Synthesis and Antiproliferative Activities of Chloropyridazine Derivatives Retain Alkylsulfonyl Moiety

Chaewon Kim and Myung-Sook Park*

College of Pharmacy, Duksung Women's University, Seoul 132-714, Korea. *E-mail: mspark@duksung.ac.kr Received July 15, 2016, Accepted August 25, 2016, Published online October 3, 2016

Keywords: Chloropyridazines, 3-Alkylsulfonyl, Antiproliferative, MCF-7, Hep3B

Some chloropyridazine derivatives have shown interesting pharmacodynamics properties in terms of antioxidant¹ and anti-human rotavirus (HRV) activities (Figure 1).^{2,3} To date, however, no study has evaluated the antiproliferative effects of chloropyridazines in other types of human cancer cells.

Therefore, the replacement of the heterocycle of chloropyridazines by heteroatoms (or moieties) such as oxygen (O), sulfur (S), selenium (Se), sulfinyl (SO), and sulfonyl (SO₂) yields the target compounds (Figure 1). We designed substituted 3-chloropyridazine derivatives as possible antitumor candidates. These derivatives have three basic structures, namely chloropyridazine region, heteroatoms, and alkyl chain. We made an examination of antiproliferative activities for target chloropyridazines of five groups against breast cancer (MCF-7) and hepatocellular carcinoma (Hep3B) cells in Cell Counting Kit-8 (CCK-8) assays. As a result, we describe herein the preparation of some chloropyridazine derivatives and the refinement of potential proliferative inhibitors on human cancer cell lines.

The chloropyridazines were obtained mostly through the substitution reaction. Scheme 1 depicts the preparation of desired substituted chloropyridazine derivatives. We previously reported the synthesis of 3-allylthio-6chloropyridazine in 95% yield through allylthiolation.⁴ All 3-alkoxy-6-chloropyridazines **3b–3d** and 3-alkylthio-6-chloropyridazines **4b–4e** were prepared following the synthetic methods of existing literature.^{5,6} The

Bull. Korean Chem. Soc. 2016, Vol. 37, 1858-1861

Scheme 1. Synthetic routes for target emotopyridazine analogues

intermediate dichloropyridazinyl diselenide **2** was obtainable from the corresponding 3,6-dichloropyridazine **1** by reaction with sodium diselenide.⁷ A synthetic pathway for dipyridyl diselenide has been developed ^{7,8} and the synthesis of substituted dipyridazinyl diselenide has been reported.⁹ We applied a general method of preparing diaryl (or dialkyl) diselenide from diaryl (or dialkyl) halides and sodium diselenide.^{10–12} A series of alkylselenylpyridazines **5b–5f** was prepared by Se–Se bond cleavage and Se-alkylation.

Treatment of alkylthiopyridazines **4a–4e** with 35% hydrogen peroxide afforded corresponding alkylsulfinylchloropyridazine **6a–6e** and alkylsulfonylchloropyridazine **7a–7e**. Target **6a–6e** and **7a–7e** were synthesized as illustrated in Scheme 1.

Table 1. Inhibitory results for five groups of synthesized chloropyridazines against MCF-7, Hep3B.

