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Thiocarbamide complexes of inorganic salts are
well studied [1–10]. These compounds are attractive for
their nonlinear-optical properties [5–8]. They are also
promising precursors for sulfide preparation [9, 10].
Thiocarbamide compounds of metal formates are
poorly studied. Compound Cd(HCOO)

 

2

 

 · 2CS(NH

 

2

 

)

 

2

 

(1 : 2) was synthesized by a preparative technique [11,
12]. Compound Zn(HCOO)

 

2

 

 · CS(NH

 

2

 

)

 

2

 

 (1 : 1) was
reported to crystallize at 40

 

°

 

C [13]. We studied solubil-
ity in the Zn(HCOO)

 

2

 

–CS(NH

 

2

 

)

 

2

 

–H

 

2

 

O system at 25

 

°

 

C
and found compound Zn(HCOO)

 

2

 

 · 2CS(NH

 

2

 

)

 

2

 

 in [14].
The Co(HCOO)

 

2

 

–CS(NH

 

2

 

)

 

2

 

–H

 

2

 

O system at 25

 

°

 

C does
not form compounds [15].

In this work, we study the Mg(HCOO)

 

2

 

–CS(NH

 

2

 

)

 

2

 

–
H

 

2

 

O and Mn(HCOO)

 

2

 

–CS(NH

 

2

 

)

 

2

 

–H

 

2

 

O systems at
25

 

°

 

C. Our goals were to determine the mutual solubili-
ties of the components and to elucidate whether new
compounds are formed. We also study the Cd(HCOO)

 

2

 

–
CS(NH

 

2

 

)

 

2

 

–H

 

2

 

O system in order to determine crystalli-
zation conditions for Cd(HCOO)

 

2

 

 · 2CS(NH

 

2

 

)

 

2

 

. These
systems have not yet been studied. Solubility data for
magnesium, manganese, and cadmium formates and
thiocarbamide solubilities were borrowed from [16–18].

EXPERIMENTAL

The starting formates were prepared by reacting
cadmium carbonate or basic magnesium and manga-
nese carbonates (all of analytical grade) with dilute
aqueous formic acid. The formates were recrystallized.
The compositions of the recrystallized formates were
Mg(HCOO)

 

2

 

 · 2H

 

2

 

O [19], Mn(HCOO)

 

2

 

 · 2H

 

2

 

O [20],
and Cd(HCOO)

 

2

 

 · 2H

 

2

 

O [21] as derived from chemical

analysis and X-ray powder diffraction. Analytical grade
thiocarbamide was used.

Solubility in the Mg(HCOO)

 

2

 

–CS(NH

 

2

 

)

 

2

 

–H

 

2

 

O and
Mn(HCOO)

 

2

 

–CS(NH

 

2

 

)

 

2

 

–H

 

2

 

O systems was studied
using the Khlopin supersaturation release method [22].
Aqueous solutions of two components of a system
taken in various proportions were prepared at
(80

 

−

 

90)

 

°

 

C; then, the solution was cooled in a thermo-
stat to the working temperature (25

 

°

 

C) and vigorously
stirred until achieving a constant concentration of the
saturated solution, i.e., until equilibration. The equili-
bration time was 15–20 h. The Cd(HCOO)

 

2

 

–
CS(NH

 

2

 

)

 

2

 

–H

 

2

 

O system at 25

 

°

 

C was studied using the
isothermal solubility method, because cadmium sulfide
is evolved when cadmium formate is heated in the pres-
ence of thiocarbamide. The equilibration time in this
system was about 3–4 days. Temperature maintenance
accuracy was within 

 

±

 

0.1 K. Then, the suspension was
filtered, and the resulting liquid phase and wet solid
phase (residue) were analyzed. A 2% excess of formic
acid was in the solution to preclude hydrolysis. The
Mg

 

2+

 

, Mn

 

2+

 

, and Cd

 

2+

 

 concentrations in the liquid
phases and wet residues were determined complexo-
metrically at pH 10 (ammonia buffer) in the presence of
Eriochrome Black T [23]. Thiocarbamide was deter-
mined gravimetrically as sulfate ions after oxidizing it
with hydrogen peroxide [24]. The composition of the
solid phase was determined using the Schreinemakers
method of wet residues [25].

