarrow NH_2D^{\bullet} + HD$	≤0.002	
$H_3O^* + D_2 \rightarrow H_2DO^* + HD$	≤0.001	
$H_2S^* + D_2 \rightarrow HDS^* + HD$	≤0.0005	
$H_3S^+ + D_2 \rightarrow H_2DS^+ + HD$	≤0.001	

For the reaction $CH_3^ + D_2 \rightarrow (CH_2D^*, CHD_2^*) + (HD, H_2)$.

Reactions (1) and (2) were confirmed by double resonance ejection experiments in CH_4-H_2 mixtures. Double resonance ejection signals for the reactions 13 - 14 and 14 - 15 are observed only in the presence of hydrogen in these mixtures. The reaction

$$CH_{4}^{*}+D_{2} \rightarrow CH_{4}D^{*}+D$$
(4)

was confirmed by double resonance ejection in $CH_4 - D_2$ mixtures at low electron impact energies (14 eV).

There are no exothermic reaction channels available in collisions between CH_3^* ions and H_2 at thermal kinetic energies. Trapped ion experiments show no change in the decay rate of CH_3^* ions on addition of H_2 . However, the methyl cation has been shown to undergo hydrogen atom exchange in collisions with H_2 . ^{14, 15} Double resonance ejection experiments in CD_4-H_2 mixtures identify the reaction:

$$CD_{3}^{*} + H_{2} \rightarrow CD_{2}H^{+} + HD, \qquad (5)$$

and trapped ion studies on these mixtures yield the value 0.51×10^{-9} cm³/sec for the total disappearance rate constant of CD₃^{*} ions in H₂ (Table II). This result is in excellent agreement with the value 0.55×10^{-9} cm³/sec obtained by Harrison and Keyes¹⁶ for the disappearance rate constant of CH₃^{*} ions in D₂. Harrison and Keyes also determined the product distribution in this reaction

$$CH_{3}^{*}+D_{2} \rightarrow CH_{2}D^{*}+HD$$
(6)

J. Chem. Phys., Vol. 62, No. 1, 1 January 1975

$$- CHD_2^+ + H_2 \tag{7}$$

and found that $k_6/k_7 = 2.0 \pm 0.4$, indicating that equilibration of the hydrogen atoms occurs in an intermediate complex for these reactions.

B. Ammonia-hydrogen mixtures

 $\rm NH^{*},~NH_{2}^{*},~and~NH_{3}^{*}$ ions were obtained by electron impact of $\rm NH_{3},~and$ the rate constants obtained for the reactions

$$\mathbf{NH}^{+} + \mathbf{H}_{2} \rightarrow \mathbf{NH}_{2}^{+} + \mathbf{H} , \qquad (8)$$

$$\mathrm{NH}_{2}^{+} + \mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}^{+} + \mathrm{H}$$
(9)

in NH_3-H_2 mixtures are given in Table I. The ICR values do not agree well with those reported from flowing afterglow experiments by Fehsenfeld *et al.*^{3,4} However, both the ICR and flowing afterglow experiments show that the exothermic reaction

$$NH_{3}^{+}+H_{2} \rightarrow NH_{4}^{+}+H$$
(10)

is extremely slow.

The intensity of NH^* ions obtained by electron impact of NH_3 was insufficient for reliable identification of Reaction (8) in double resonance experiments. A reaction between NH^* and H_2 is, however, clearly observed in ion trapping experiments. Fehsenfeld *et al.* have shown in flowing afterglow experiments that Reaction (8) does occur and that the only alternative reaction pathway,

$$NH^{+} + H_2 X H_3^{+} + N$$
, (11)

does not occur at thermal energies.

Cyclotron ejection experiments in conventional, continuous-drift ICR studies of NH_3-D_2 mixtures confirm the occurrence of Reaction (12),

$$NH_{2}^{*}+D_{2} \rightarrow NH_{2}D^{*}+D$$
, (12)
16 18

in the presence of the reaction

$$\frac{\mathrm{NH}_{2}^{*} + \mathrm{NH}_{3}}{16} \rightarrow \frac{\mathrm{NH}_{4}^{*} + \mathrm{NH}}{18}$$
(13)

by an increase in the double resonance ejection intensity for 16 - 18 on addition of D_2 when compared to the double resonance intensity for 17 - 18,

$$\frac{NH_{3}^{*}+NH_{3}-NH_{4}^{*}+NH_{2}}{17}$$
 (14)

Exchange of NH_3^* ions with D_2 to give NH_2D^* ions was not observed in NH_3-D_2 mixtures below the I. P. of D_2 .