Comp. No.RXMCF-7Hep3B $3b^a$ <i>n</i> -propylO1756.31517.6 $3c^a$ <i>n</i> -butylO>40002143.2 $3d^a$ <i>n</i> -pentylO2491.71397.1 $4b^b$ <i>n</i> -pentylS>40003812.1 $4c^b$ <i>n</i> -butylS1404.61321.4 $4d^b$ <i>n</i> -pentylS>4000>5000 $4e$ <i>n</i> -hexylS39.9695.8 $5b^c$ <i>n</i> -propylSe2436.6>5000 $5c^c$ <i>n</i> -butylSe>4000>5000 $5c^c$ <i>n</i> -pentylSe2436.6>5000 $5d^c$ <i>n</i> -pentylSe2436.6>5000 $5d^c$ <i>n</i> -pentylSe240001896.2 $5f$ <i>iso</i> -propylSe>40001805.0 $6a^d$ ethylSO106.7389.8 $6b^d$ <i>n</i> -pentylSO1890.24601.0 $6c^d$ <i>n</i> -butylSO1737.51768.6 $6d$ <i>n</i> -pentylSO2185.3912.2 $6e$ <i>n</i> -hexylSO2830.6915.3 $7a$ ethylSO2550.3418.5 $7b$ <i>n</i> -propylSO2125.7115.0 $7d$ <i>n</i> -pentylSO2130.5127.4 $7e$ <i>n</i> -hexylSO2250.3268.3				IC ₅₀ (µM)	
$3b^a$ <i>n</i> -propylO1756.31517.6 $3c^a$ <i>n</i> -butylO>40002143.2 $3d^a$ <i>n</i> -pentylO2491.71397.1 $4b^b$ <i>n</i> -propylS>40003812.1 $4c^b$ <i>n</i> -butylS1404.61321.4 $4d^b$ <i>n</i> -pentylS>4000>5000 $4e$ <i>n</i> -hexylS39.9695.8 $5b^c$ <i>n</i> -propylSe2436.6>5000 $5c^c$ <i>n</i> -butylSe2436.6>5000 $5c^c$ <i>n</i> -butylSe2436.6>5000 $5d^c$ <i>n</i> -pentylSe2436.6>5000 $5d^c$ <i>n</i> -pentylSe2436.6>5000 $5d^c$ <i>n</i> -pentylSe240001896.2 $5f$ <i>iso</i> -propylSe>40001896.2 $6a^d$ ethylSO106.7389.8 $6b^d$ <i>n</i> -propylSO1890.24601.0 $6c^d$ <i>n</i> -butylSO2185.3912.2 $6e$ <i>n</i> -hexylSO2830.6915.3 $7a$ ethylSO2550.3418.5 $7b$ <i>n</i> -pentylSO2125.7115.0 $7d$ <i>n</i> -pentylSO2125.7115.0 $7d$ <i>n</i> -pentylSO2250.3268.3	Comp. No.	R	X	MCF-7	Hep3B
$3c^a$ n -butylO>40002143.2 $3d^a$ n -pentylO2491.71397.1 $4b^b$ n -propylS>40003812.1 $4c^b$ n -butylS1404.61321.4 $4d^b$ n -pentylS>4000>5000 $4e$ n -hexylS39.9695.8 $5b^c$ n -propylSe2436.6>5000 $5c^c$ n -butylSe2436.6>5000 $5c^c$ n -pentylSe2552.41223.8 $5e$ n -hexylSe>40001896.2 $5f$ iso -propylSe>40001805.0 $6a^d$ ethylSO106.7389.8 $6b^d$ n -propylSO1890.24601.0 $6c^d$ n -butylSO2185.3912.2 $6e$ n -hexylSO2830.6915.3 $7a$ ethylSO2550.3418.5 $7b$ n -propylSO2419.0316.9 $7c$ n -butylSO2125.7115.0 $7d$ n -pentylSO2250.3268.3	3 b ^{<i>a</i>}	<i>n</i> -propyl	0	1756.3	1517.6
$3d^a$ <i>n</i> -pentylO 2491.7 1397.1 $4b^b$ <i>n</i> -propylS>4000 3812.1 $4c^b$ <i>n</i> -butylS 1404.6 1321.4 $4d^b$ <i>n</i> -pentylS 24000 >5000 $4e$ <i>n</i> -hexylS 39.9 695.8 $5b^c$ <i>n</i> -propylSe 2436.6 >5000 $5c^c$ <i>n</i> -butylSe 2436.6 >5000 $5c^c$ <i>n</i> -pentylSe 2436.6 >5000 $5d^c$ <i>n</i> -pentylSe 2436.6 >5000 $5d^c$ <i>n</i> -pentylSe 24300 1896.2 $5c^c$ <i>n</i> -pentylSe 24000 1896.2 $5f$ <i>iso</i> -propylSe >4000 1805.0 $6a^d$ ethylSO 106.7 389.8 $6b^d$ <i>n</i> -propylSO 1890.2 4601.0 $6c^d$ <i>n</i> -pentylSO 2185.3 912.2 $6e$ <i>n</i> -hexylSO 2830.6 915.3 $7a$ ethylSO2 550.3 418.5 $7b$ <i>n</i> -propylSO2 419.0 316.9 $7c$ <i>n</i> -butylSO2 125.7 115.0 $7d$ <i>n</i> -pentylSO2 250.3 268.3	$3c^a$	<i>n</i> -butyl	0	>4000	2143.2