Solid phases were identified using X-ray powder
diffraction and IR spectroscopy. The X-ray powder dif-
fraction experiment was carried out on a DRON-3 dif-
fractometer (

 

Cu

 

K

 

α

 

 radiation, Ni filter). IR spectra were
recorded as KBr pellets on a Bruker IFS 25 FTIR
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Abstract

 

—Complex formation in the M(HCOO)

 

2

 

–CS(NH

 

2

 

)

 

2

 

–H

 

2

 

O (M = Mg, Mn, Cd) systems at 25

 

°

 

C is stud-
ied using the isothermal solubility method. In the Cd(HCOO)

 

2

 

–CS(NH

 

2

 

)

 

2

 

–H

 

2

 

O system, a congruently dissolv-
ing compound Cd(HCOO)

 

2

 

 · 2CS(NH

 

2

 

)

 

2

 

 is found and characterized by X-ray powder diffraction and IR spec-
troscopy. The Mg(HCOO)

 

2

 

–CS(NH

 

2

 

)

 

2

 

–H

 

2

 

O and Mn(HCOO)

 

2

 

–CS(NH

 

2

 

)

 

2

 

–H

 

2

 

O systems are eutonics at this
temperature. Data on carbamide and thiocarbamide complexes of divalent metal formates are systematized.
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Table 1.

 

  Solubilities in the Mg(HCOO)

 

2

 

–CS(NH

 

2

 

)

 

2

 

–H

 

2

 

O system at 25

 

°

 

C

In liquid phase, wt % In wet residue, wt %
Solid phase

Mg(HCOO)

 

2

 

CS(NH

 

2

 

)

 

2

 

Mg(HCOO)

 

2

 

CS(NH

 

2

 

)

 

2

 

11.99 – – – Mg(HCOO)

 

2

 

 

 

·

 

 

 

2H

 

2

 

O

10.92 4.03 51.02 2.17 The same

10.10 7.15 53.92 3.25

 

"

 

10.63 10.54 57.21 4.01

 

"

 

10.57 10.80 39.60 29.13 Mg(HCOO)

 

2 · 2H2O + CS(NH2)2

10.51 10.87 18.14 58.94 The same

8.53 11.25 2.89 72.67 CS(NH2)2

4.78 12.15 2.13 67.88 The same

– 13.39 – – "

Table 2.  Solubilities in the Mn(HCOO)2–CS(NH2)2–H2O system at 25°C

In liquid phase, wt % In wet residue, wt %
Solid phase

Mn(HCOO)2 CS(NH2)2 Mn(HCOO)2 CS(NH2)2

6.28 – – – Mn(HCOO)2 · 2H2O

5.33 3.78 53.52 1.51 The same

5.25 8.49 65.12 2.03 "

5.42 10.14 50.07 4.46 "

5.23 11.74 43.59 30.08 Mn(HCOO)2 · 2H2O + CS(NH2)2

5.20 11.55 20.69 51.14 The same

5.16 11.60 2.10 72.06 CS(NH2)2

2.19 12.75 1.16 67.78 The same

– 13.39 – – "

Table 3.  Solubilities in the Cd(HCOO)2–CS(NH2)2–H2O system at 25°C

In liquid phase, wt % In wet residue, wt %
Solid phase

Cd(HCOO)2 CS(NH2)2 Cd(HCOO)2 CS(NH2)2

12.45 – – – Cd(HCOO)2 · 2H2O
16.60 1.03 67.31 9.20 Cd(HCOO)2 · 2H2O + CS(NH2)2

16.57 1.08 50.20 22.45 The same
9.41 1.23 43.25 31.52 Cd(HCOO)2 · 2CS(NH2)2

6.63 2.03 36.10 25.93 The same
3.44 4.60 49.76 38.05 "

2.72 5.56 38.51 30.03 "

3.09 12.00 42.06 34.11 "

3.71 13.90 35.81 31.20 "

4.62 17.85 44.25 37.12 "

5.55 24.53 30.17 57.18 Cd(HCOO)2 · 2CS(NH2)2 + CS(NH2)2

5.60 24.77 9.35 77.38 The same
3.07 20.11 1.22 76.13 CS(NH2)2

– 13.39 The same
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instrument. A reaction with potassium bromide was not
observed.