Because of the failure to observe reaction (10) in NH_3-H_2 mixtures, and the ultimate importance of this reaction for the possible synthesis of ammonia in interstellar clouds, ¹⁷ this reaction was examined in more detail using NH_3-D_2 mixtures. Figure 3 shows the results of a trapped ion experiment below the I. P. of D_2 at very high D_2 pressures. The absence of any observable change in the slope for the NH_3^+ ion decay plot gives an upper limit of about 5×10^{-12} cm³/sec for any reaction

FIG. 3. Ion intensities vs time in NH₃ (solid circles, 8.35 $\times 10^{-7}$ Torr NH₃) and in a NH₃-D₂ mixture (open circles, 8.35 $\times 10^{-7}$ Torr NH₃ and 1.21×10⁻⁵ Torr D₂). Electron energy 13.5 eV. Error bars are given for intensities measured at long storage times.

between NH_3^* and D_2 . However, a very small amount of product ion is observed at m/e = 19 which in the absence of D_2 corresponds to the natural isotopes of the m + 1 ion ($^{15}NH_4^*$, $^{14}NH_3D_2^*$). The m/e = 19 signal does show a significant and reproducible increase on addition of D_2 . This increase could correspond either to the reaction

$$\frac{1}{3} + D_2 \rightarrow NH_3D^* + D$$

$$\frac{17}{19}$$
(15)

or to reactions with water impurity in the D_2 sample,

$$(NH_{3}^{*})^{*} + H_{2}O - H_{3}O^{*} + NH_{2}$$
, (16)
17 19

$$H_2O^+ + H_2O \rightarrow H_3O^+ + OH$$
 . (17)
18 19

The electron energy used in the experiment illustrated in Fig. 3 was 13.5 eV, which has been shown to produce NH^{*}₃ ions in a distribution of excited vibrational states.¹³ Reaction (16) has been identified in NH₃-H₂O mixtures.¹⁸ Also, the water impurity in the D₂ sample was found to be ~ 10 ppm, which might account for the increase in the m/e = 19 intensity via reactions (16) and (17), except for the fact that H₃O⁺ ions are rapidly converted to NH^{*}₄ ions (m/e = 18) via the very fast reaction

$$H_3O^+ + NH_3 \rightarrow NH_4^+ + H_2O \quad . \tag{18}$$

Reaction (18) should completely remove any H_3O^+ ions at 70 msec and 8.35×10^{-7} Torr NH_3 . The reaction reverse to (18) has not been identified, but must have an immeasurably small rate constant. The difference in the proton affinities of water and ammonia is on the order of 40 kcal/mole,¹⁹ so that the equilibrium constant for Reaction (18) is on the order of 10^{29} . This yields a reverse rate constant on the order of 10^{-38} . Reactions with water impurity can therefore be eliminated.

An alternate possibility for the increase in m/e = 19signal with added D₂ pressures might be the occurrence of an exchange reaction,

$$\frac{\text{NH}_{4}^{+} + D_{2} \rightarrow \text{NH}_{3}\text{D}^{+} + \text{HD}}{18} \qquad (19)$$

However, experiments using the conventional, continuous-drift ICR method show that the rate constant for reaction (19) is less than 1.0×10^{-13} cm³/sec (Fig. 2). The rate constant derived for reaction (15) from Fig. 3 is $(3 \pm 1) \times 10^{-13}$ cm³/sec, so that Reaction (19) is not sufficient to explain the magnitude of the increase of m/e = 19 with added D₂. Also, no ions were observed at m/e = 20. Another observation which is pertinent in the conventional ICR data in Fig. 2 is the small signal at m/e = 19 (short times and high NH₃ pressures). This is the H_3O^+ ion formed by Reaction (16) of excited NH_3^+ ions with the background residual water impurity, which is always present in very small quantities. The reaction time (~1 msec) is sufficiently short in this case to prevent extensive conversion of H_3O^+ to NH_4^+ ions. Addition of a large amount of D_2 does not appear to result in an increase in water background signal in Fig. 2.