$4b^b$ <i>n</i> -propylS>40003812.1 $4c^b$ <i>n</i> -butylS1404.61321.4 $4d^b$ <i>n</i> -pentylS>4000>5000 $4e$ <i>n</i> -hexylS39.9695.8 $5b^c$ <i>n</i> -propylSe2436.6>5000 $5c^c$ <i>n</i> -butylSe>4000>5000 $5d^c$ <i>n</i> -pentylSe2552.41223.8 $5e$ <i>n</i> -hexylSe>40001896.2 $5f$ <i>iso</i> -propylSe>40001805.0 $6a^d$ ethylSO106.7389.8 $6b^d$ <i>n</i> -propylSO1890.24601.0 $6c^d$ <i>n</i> -butylSO1737.51768.6 $6d$ <i>n</i> -pentylSO2185.3912.2 $6e$ <i>n</i> -hexylSO2830.6915.3 $7a$ ethylSO2550.3418.5 $7b$ <i>n</i> -propylSO2125.7115.0 $7d$ <i>n</i> -pentylSO2125.7115.0 $7d$ <i>n</i> -pentylSO2250.3268.3	$\mathbf{3d}^{a}$	<i>n</i> -pentyl	0	2491.7	1397.1
$4c^b$ n-butylS1404.61321.4 $4d^b$ n-pentylS>4000>5000 $4e$ n-hexylS39.9695.8 $5b^c$ n-propylSe2436.6>5000 $5c^c$ n-butylSe2436.6>5000 $5d^c$ n-pentylSe2436.6>5000 $5d^c$ n-pentylSe2430.0>5000 $5d^c$ n-pentylSe2552.41223.8 $5e$ n-hexylSe>40001896.2 $5f$ iso-propylSe>40001805.0 $6a^d$ ethylSO106.7389.8 $6b^d$ n-propylSO1890.24601.0 $6c^d$ n-butylSO1737.51768.6 $6d$ n-pentylSO2185.3912.2 $6e$ n-hexylSO2830.6915.3 $7a$ ethylSO2550.3418.5 $7b$ n-propylSO2125.7115.0 $7c$ n-butylSO2130.5127.4 $7e$ n-hexylSO2250.3268.3	$4\mathbf{b}^{b}$	<i>n</i> -propyl	S	>4000	3812.1
$4d^b$ n-pentylS>4000>5000 $4e$ n-hexylS39.9695.8 $5b^c$ n-propylSe2436.6>5000 $5c^c$ n-butylSe>4000>5000 $5d^c$ n-pentylSe2552.41223.8 $5e$ n-hexylSe>40001896.2 $5f$ iso-propylSe>40001805.0 $6a^d$ ethylSO106.7389.8 $6b^d$ n-propylSO1890.24601.0 $6c^d$ n-butylSO1737.51768.6 $6d$ n-pentylSO2185.3912.2 $6e$ n-hexylSO2830.6915.3 $7a$ ethylSO2550.3418.5 $7b$ n-propylSO2125.7115.0 $7d$ n-pentylSO2125.7115.0 $7d$ n-pentylSO2250.3268.3	$4c^b$	<i>n</i> -butyl	S	1404.6	1321.4
4e n -hexylS39.9695.85b ^c n -propylSe2436.6>50005c ^c n -butylSe>4000>50005d ^c n -pentylSe2552.41223.85e n -hexylSe>40001896.25f iso -propylSe>40001805.06a ^d ethylSO106.7389.86b ^d n -propylSO1890.24601.06c ^d n -propylSO1737.51768.66d n -pentylSO2185.3912.26e n -hexylSO2830.6915.37aethylSO2550.3418.57b n -propylSO2125.7115.07d n -pentylSO2130.5127.47e n -hexylSO2250.3268.3	$4\mathbf{d}^b$	<i>n</i> -pentyl	S	>4000	>5000
$5b^c$ <i>n</i> -propylSe 2436.6 >5000 $5c^c$ <i>n</i> -butylSe>4000>5000 $5d^c$ <i>n</i> -pentylSe 2552.4 1223.8 $5e$ <i>n</i> -hexylSe>4000 1896.2 $5f$ <i>iso</i> -propylSe>4000 1805.0 $6a^d$ ethylSO 106.7 389.8 $6b^d$ <i>n</i> -propylSO 1890.2 4601.0 $6c^d$ <i>n</i> -propylSO 1737.5 1768.6 $6d$ <i>n</i> -pentylSO 2185.3 912.2 $6e$ <i>n</i> -hexylSO 2830.6 915.3 $7a$ ethylSO2 550.3 418.5 $7b$ <i>n</i> -propylSO2 419.0 316.9 $7c$ <i>n</i> -butylSO2 125.7 115.0 $7d$ <i>n</i> -pentylSO2 130.5 127.4 $7e$ <i>n</i> -hexylSO2 250.3 268.3	4e	<i>n</i> -hexyl	S	39.9	695.8