RESULTS AND DISCUSSION

System Mg(HCOO)2–CS(NH2)2–H2O. The results
of our investigation of the system at 25°C (Table 1)
show that chemical compounds are not formed at this
temperature; i.e., the system is a simple eutonic. The
solubility isotherm consists of two branches due to the
crystallization of two phases: Mg(HCOO)2 · 2H2O [19]
and CS(NH2)2 [26]. The composition of the eutonic

solution is 10.51 wt % magnesium formate and
10.87 wt % thiocarbamide. Each component slightly
decreases its solubility when the other is added,
because of salting out.

System Mn(HCOO)2–CS(NH2)2–H2O. Experi-
mental solubility data at 25°C, compiled in Table 2,
likewise do not show compound formation in this sys-
tem. The solubility isotherm of the system has two
branches: the longer branch is due to Mn(HCOO)2 ·
2H2O [20] (the least soluble component), and the short
branch is due to thiocarbamide; the branches meet at a
eutonic point, whose coordinates are 5.20 wt %
Mn(HCOO)2 and 11.55 wt % CS(NH2)2. Each compo-
nent slightly decreases its solubility when the other is
added, because of salting out. The manganese formate
solubility drops from 6.28 to 5.20 wt %; the thiourea
solubility drops from 13.39 to 11.55 wt %.

System Cd(HCOO)2–CS(NH2)2–H2O at 25°C.
The solubility data for this system are compiled in
Table 3. The solubility diagram is shown in Fig. 1. The
following three phases crystallize in the system:
Cd(HCOO)2 · 2H2O [21], CS(NH2)2 [26], and a congru-
ently dissolving compound Cd(HCOO)2 · 2CS(NH2)2.
Cadmium formate dihydrate has a very narrow crystal-
lization field. Most of the diagram is occupied by the
crystallization field of the compound whose composi-
tion was found graphically using the Schreinemakers
method. The concentration bounds of formation were
determined for the compound from 16.60 to 5.60 wt %
cadmium formate and from 1.03 to 24.77 wt % thiocarb-
amide in the liquid phase.

50

25

75

Cd(HCOO)2

Cd(HCOO)2 · 2H2O

H2O

0 25 50 75 100

Cd(HCOO)2 · 2CS(NH2)2

CS(NH2)2

Fig. 1. Solubility diagram for the Cd(HCOO)2–CS(NH2)2–
H2O system at 25°C.
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Fig. 2. IR spectrum of Cd(HCOO)2 · 2CS(NH2)2 in the region 4000–400 cm–1.
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Crystals of the compound isolated from the system
were dried in air and characterized by chemical analy-
sis, X-ray powder diffraction, and IR spectroscopy.
Chemical analysis showed the following:

Calcd., wt %: Cd(HCOO)2, 57.08; CS(NH2)2,
42.92. Found, wt %: Cd(HCOO)2, 56.70; CS(NH2)2,
43.61.

The structure of Cd(HCOO)2 · 2CS(NH2)2 was stud-
ied comprehensively in [11, 12]. The crystals are
orthorhombic, space group P212121, with the unit cell
parameters a = 8.00(0) Å, b = 17.87(8) Å, c =
3.93(3) Å, Z = 2. Each Cd atom is coordinated octahe-
drally by four S atoms lying in one plane, and two O
atoms belonging to the formate groups in the trans
position to the plane of the sulfur atoms. Our X-ray
powder diffraction analysis showed that the compound
isolated differs structurally from its precursors
(Cd(HCOO)2 · 2H2O [21] and Cs(NH2)2 [26]). Interpla-
nar distances and intensity ratios for Cd(HCOO)2 ·
2CS(NH2)2 coincide with the data in [12].