Based on the present results, it seems fairly certain that Reaction (15) is indeed occurring, at least for the distribution of vibrationally excited NH₃ ions formed by electron impact at 13.5 eV, and that the rate constant is $k_{15} = (3 \pm 1) \times 10^{-13} \text{ cm}^3/\text{sec.}$ Figure 4 shows rf double resonance spectra of the m/e = 19 ion at 95 msec in the experiment illustrated in Fig. 3. Continuous rf power was applied over the entire storage time of the ions. A significant observation in Fig. 4 is that the sum of the ion-ejection intensitites is greater than the total single resonance signal, a symptom of excessive ion densities where coulombic couplings are observed in double resonance spectra. Unfortunately, large ion densities are required in order to observe the very small signal at m/e = 19, so that coulombic coupling cannot be avoided in this case. The ejection intensities are therefore not reliable. However, at low rf powers where ions are not ejected, but are translationally heated, coulombic coupling is not as severe a problem. Under these conditions, the double resonance signal at m/e = 18 disappears and the response at m/e = 17 indicates a large increase in the m/e = 19 signal. This "positive-going" signal disappears in the absence of D_2 . These observations at low rf powers rigorously identify Reaction (15) at elevated ion kinetic energies and show a rate constant increasing rapidly with increasing ion kinetic energy. This change might explain why Harrison and Thynne¹⁰ report such a large rate constant for this reaction. The exit ion energy in their experiments was approximately

FIG. 4. Double resonance spectra of the m/e = 19 ion in the NH_3-D_2 mixture shown in Fig. 3 at 95 msec reaction time. Lower trace is a high rf power, ion-ejection spectrum with the baseline as shown. The upper trace is a low rf power, ion-heating spectrum on the same sensitivity scale as the lower trace but with the baseline raised.

3.7 eV.

Since it is known that NH_3^+ ions are formed by electron impact at 13.5 eV in a distribution of vibrationally excited states, it cannot be determined in the present work whether the rate constant determined for Reaction (15) is applicable to NH⁺₃ ions in the ground vibrational state. The failure to observe any increase in the loss rate for NH_3^+ ions with addition of D_2 in Fig. 3 can only place an upper limit of about 5×10^{-12} cm³/sec on the rate constant for deactivation of vibrationally excited NH⁺₃ ions in nonreactive collisions with D_2 . The rate constant for reaction (14) is significantly larger for NH_3^+ ions in the ground vibrational state than for NH⁺₃ ions formed by electron impact at 13.5 eV.¹³ Collisional deactivation would therefore have been expected to produce some curvature in the semilogarthmic plot in Fig. 3 if the rate constant k_{14} were to have increased at longer storage times.

C. Water-hydrogen mixtures

The reactions

$$OH^{+} + H_2 - H_2O^{+} + H , \qquad (20)$$

$$H_2O^+ + H_2 \rightarrow H_3O^+ + H$$
(21)

occur with appreciable rate constants at thermal kinetic energies. The values for k_{20} and k_{21} , measured in this work by the trapped ion method in H_2O-H_2 mixtures, are given in Table I. The rate constant k_{21} obtained is in good agreement with the values reported earlier by Lampe *et al.*⁶ and by Harrison and Thynne¹⁰ but both k_{20} and k_{21} are significantly less than the approximate values reported by Fehsenfeld *et al.*³ Reaction (21) is confirmed in conventional ICR experiments both as an increase in the single resonance intensity ratio $I(H_3O^*)/I(H_2O^*)$ with increasing H₂ pressure at electron energies below the I. P. of H₂, and as the appearance of an ion at m/e = 20 in H₂O-D₂ mixtures due to the reaction

$$\frac{H_2O^{+} + D_2 - H_2DO^{+} + D}{18 \qquad 20}$$
 (22)

Reaction (20) is identified in conventional ICR studies of H_2O-D_2 mixtures as an increase in the double resonance ejection intensity for the reactions

$$OH^{+} + D_2 \rightarrow HDO^{+} + D$$
, (23)
17 19

$$+ H_2 O \rightarrow H_3 O^* + O$$
(24)

with increasing D_2 pressure when compared to the double resonance ejection intensity for the reaction