$\begin{array}{c ccccc} \mathbf{5c}^c & n\mbox{-butyl} & \mbox{Se} & >4000 & >5000 \\ \mathbf{5d}^c & n\mbox{-pentyl} & \mbox{Se} & 2552.4 & 1223.8 \\ \mathbf{5e} & n\mbox{-hexyl} & \mbox{Se} & >4000 & 1896.2 \\ \mathbf{5f} & iso\mbox{-propyl} & \mbox{Se} & >4000 & 1805.0 \\ \mathbf{6a}^d & \mbox{ethyl} & \mbox{SO} & 106.7 & 389.8 \\ \mathbf{6b}^d & n\mbox{-propyl} & \mbox{SO} & 1890.2 & 4601.0 \\ \mathbf{6c}^d & n\mbox{-butyl} & \mbox{SO} & 1737.5 & 1768.6 \\ \mathbf{6d} & n\mbox{-pentyl} & \mbox{SO} & 2185.3 & 912.2 \\ \mathbf{6e} & n\mbox{-hexyl} & \mbox{SO} & 2830.6 & 915.3 \\ \mathbf{7a} & \mbox{ethyl} & \mbox{SO} & 2830.6 & 915.3 \\ \mathbf{7b} & n\mbox{-propyl} & \mbox{SO}_2 & 419.0 & 316.9 \\ \mathbf{7c} & n\mbox{-butyl} & \mbox{SO}_2 & 125.7 & 115.0 \\ \mathbf{7d} & n\mbox{-pentyl} & \mbox{SO}_2 & 250.3 & 268.3 \\ \end{array}$	5 b ^{<i>c</i>}	<i>n</i> -propyl	Se	2436.6	>5000
$5d^c$ <i>n</i> -pentylSe 2552.4 1223.8 $5e$ <i>n</i> -hexylSe>4000 1896.2 $5f$ <i>iso</i> -propylSe>4000 1805.0 $6a^d$ ethylSO 106.7 389.8 $6b^d$ <i>n</i> -propylSO 1890.2 4601.0 $6c^d$ <i>n</i> -butylSO 1737.5 1768.6 $6d$ <i>n</i> -pentylSO 2185.3 912.2 $6e$ <i>n</i> -hexylSO 2830.6 915.3 $7a$ ethylSO2 550.3 418.5 $7b$ <i>n</i> -propylSO2 419.0 316.9 $7c$ <i>n</i> -butylSO2 125.7 115.0 $7d$ <i>n</i> -pentylSO2 130.5 127.4 $7e$ <i>n</i> -hexylSO2 250.3 268.3	$5c^c$	<i>n</i> -butyl	Se	>4000	>5000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5d ^c	<i>n</i> -pentyl	Se	2552.4	1223.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5e	<i>n</i> -hexyl	Se	>4000	1896.2
	5f	<i>iso</i> -propyl	Se	>4000	1805.0
6b ^d n-propyl SO 1890.2 4601.0 6c ^d n-butyl SO 1737.5 1768.6 6d n-pentyl SO 2185.3 912.2 6e n-hexyl SO 2830.6 915.3 7a ethyl SO2 550.3 418.5 7b n-propyl SO2 419.0 316.9 7c n-butyl SO2 125.7 115.0 7d n-pentyl SO2 250.3 268.3 7e n-hexyl SO2 250.3 268.3	$\mathbf{6a}^d$	ethyl	SO	106.7	389.8
6c ^d n-butyl SO 1737.5 1768.6 6d n-pentyl SO 2185.3 912.2 6e n-hexyl SO 2830.6 915.3 7a ethyl SO2 550.3 418.5 7b n-propyl SO2 419.0 316.9 7c n-butyl SO2 125.7 115.0 7d n-pentyl SO2 130.5 127.4 7e n-hexyl SO2 250.3 268.3	$\mathbf{6b}^d$	<i>n</i> -propyl	SO	1890.2	4601.0
6d n-pentyl SO 2185.3 912.2 6e n-hexyl SO 2830.6 915.3 7a ethyl SO2 550.3 418.5 7b n-propyl SO2 419.0 316.9 7c n-butyl SO2 125.7 115.0 7d n-pentyl SO2 250.3 268.3 7e n-hexyl SO2 250.3 268.3	$\mathbf{6c}^d$	<i>n</i> -butyl	SO	1737.5	1768.6
	6d	<i>n</i> -pentyl	SO	2185.3	912.2
7a ethyl SO2 550.3 418.5 7b n-propyl SO2 419.0 316.9 7c n-butyl SO2 125.7 115.0 7d n-pentyl SO2 130.5 127.4 7e n-hexyl SO2 250.3 268.3	6e	<i>n</i> -hexyl	SO	2830.6	915.3
7b <i>n</i> -propyl SO2 419.0 316.9 7c <i>n</i> -butyl SO2 125.7 115.0 7d <i>n</i> -pentyl SO2 130.5 127.4 7e <i>n</i> -hexyl SO2 250.3 268.3	7a	ethyl	SO_2	550.3	418.5
7c <i>n</i> -butyl SO2 125.7 115.0 7d <i>n</i> -pentyl SO2 130.5 127.4 7e <i>n</i> -hexyl SO2 250.3 268.3	7b	<i>n</i> -propyl	SO_2	419.0	316.9
7d <i>n</i> -pentyl SO2 130.5 127.4 7e <i>n</i> -hexyl SO2 250.3 268.3	7c	<i>n</i> -butyl	SO_2	125.7	115.0
7e <i>n</i> -hexyl SO ₂ 250.3 268.3	7d	<i>n</i> -pentyl	SO_2	130.5	127.4
	7e	<i>n</i> -hexyl	SO ₂	250.3	268.3