The IR absorption spectra of thiocarbamide com-
pounds of inorganic salts were studied in [27–29].
However, we failed to find data on the IR spectra of
Cd(HCOO)2 · 2CS(NH2)2 in the literature. Our IR-spec-
troscopic investigation in the region 4000–400 cm–1

(Fig. 2) showed bands due to the vibrations in thiocarb-
amide molecules and formate groups. Band assignment
was with reference to [27–29] for thiocarbamide and
[30–32] for formate groups. The results of the IR inves-
tigation correlate with crystal data for Cd(HCOO)2 ·
2CS(NH2)2 [12].

A comparative analysis of carbamide and thiocarb-
amide compounds with formates of several divalent
metals was carried out. Table 5 summarizes data on
carbamide and thiocarbamide complexes of Mg, Mn,
Fe, Co, Ni, Zn, and Cd formates.

Both families of compounds have 1 : 2 formulas:
M(HCOO)2 · 2CO(NH2)2 and M(HCOO)2 ·
2CS(NH2)2. Carbamide or thiocarbamide molecules
substitute for the two water molecules in formate dihy-
drates [19–21]. Carbamide forms compounds with all
of the aforementioned formates [33–36]; thiocarbam-
ide, with zinc and cadmium formates only [12, 14].
This holds for the reactions of carbamide and thiocarb-
amide with other inorganic salts [1]. It is known from
the literature that carbamide has a stronger tendency
toward complex formation than thiocarbamide. The

Table 4.  Assignment of IR bands for Cd(HCOO)2 ·
2CS(NH2)2

ν, cm–1 Assignment

3377 s νas (N–H)

3295 m

3183 sh

3058 s νs (N–H)

2927 sh

2830 m ν1 (C–H)

2754 w

2697 w 2ν5 HCOO–

2665 w

1657 v s δ (NH2)

1637 v s

1630 s ν4as (COO) 

1607 m

1569 w νas (C–N) 

1510 m νas (C–S)

1425 m

1375 m ν5 (C–H) 

1340 v s ν2s (COO) 

1135 w νs (C–N)

1110 w ν6 (C–H) 

1098 w

781 m ν3s (O–C–O) 

720 w νs (C–S)

690 w

634 m δ (NH2)

589 m δas (N–C–N) 

502 m δs (S–C–N) 

Note: Band notation: v s, very strong; s, strong; m, medium inten-
sity; w, weak; sh, shoulder.

Table 5.  Formation of carbamide and thiocarbamide complexes of Mg, Mn, Fe, Co, Ni, Zn, and Cd formates

M(HCOO)2 · 2H2O M(HCOO)2 · 2CO(NH2)2 M(HCOO)2 · 2CS(NH2)2

Mg(HCOO)2 · 2H2O [19] Mg(HCOO)2 · 2CO(NH2)2 [33] Not formed [this work]

Mn(HCOO)2 · 2H2O [20] Mn(HCOO)2 · 2CO(NH2)2 [33–35] The same

Fe(HCOO)2 · 2H2O [20] Fe(HCOO)2 · 2CO(NH2)2 [33] –

Co(HCOO)2 · 2H2O [20] Co(HCOO)2 · 2CO(NH2)2 [33] Not formed [15]

Ni(HCOO)2 · 2H2O [20] Ni(HCOO)2 · 2CO(NH2)2 [33] –

Zn(HCOO)2 · 2H2O [21] Zn(HCOO)2 · 2CO(NH2)2 [33] Zn(HCOO)2 · 2CS(NH2)2 [14]

Cd(HCOO)2 · 2H2O [21] Cd(HCOO)2 · 2CO(NH2)2 [34–36] Cd(HCOO)2 · 2CS(NH2)2 [11, 12, this work]
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higher complexing ability of zinc and cadmium ions
compared to that of magnesium, manganese, and cobalt
ions likely allows formates of these ions to form thio-
carbamide complexes.
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