$$H_2O^+ + H_2O \rightarrow H_3O^+ + OH$$
 . (25)
18 19

D. Mixtures of oxygen and carbon dioxide with hydrogen

Both oxygen and carbon dioxide were used as sources of the atomic oxygen ion. The O^{\dagger} ion is a very minor fragment ion for electron impact on these molecules. Nevertheless, sufficient O⁺ ion intensity was obtained at electron impact energies of 40 eV for good ion decay curves to be observed in trapped ion experiments. Two different sources were used for production of O⁺ since it has been shown^{20,21} that these ions are readily produced in the metastable ^{2}D and ^{2}P states by dissociative ionization of various molecules. Turner et al.²⁰ have shown that $\sim 28\%$ of the O⁺ ions initially produced from O₂ by electron impact at 60 eV are in electronically excited states, whereas Hughes and Tiernan²¹ have shown that only ~4% of the O^+ ions initially produced from CO_2 by electron impact at 60 eV are in electronically excited states. In the present work, different rate constants were obtained with H_2 for the reaction of O⁺ ions produced from O_2 and CO_2 (Table I).

The value of the rate constant for the reaction

$$O^{+} + H_2 - OH^{+} + H , \qquad (26)$$

obtained from CO_2 - H_2 mixtures, 1.58×10^{-9} cm³/sec, agrees very well with the Langevin rate constant for this reaction, 1.56×10^{-9} cm³/sec, and is probably the rate constant appropriate for ground state O⁺ ions. These values are in poor agreement, however, with the rather high value from early flowing afterglow experiments, 2.0×10^{-9} cm³/sec.³ The value of the rate constant for Reaction (26), obtained from O_2 - H_2 mixtures, 1.32×10^{-9} cm³/sec, is decidedly less than the value from CO_2 - H_2 mixtures. This is possibly the result of the formation of metastable electronically excited O⁺ ions by electron impact of O_2 , and indicates that the rate constant for reaction (26) may be significantly smaller for O⁺ ions in these excited states.

E. Mixtures of nitrogen with hydrogen

Electron impact of molecular nitrogen at 40 eV was used as a source of the atomic nitrogen ion. The rate constant determined for the reaction

$$N^{+} + H_{2} \rightarrow NH^{+} + H$$
 (27)

in N_2-H_2 mixtures is given in Table I. The value obtained is in excellent agreement with the most recent value from flowing afterglow experiments.⁴ The rate constant for the reaction

$$N_2^{+} + H_2 \rightarrow N_2 H^{+} + H \tag{28}$$

was also measured in N_2-H_2 mixtures, and the value obtained is again in excellent agreement with the flowing afterglow experiments. The value reported by Aquilanti *et al.*¹¹ may be somewhat high because of excess N_2^+ ion kinetic energy in their high pressure mass spectrometer experiments (~ 2.0 eV ion exit energy).

Both Reactions (27) and (28) have alternate exothermic reaction pathways:

$$N^{+} + H_2 \rightarrow H^{+} + NH + 3 \text{ kcal}$$
, (29)

$$N_2^* + H_2 \rightarrow H_2^* + N_2 + 3.4 \text{ kcal}$$
 (30)

The intensity of N^* ions obtained by electron impact of molecular nitrogen at 40 eV was insufficient to eliminate the possibility of the occurrence of Reaction (29), but double resonance ejection experiments appear to indicate that Reaction (27) is the main reaction channel in N^*-H_2 collisions. Double resonance ejection experiments clearly show reaction (28) as the major reaction channel for $N_2^*-H_2$ collisions. The probability for charge transfer from N_2^* to H_2 is determined from the present experiments to be less than 10^{-2} times the probability for hydrogen atom abstraction at thermal ion kinetic energies.

Ionization of molecular nitrogen at 40 eV electron impact energy is known to produce a significant fraction of N_2^* ions in electronically excited states.²²⁻²⁴ However, the lifetimes of the optically observed states are sufficiently short²²⁻²⁴ ($\lesssim 10^{-5}$ sec) compared to the time between collisions in the ICR experiment ($\geq 10^{-3}$ sec) that contributions from these states are not expected in the present experiments. To eliminate the possibility that vibrationally excited states or metastable electronically excited states of N_2^+ may be present, experiments were run on N_2 -H₂ mixtures at 16.5 eV, below the A. P. of the first optically allowed electronically excited state of N_2^+ . Photoelectron spectra²⁵ show that N_2^+ ions formed at 16.5 eV should be principally in the ground vibronic state at this energy. The same rate constant was obtained for reaction (28) for electron impact energies of 16.5 and 40.0 eV.