^{*a*} **3b–3d** were reported.⁵

^b **4b–4d** were reported.⁶

^c **5b–5d** were reported.¹⁰

^d **6a–6c** were reported.¹⁶

A series of compound **4a–4e** was prepared from **1** using alkylthiolation with alkylmercaptan. Sulfides **4a–4e** were oxidized to **6a–6e** using 1–2 equiv of 35% hydrogen peroxide as an oxidant.^{13–16} Sulfones **7a–7e** were synthesized using 3.5–5 equiv of oxidants. The oxidation of **4a–4e** to **7a–7e** was also accomplished with aqueous hydrogen peroxide at room temperature in acetic acid for 18–72 h.

We applied a common method for the CCK-8 assays¹⁷ of synthetic compounds. In Table 1, we summarize the antiproliferative activities for targets. Among 22, four compounds (**4e**, **6a**, **7c** and **7d**) that had IC₅₀ values below 200 μ M inhibited the growth of MCF-7 at standard concentrations (6.25, 25, 100, and 400 μ g/mL). Two compounds (**7c**, **7d**) that had IC₅₀ values below 200 μ M inhibited the growth of Hep3B. The antiproliferative activities of derivatives were not good as shown in Figures 2 and 3.

Compound **4e** inhibited MCF-7 cell growth and **7c** resisted Hep3B cell growth at IC₅₀ in a dose-dependent manner at a low concentration (6.25 µg/mL). Both compounds **7c** (3-*n*-butylsulfonyl-6-chloropyridazine) and **7d** (3-*n*-pentylsulfonyl-6-chloropyridazine) had potentially antiproliferative activity against MCF-7 and Hep3B cell lines. CCK-8 assays indicated that compounds **7c**, **7d** inhibited cancer cells proliferation by triggering cell death.

In conclusion, we designed and synthesized a total of five groups of alkoxy-(or alkylthio-, alkylselenyl-, alkylsufinyl-, alkylsulfonyl-)chloropyridazines, and their antiproliferative activity was evaluated in the human cancer cell lines. IC₅₀ values showed that the alkylsulfonylchloropyridazine compounds exhibited more active than the other four groups having alkoxy, alkylthio, alkylselenyl, alkylsulfinyl moieties against MCF-7 and Hep2B Cells.

Experimental

Materials and Methods for Bioassays: Cell Line Culture Conditions. MCF-7 and Hep3B cancer cells were purchased from the American Type Culture Collection (ATCC; Manassas, VA, USA).

Antiproliferative CCK-8 Assays. The cytotoxic activity of compounds was determined in vitro using the CCK-8 assay kit (Dojindo, Kumamoto, Japan).

General Synthetic Procedure for Alkoxypyridazines 3b–3d **and Alkylthiopyridazines** 4b–4e. The alkoxypyridazines **3b–3d** and alkylthiopyridazines **4b–4d** were synthesized from **1** through alkoxylation (or alkylthiolation) using a modification on previously reported methods.^{4–6,18}

3-(*n*-Hexylthio)-6-chloropyridazine (4e). Yield: 54%. m.p. 62–64°C. ¹H NMR (CDCl₃) δ 8.15 (d, J = 8.8 Hz,

Figure 2. Antiproliferative activity of chloropyridazines in MCF-7 cancer cells.

Figure 3. Antiproliferative activity of chloropyridazines in Hep3B cancer cells.

1H, CH, pyridazine), 7.80 (d, J = 8.8 Hz, 1H, CH, pyridazine), 3.59 (t, J = 8.0 Hz, 2H, SCH₂, hexyl), 1.85–1.74 (m, 2H, CH₂, hexyl), 1.48–1.39 (m, 2H, CH₂, hexyl), 1.30–1.27 (m, 1H, CH₂, hexyl), 0.86 (t, J = 6.7 Hz, 3H, CH₃, hexyl). ¹³C NMR (CDCl₃) δ 161.11, 159.73, 130.00, 126.63 (pyridazine), 52.39, 31.02, 27.91, 22.19, 21.99, 13.81 (hexyl).

General Synthetic Procedure for Alkylselenylpyridazines 5b-5f. To a stirred mixture of dipyridazyinyl diselepowdered nide 2 (5.2 mmol), sodium hydroxide (26 mmol), and tetrabutylammonium bromide (1.04 mmol) in absolute tetrahydrofuran (THF) (60 mL), a solution of hydrazine monohydrate (1.73 mmol) was added at room temperature (RT). After 1 h of stirring, the color of the reaction mixture turned to orange red from pale yellow. The reaction mixture was then cooled to 0°C, alkyl halide (10.4 mmol) with the same amount of THF was added slowly dropwise, and stirring continued for 1 h at 0°C. After the reaction was complete, the solvent THF was evaporated under reduced pressure. The residue was dissolved in ethyl acetate (50 mL). The organic layer was washed with water (50 mL \times 3) and subsequently dried over anhydrous sodium sulfate (Na₂SO₄). After solvent evaporation, the residue was purified by column chromatography (hexanes/EtOAc 3:1, 2:1) on silica gel to afford 5b-5f.