The rate constant for the reaction of N_2^+ with H_2 is the largest measured in this series: $(1.73 \pm 0.05) \times 10^{-9}$ cm³/sec. It is interesting that the experimental value is actually significantly larger than the Langevin value 1.49×10^{-9} cm³/sec. If grazing collisions are included in the Langevin formalism, ²⁶ and if the maximum component of the polarizability tensor²⁷ is used, the theoretical value can be raised to 1.78×10^{-9} cm³/sec. It has

also been suggested²⁸ that the quadrupole moment of H_2 may have to be included in calculating rate constants for reactions of ions with H_2 . A large rate constant for the $N_2^{\star}-H_2$ reaction might possibly be explained by some combination of these latter effects.

F. Mixtures of carbon monoxide with hydrogen

 $CO^{+} + H_2 \rightarrow COH^{+} + H$, (31)

measured in $CO-H_2$ mixtures, is given in Table I. The value obtained is not in good agreement with the approximate value obtained from the early flowing afterglow experiments.³ Good agreement is obtained with several other values^{5,9} reported for the $CO^{+}-D_{2}$ reaction, but direct comparison may not be applicable because of the significantly larger reduced mass in the latter collisions. To eliminate the possibility of contributions from vibrationally excited or metastable electronically excited states of CO^+ , experiments were run on $CO-H_2$ mixtures at 16.0 eV, below the A. P. of the first optically allowed electronically excited state of CO*. Photoelectron spectra show that CO⁺ ions formed at 16.0 eV should be principally in the ground vibronic state at this energy. The same rate constant was obtained for reaction (31) for electron impact energies of 16.0 and 40.0 eV.

G. Mixtures of hydrogen sulfide with hydrogen

There are no exothermic reactions between H_2 and S^* , HS^* , or H_2S^* ions at thermal kinetic energies. The reaction of H_2S^* with H_2 is endothermic by about 8 kcal/mole:

$$H_2S^+ + H_2 \rightarrow H_3S^+ + H, \ \Delta H \cong + 8 \text{ kcal/mole}$$
 (32)

However, an endothermic reaction of vibrationally excited H_2S^+ ions has been previously observed in ICR experiments²⁹:

$$(H_2S^*)^* + CD_4 \rightarrow H_2DS^* + CD_3, \Delta H \cong + 8 \text{ kcal/mole.}$$
(33)

Reaction (33) is also endothermic by about 8 kcal/mole. An attempt was therefore made to observe Reaction (32) by using the conventional ICR method and looking for an increase in the single resonance intensity ratio $I(H_3S^*)/I(H_2S^*)$ with increasing H_2 pressure at electron impact energies below the I. P. of H_2 (14 eV). No increase was observed, and an upper limit was placed on the rate constant for Reaction (32) of approximately $k_{32} \leq 5 \times 10^{-13}$ cm³/molecule-sec.

H. Acetylene-hydrogen mixtures

The reactions

$$C_2^+ + H_2 \rightarrow C_2 H^+ + H , \qquad (34)$$

$$C_2H^+ + H_2 - C_2H_2^+ + H \tag{35}$$

were identified in $C_2H_2-H_2$ mixtures where the C_2^* and C_2H^* ions were obtained by electron impact of C_2H_2 at 40 eV. The rate constants measured for Reactions (34) and (35) are given in Table I. The reaction of the parent ion,

$$C_2H_2^+ + H_2 \rightarrow C_2H_3^+ + H$$
, (36)

is endothermic by about 1 kcal/mole. A previous study³⁰ has shown that Reaction (36) does not occur for $C_2H_2^+$ ions in the ground vibronic state, but that acetylene ions with at least one quantum of excess vibrational energy do react with H_2 to give $C_2H_3^+$ ions. There are no exothermic reaction pathways available in collisions between H_2 and $C_2H_3^+$, $C_2H_4^+$, $C_2H_5^+$, or $C_2H_6^+$ ions at thermal kinetic energies, and no reactions were observed between H_2 and these ions in $C_2H_4-H_2$ and $C_2H_6-H_2$ mixtures.

I. Mixtures of CH₃NH₂ and CH₃OH with hydrogen

The reactions

$$CH_{3}NH_{2}^{+} + D_{2} \rightarrow CH_{3}NH_{2}D^{+} + D, \qquad (37)$$

$$CH_3OH^* + D_2 \rightarrow CH_3OHD^* + D$$
 (38)

are both exothermic, but a previous study³¹ using the conventional ICR method has shown that they do not occur. The upper limits for the rate constants of Reactions (37) and (38) determined in this study are k_{37} , $k_{38} \le 5 \times 10^{-13}$ cm³/molecule-sec.