3-(*n*-Hexylselenyl)-6-chloropyridazine (5e). Yield: 38%. m.p. 45–48°C. ¹H NMR (CDCl₃) δ 7.49 (d, *J* = 8.8 Hz, 1H, CH, pyridazine), 7.30 (d, *J* = 8.8 Hz, 1H, CH, pyridazine), 3.33 (t, *J* = 7.4 Hz, 2H, SeCH₂, hexyl), 1.87–1.77 (m, 2H, CH₂, hexyl), 1.32–1.327 (m, 6H, CH₂, hexyl), 0.87 (t, *J* = 6.9 Hz, 3H, CH₃, hexyl). ¹³C NMR (CDCl₃) δ 159.04, 155.25, 129.95, 129.16 (pyridazine), 31.26, 29.66, 29.57, 26.57, 22.49, 13.95 (hexyl).

3-(*iso*-Propylselenyl)-6-chloropyridazine (5f). Yield: 59%. m.p. 53–54°C. ¹H NMR (CDCl₃) δ 7.18 (d, J = 9.0 Hz, 1H, CH, pyridazine), 6.80 (d, J = 9.0 Hz, 1H, CH, pyridazine), 3.83 (m, 1H, CH, isopropyl), 1.58 (d, J = 7.6 Hz, 6H, CH₃, isopropyl). ¹³C NMR (CDCl₃) δ 159.74, 154.17, 131.42, 127.33 (pyridazine), 34.80 (isopropyl CH), 24.36 (isopropyl CH₃). FT-IR (KBr) cm⁻¹ 3059 (aromatic), 1542(N=N), 1492 (CH₂), 1451 (CH₃),

757 (C—Se), 697 (C—Cl); GC-MS *m*/*z* (%) 236 (M+), 194.0 (100.0), 192.0 (54.11), 196.0 (50.52), 236 (45.16), 155.10 (41.53).

General Synthetic Procedure for Alkylsulfinylpyridazines 6a-6e. The compound 6a-6e was prepared from 3-chloroalkylthiopyridazine 4a-4e as a white solid using a modification of a previously reported method. To a solution of 4a-4e (7 mmol) in 15 mL acetic acid, 35% hydrogen peroxide (100-200 mol%) was added at RT. The resulting mixture was stirred for 22-72 h at RT. After completion of the reaction, the mixture was diluted with 30 mL ether and 15 mL water, and it was partitioned between ether and water layers in a separating funnel. The ether layer was extracted with 15 mL sodium hydroxide (1 N-NaOH) solution three times. The combined water layer was reextracted several times with 50 mL dichloromethane. The combined organic layers were washed with water, dried over anhydrous Na₂SO₄, and concentrated. The crude product was further purified by silica gel column chromatography (Hexanes/EtOAc 1:1) to provide the target compound as a white solid. The compound 6a-6c was prepared using the reported synthetic procedure, and these spectra data were identified with the literature.¹⁶

3-(*n*-Pentylsulfinyl)-6-chloropyridazine (6d). Yield: 54%. m.p. 57–59°C. ¹H NMR (CDCl₃) δ 8.13 (d, *J* = 8.8 Hz, 1H, CH, pyridazine), 7.78 (d, *J* = 8.8 Hz, 1H, CH, pyridazine), 3.30–3.20 (m, 1H, SCH₂, pentyl), 3.08–2.99 (m, 1H, SCH₂, pentyl), 1.95–1.69 (m, 1H, CH₂, pentyl), 1.60–1.54 (m, 1H, CH₂, pentyl), 1.49–1.31 (m, 4H, CH₂, pentyl), 0.90 (t, *J* = 7.2 Hz, 3H, CH₃, pentyl). ¹³C NMR (CDCl₃) δ 168.63, 157.89, 129.82, 125.70 (pyridazine), 55.30, 30.60, 22.15, 21.31, 13.69 (pentyl). FT-IR (KBr) cm⁻¹ 3025 (aromatic), 1543 (N=N), 1492, 1451 (CH₂), 1028 (SO), 540 (CCl). GC-MS *m*/*z* (%) 232.73 (M+) 145.90 (base peak).

3-(*n*-Hexylsulfinyl)-6-chloropyridazine (6e). Yield: 48%. m.p. 62–65°C. ¹H NMR (CDCl₃) δ 8.12 (d, *J* = 8.7 Hz, 1H, CH, pyridazine), 7.76 (d, *J* = 8.7 Hz, 1H, CH, pyridazine), 3.28–3.19 (m, 1H, SCH₂, hexyl), 3.08–2.97 (m, 1H, SCH₂, hexyl), 1.91–1.86 (m, 1H, CH₂, hexyl), 1.60–1.54 (m, 1H, CH₂, hexyl), 1.53–1.30 (m, 2H, CH₂, hexyl), 1.28–1.24 (m, 4H, CH₂, hexyl), 0.86 (t, J = 6.9 Hz, 3H, CH₃, hexyl). ¹³C NMR (CDCl₃) δ 168.62, 157.89, 129.82, 125.70 (pyridazine), 55.32, 31.21, 28.17, 22.30, 21.57, 13.85 (hexyl). FT-IR (KBr) cm⁻¹ 3025 (aromatic), 1543 (N–N), 1492, 1452 (CH₂), 1028 (SO), 540 (CCl). GC-MS *m*/*z* (%) 246.76 (M+) 123.00 (base peak). General Synthetic Procedure for Alkylsulfonylpyridazines 7a–7e. The compound **7a–7e** was prepared from 3-chloroalkylthiopyridazine **4a–4e** as a white solid using a modification of a previously reported oxidation method.¹⁶

3-(Ethylsulfonyl)-6-chloropyridazine (7a). Yield: 51%. m.p. 68–70°C. ¹H NMR (CDCl₃) δ 8.16 (d, *J* = 8.9 Hz, 1H, CH, pyridazine), 7.81 (d, *J* = 8.9 Hz, 1H, CH, pyridazine), 3.67 (q, *J* = 14.9 Hz, 2H, SCH₂, ethyl), 1.40 (t, *J* = 7.4 Hz, 3H, CH₃, ethyl). ¹³C NMR (CDCl₃) δ 160.68, 159.79, 130.03, 126.79 (pyridazine), 47.00, 6.78 (ethyl). FT-IR (KBr) cm⁻¹ 3025 (aromatic), 1545 (N=N), 1491, 1452 (CH₂), 1325, 1154 (SO₂), 1028 (SO), 540 (CCl). GC-MS *m*/*z* (%) 206.69 (M+) 78.90 (100.0), 113.90 (62.9), 115.90 (20.0), 51.90 (15.9), 140.90 (13.6).

3-(*n*-**Propylsulfonyl**)-6-chloropyridazine (7b). Yield: 71%. m.p. 66–67°C. ¹H NMR (CDCl₃) δ 8.15 (d, *J* = 8.9 Hz, 1H, CH, pyridazine), 7.80 (d, *J* = 8.8 Hz, 1H, CH, pyridazine), 3.59 (m, 2H, SCH₂, propyl), 1.86 (m, 2H, CH₂, propyl), 1.08 (t, *J* = 7.2 Hz, 3H, CH₃, propyl). ¹³C NMR (CDCl₃) δ 161.25, 159.77, 129.99, 126.59 (pyridazine), 54.07, 16.03, 12.95 (propyl). FT-IR (KBr) cm⁻¹ 3025 (aromatic), 1545 (N=N), 1491, 1452 (CH₂), 1320 (SO₂), 1028 (SO), 540 (CCl). GC-MS *m*/*z* (%) 220.69 (M+) 78.90 (100.0), 113.90 (68.4), 127.90 (26.1), 115.90 (21.7), 51.90 (12.3).

3-(*n*-Butylsulfonyl)-6-chloropyridazine (7c). Yield: 64 %. m.p. 65–70°C. ¹H NMR (CDCl₃) δ 8.15 (d, *J* = 8.9 Hz, 1H, CH, pyridazine), 7.80 (d, *J* = 8.9 Hz, 1H, CH, pyridazine), 3.60 (t, *J* = 1.7 Hz, 2H, SCH₂, butyl), 1.84–1.73 (m, 2H, CH₂, butyl), 1.53–1.41 (m, 2H, CH₂, butyl), 0.95 (t, *J* = 4.5 Hz, 3H, CH₃, butyl). ¹³C NMR (CDCl₃) δ 161.25, 159.77, 129.93, 126.54 (pyridazine), 52.14, 23.09, 21.53, 13.32 (butyl). FT-IR (KBr) cm⁻¹ 3025 (aromatic), 1545 (N=N), 1491, 1452 (CH₂), 1319, 1181, 1154 (SO₂), 1028 (SO), 702, 540 (CCl). GC-MS *m/z* (%) 234.69 (M+) 78.90 (100.0), 113.90 (68.5), 127.90 (26.2), 115.90 (22.0), 51.90 (12.3).

3-(*n*-Pentylsulfonyl)-6-chloropyridazine (7d). Yield: 79%. m.p. 77–82°C. ¹H NMR (CDCl₃) δ 8.14 (d, *J* = 8.8 Hz, 1H, CH, pyridazine), 7.79 (d, *J* = 8.8 Hz, 1H, CH, pyridazine), 3.61 (t, *J* = 2.9 Hz, 2H, SCH₂, pentyl), 1.86–1.78 (m, 2H, CH₂, pentyl), 1.47–1.27 (m, 4H, CH₂, pentyl), 0.89 (t, *J* = 4.6 Hz, 3H, CH₃, pentyl). ¹³C NMR (CDCl₃) δ 161.12, 159.73, 130.00, 126.62 (pyridazine), 52.35, 30.33, 21.72, 21.68, 13.59 (pentyl). FT-IR (KBr) cm⁻¹ 3025 (aromatic), 1545 (N=N), 1491, 1452 (CH₂), 1319, 1180, 1153 (SO₂), 1028 (SO), 702, 540 (CCl). GC-MS *m*/*z* (%) 248.69 (M+) 78.90 (100.0), 113.90 (97.3), 140.90 (76.3), 115.90 (31.9), 155.90 (29.5).