IV. SUMMARY AND CONCLUSIONS

Except for the reactions of N^+ , NH^+ , and N_2^+ with H_2 , hydrogen atom abstraction is the only available exothermic reaction pathway at thermal energies for the reactions listed in Table I. Even in the case of NH^+ and N_2^+ , it has been shown that the alternate reaction pathway is not observed and that the reaction occurs principally via hydrogen atom abstraction. The rate constants measured for these reactions range from a low of (3 ± 1) $\times 10^{-13}$ cm³/sec for the NH₃^{*}-H₂ reaction to (1.73 ± 0.04) $\times 10^{-9}$ cm³/sec for the N₂⁺-H₂ reaction. When compared to the Langevin value of ~ 1.5×10^{-9} cm³/sec, it is clear that a large fraction of the collisions between these ions (except for O^+ , CO^+ , and N_2^+) are not reactive. This observation contrasts with the traditional view that exothermic ion-molecule reactions have little or no activation energy and should therefore occur with nearly every collision. There has been some recent discussion in the literature about barriers to simple ion-molecule reactions,³² and if the simple expression

$$k_{\rm obs} = k_{\rm collision} e^{-E_a/kT} \tag{39}$$

is used for deducing magnitudes of activation energies for ion-molecule reactions, then barriers on the order of several kcal/mole are obtained for the reactions studied in this work. Using expression (39) and a value of 1.5×10^{-9} cm³/sec for $k_{\infty 11iston}$, the values of E_a given in Table I are obtained. It does appear that successive substitution of hydrogen on the active site (C, N, or O ion) increases the activation energy (i.e., O^{*}, OH^{*}, and OH^{*}₂; or the isoelectronic series CH^{*}₂, NH^{*}, and O^{*}). Hence the number of unfilled sp^n hybrid orbitals may be important. Also, substitution of CH₃ for H may increase the activation energy dramatically (i.e., CH₃OH^{*}₂ and OH^{*}₂). Hence steric or change delocalization effects may be important.

The examples obtained in the present work add to the mounting evidence that considerable barriers can exist to even very simple ion-molecule reactions, and suggest the need for further theoretical and mechanistic study in this area. One observation can also be made concerning mechanism with regard to the data on exchange reactions in Table II. It would seem reasonable to expect that exchange will only be observed for reactions in which a stable intermediate complex ion is formed with a sufficiently long lifetime so that many vibrations can occur before dissociation. In fact, the only exchange reaction observed among those listed in Table II, Reaction (5), is one for which the collision complex has the appearance of a known, stable ion. The CH_5 ion is a stable well-known ion, whereas none of the remaining reactant ions in Table II can form known, stable ions by forming complexes with molecular hydrogen.

The present work shows the necessity for obtaining laboratory data in order to confidently model ion-molecule reactions in the interstellar medium. Most of the present models are based on the premise that a reaction can be presumed to occur at the Langevin rate if exothermic. Other observations pertinent to interstellar chemistry:

(1) The large rate constants measured for Reactions (1) and (2) raise some difficulties in explaining the concurrent high abundance of both CH^* and CH in dense interstellar clouds containing molecular hydrogen^{1,2}.

(2) The identification and measurement of a finite, if small, rate constant for the reaction $NH_3^+ + H_2 \rightarrow NH_4^+ + H$ relieves some of the difficulty in accounting for the high abundance of neutral NH_3 observed in these same regions.¹⁷

Because of the possibility that there are significant kinetic barriers to hydrogen atom abstraction reactions, it is quite possible that a significant temperature dependence will be exhibited by rate constants (Table I) which are already small at 300 °K. Variable temperature measurements will be required in order to measure any activation energies for the reactions in Table I and to determine the applicability of the values given in this table to the temperatures in interstellar clouds. One particular case in point is Reaction (3), which is thermoneutral or very nearly so. On this basis, the equilibrium constant should be close to unity; an examination of the reverse reaction would be interesting.

ACKNOWLEDGMENTS

The authors would like to acknowledge the helpful discussions with Fred Fehsenfeld, Alec Dalgarno, William Watson, Eric Herbst, and William Klemperer during the course of this work. Also, the authors are indebted to the referee (M. T. Bowers) for discussions concerning barriers to ion-molecule reactions.