3-(*n*-Hexylsulfonyl)-6-chloropyridazine (7e). Yield: 78%. m.p. 88–90°C. ¹H NMR (CDCl₃) δ 8.15 (d, J = 8.8 Hz, 1H, CH, pyridazine), 7.80 (d, J = 8.8 Hz, 1H, CH, pyridazine), 3.59 (t, J = 8.0 Hz, 2H, SCH₂, hexyl), 1.85–1.75 (m, 2H, CH₂, hexyl), 1.48–1.39 (m, 2H, CH₂, hexyl), 1.30–1.27 (m, 4H, CH₂, hexyl), 0.86 (t, J = 6.7 Hz, 3H, CH₃, hexyl). ¹³C NMR (CDCl₃) δ 161.11, 159.74, 130.00, 126.63 (pyridazine), 52.39, 31.02, 27.92, 22.19, 21.99, 13.81 (hexyl). FT-IR (KBr) cm⁻¹ 3025 (aromatic), 1545 (N=N), 1491, 1452 (CH₂), 1320 (SO₂), 1028 (SO), 702, 540 (CCl). GC-MS *mlz* (%) 262.69 (M+) 140.90 (100.0), 113.90 (93.6), 78.90 (82.3), 142.90 (32.3), 115.90 (31.1).

Acknowledgments. This research was supported by the Duksung Women's University Research Grants 2014.

References

- B. Caliskan-Ergun, M. Sukuroglu, T. Coban, E. Banglu, S. Suzen, J. Enzyme Inhib. Med. Chem. 2008, 23(2), 223.
- S. Y. Fan, Z. B. Zheng, C. L. Mi, X. B. Zhou, H. Yan, Z. H. Gong, S. Li, *Bioorg. Med. Chem.* 2009, 17, 621.
- H. Wang, J. Xiao, D. Gao, X. Zhang, H. Yan, Z. Gong, T. Sun, S. Li, *Bioorg. Med. Chem. Lett.* 2011, 21, 1057.
- 4. E. H. Park, M. S. Park, J. Korean Chem. Soc. 2007, 51, 244.
- 5. J. I. Lee, H. S. Park, Y. S. Yun, S. K. Kwon, J. Korean Chem. Soc. 2001, 45, 386.
- 6. S. K. Kwon, A. R. Moon, Arch. Pharm. Res. 2005, 28, 391.
- (a) C. Kim, S. B. Kim, J. Jung, M. S. Park, *Bull. Korean Chem. Soc.* 2015, *36*, 1669; (b) S. B. Kim, J. H. Lee, C. Kim, M. S. Park, *Bull. Korean Chem. Soc.* 2014, *35*, 1533.
- 8. K. K. Bhasin, J. Singh, J. Organometal. Chem. 2002, 658, 71.
- S. H. Lee, S. B. Kim, M. S. Park, J. Korean Chem. Soc. 2011, 55, 546.
- 10. S. H. Lee, M. S. Park, Yakhak Hoeji 2011, 55, 32.
- K. K. Bhasin, N. Singh, R. Kumar, D. G. Deepali, S. K. Mehta, T. M. Klapoetke, M. J. Crawford, *J. Organometal. Chem.* 2004, 689, 3327.
- J. Scianowski, Z. Rafinski, A. Wojtczak, Eur. J. Org. Chem. 2006, 14, 3216.
- 13. F. Gregori, L. Nobili, F. Bigi, R. Maggi, G. Predieri, J. Mol. Catal. A. Chem. 2008, 286, 124.
- B. R. Raju, S. Sarkar, U. C. Reddy, A. K. Saikia, J. Mol. Catal. A. Chem. 2009, 308, 169.
- G. P. Romanelli, P. Villabrille, C. V. Caceres, P. G. Vazquez, P. Tundo, *Catal. Commun.* 2011, *12*, 726.
- 16. E. H. Park, M. S. Park, Yakhak Hoeji 2012, 56, 390.
- J. H. Jung, E. J. Kim, H. K. Chung, H. J. Park, S. Y. Jeong, E. K. Choi, *Int. J. Oncol.* **2012**, 40, 385.
- (a) M. S. Lee, E. S. Kim, A. R. Moon, M. S. Park, *Bull. Korean Chem. Soc.* 2009, *30*, 83; (b) Y. H. Won, M. S. Park, *Arch. Pharm. Res.* 2010, *33*, 189; (c) C. Kim, S. B. Kim, M. S. Park, *Arch. Pharm. Res.* 2014, *37*, 452.

Bull. Korean Chem. Soc. 2016, Vol. 37, 1858–1861 © 2016 Korean Chemical Society, Seoul & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.bkcs.wiley-vch.de 1861