- *This paper represents results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract No. NAS7-100, sponsored by the National Aeronautics and Space Administration.
- [†]NASA Resident Research Associate, 1973-1974.
- ¹W. D. Watson, Astrophys. J. 189, 221 (1974).
- ²J. H. Black and A. Dalgarno (private communication).
- ³F. C. Fehsenfeld, A. L. Schmeltekopf, and E. E. Ferguson, J. Chem. Phys. 46, 2802 (1967).
- ⁴F. C. Fehsenfeld (private communication); more recent data on some of the reactions, reported earlier in Ref. 3.
- ⁵G. Gioumousis and D. P. Stevenson, J. Chem. Phys. **29**, 294 (1958); D. P. Stevenson and D. O. Schissler, *ibid.* **29**, 282 (1958).
- ⁶F. W. Lampe, F. H. Field, and J. L. Franklin, J. Am. Chem. Soc. **79**, 6132 (1957).
- ⁷M. S. B. Munson, F. H. Field, and J. L. Franklin, J. Am. Chem. Soc. 85, 3584 (1963).
- ⁸C. W. Hand and H. von Weyssenhoff, Can. J. Chem. **42**, 2385 (1964).
- ⁹A. G. Harrison and J. J. Myher, J. Chem. Phys. 46, 3276 (1967).
- ¹⁰A. G. Harrison and J. C. J. Thynne, Trans. Faraday Soc. 64, 945 (1968).
- ¹¹V. Aquilanti, A. Galli, A. Giardini-Guidoni, and G. G. Volpi, J. Chem. Phys. 43, 1969 (1965).
- ¹²T. B. McMahon and J. L. Beauchamp, Rev. Sci. Instrum. 43, 509 (1972).
- ¹³W. T. Huntress, Jr., and R. F. Pinizzotto, Jr., J. Chem. Phys. 59, 4742 (1973).
- ¹⁴M. Inoue and S. Wexler, J. Am. Chem. Soc. 91, 5730 (1969).
- ¹⁵M. T. Bowers and D. D. Elleman, J. Am. Chem. Soc. **92**, 1847 (1970).
- ¹⁶A. G. Harrison and B. G. Keyes, Can. J. Chem. 51, 1265 (1973).
- ^{17}E . Herbst and W. Klemperer (private communication).
- ¹⁸J. K. Kim, J. Laudenslager, and W. T. Huntress, Jr. (unpublished results).
- ¹⁹M. A. Haney and J. L. Franklin, J. Phys. Chem. 73, 4329 (1969).
- ²⁰B. R. Turner, J. A. Rutherford, and D. M. J. Compton, J. Chem. Phys. 48, 1602 (1968).
- ²¹B. M. Hughes and T. O. Tierman, J. Chem. Phys. 55, 3419 (1971)
- ²²R. G. Bennett and F. W. Dalby, J. Chem. Phys. 31, 434 (1959).
- ²³R. G. Fowler, P. R. Skwerski, R. A. Anderson, G. E. Cope-
- land, and T. M. Holzberlein, J. Chem. Phys. 50, 4133 (1969). $^{24}\mathrm{R.}$ F. Holland and W. B. Maier II, J. Chem. Phys. 56, 5229
 - (1972).
- ²⁵D. W. Turner, C. Baker, A. D. Baker, and C. R. Brundle,
- Molecular Photoelectron Spectroscopy (Wiley, New York, 1970).
- ²⁶E. W. McDaniel, Collision Phenomena in Ionized Gases (Wiley, New York, 1964).
- ²⁷J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954), p. 1028.
- ²⁸L. P. Theard and W. T. Huntress, Jr., J. Chem. Phys. 60, 2840 (1974).
- ²⁹W. T. Huntress, Jr., R. F. Pinizzotto, Jr., and J. B. Laudenslager, J. Am. Chem. Soc. 95, 4107 (1973).
- ³⁰S. E. Buttrill, Jr., J. K. Kim, W. T. Huntress, Jr., P. LeBreton, and A. Williamson, J. Chem. Phys. 61, 2122 (1974).
- ³¹W. T. Huntress, Jr., and M. T. Bowers, Int. J. Mass Spectrom. Ion Phys. 12, 1 (1973).
- ³²P. F. Fennelly, J. D. Payzant, R. S. Hemsworth, and D. K. Bohme, J. Chem. Phys. **60**, 5115 (1974).