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Abstract—So far, small conductance Ca2+-activated K+ channel (SK) blockers mostly consist of quaternary ammonium derivatives
or peptides. Due to their physicochemical properties, these blockers are not suitable to study the physiological roles of SK channels
in the central nervous system in vivo. Herein, we report the discovery of a chiral bis-tertiary amine with SK blocking properties from
chemical modulation of laudanosine. AG525E1 has an affinity for SK channels (Ki = 293 nM) approximately 100-fold higher than
the tertiary compound laudanosine (Ki � 30 lM) and similar to the charged compound dequalinium (Ki = 221 nM). AG525E1 equi-
potently blocks SK1, SK2 and SK3 currents in transfected cell lines. Because of its basic and lipophilic properties, it can reach cen-
tral SK targets.
� 2008 Elsevier Ltd. All rights reserved.
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Small conductance Ca2+-activated K+ (SK) channels are
found in several types of neurons as well as in other cell
types. The SK channels are selective for K+ ions and
their opening depends upon an increase of the intracel-
lular Ca2+ concentration. These channels underlie the
medium postspike afterhyperpolarization (mAHP),
which plays an important role in modulating the firing
rate and the firing pattern of neurons.1,2 Three SK chan-
nel subtypes have been cloned1 and exhibit a differential
location in the brain. The distribution of the SK channel
subtypes was investigated in the rat by using in situ
hybridization and immunohistochemistry and revealed
that SK1 and SK2 subtypes are mostly expressed in
the cortex and hippocampus3 whilst SK3 subtype
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expression is higher in the monoaminergic cell regions.
These features attract great attention to SK channels
as putative targets for the treatment of various CNS dis-
eases such as cognitive dysfunction,4–8 neuronal hyper-
excitability,9 dopamine-related disorders,10–12 and
depression.7
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SK channel blockers consist of peptidic toxins such as
apamin,13 leiurotoxin I,14 PO5,15 tityus j,16 tamapin,17

BmSKTx1,18 and non-peptidic compounds such as
tubocurarine,19 atracurium,20 dequalinium21 and UCL
derivatives.22,23 We reported that N-methyl-laudanosine
(NML)24–26 and N-methyl-noscapine (NMN)26 also
block SK channels. Unlike apamin, these two molecules
are medium affinity blockers with a high reversibility as
shown in patch-clamp experiments.26 Besides their low
affinities, the quaternary ammonium function is proba-
bly the major drawback of these pharmacological tools
for investigating their CNS effects after systemic injec-
tion. Indeed, this permanent positive charge imposes
to inject the drugs by an invasive route, such as the
intracerebroventricular one.27 Some tertiary derivatives
have also been reported to block SK channels28–30 and
in the first part of our program 8-MeO-laudanosine
NH2N

Me
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Dequalini
was found to be almost equipotent to NML at interact-
ing with apamin-sensitive sites with a Ki of 5.8 lM ver-
sus 1.6 lM for the latter.31 Previous studies had shown
that the presence of two positive charges or two basic
centres improves the affinity of the blockers.32–34 In
order to find new compounds with significant affinity
and appropriate physicochemical properties, bis-tertiary
amines based on the scaffold of laudanosine were pre-
pared and tested for their affinity on SK channels.35

We report herein the results obtained with the most
potent basic compound in this series.

The bis-tertiary amine was obtained from 6,7-dime-
thoxy-isoquinoline which was classically prepared using
a modification of the Pomeranz–Fritsch synthesis
(Scheme 1).36 The bis-alkylation was subsequently per-
formed by using the Reissert compound pathway
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Scheme 1. Reagents and conditions: (a) Me3SiCN, BzCl, AlCl3, CH2Cl2, rt, 70%; (b) I-(CH2)3-I, NaH, DMF, �10 �C; (c) NaOH, EtOH/H2O, reflux,

31%; (d) MeI, DMF, Dt until dissolution, 97%; (e) NaBH4, MeOH, rt, 67%.

Figure 1. SK3 current traces recorded at a holding potential of

�50 mV during 1 s followed by a 1 s ramp from �50 mV to +50 mV.

The current was blocked by increasing concentration of AG525E1.

Their effect is represented by different grey levels. From the bottom to

the top trace, the concentrations used were 0.3, 1, 3, 5, 10, and 30 lM.

NML was used at a supra-maximal concentration as a reference.
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(Scheme 1).37 The Reissert compound was obtained by
the reaction of the corresponding isoquinoline with ben-
zoyl chloride in the presence of trimethylsilyl cyanide in
a good yield.38 This derivative was deprotonated by so-
dium hydride in DMF and the resulting Reissert anion
was alkylated by using a half equivalent of the appropri-
ate bis-electrophilic reagent.39 The alkylated Reissert
compound was hydrolysed to give the bis-isoquinoline
derivative (2). The bis-isoquinoline dissolved in DMF
with a mild heating was methylated by methyl iodide
to obtain the corresponding bis-isoquinolinium deriva-
tive (3).34 Finally, the mixture of bis-tetrahydroisoquin-
oline stereoisomers (4) was obtained by the reduction of
the bis-isoquinolinium analogue with an excess of so-
dium borohydride (Scheme 1).40 After biological screen-
ing at 10 lM, the three stereoisomers were separated by
semi-preparative chiral HPLC.41 AG525E1 was the first
eluted enantiomer and was subsequently isolated as a
dihydrochloride. In our binding conditions as previously
reported (see 25,34,42), NML and dequalinium (DQ+)
had an affinity (Ki) for the apamin-sensitive sites of
�1600 nM and �220 nM, respectively.30 The affinities
of the three stereoisomers were 293 ± 22 nM,
1422 ± 116 nM and 1885 ± 105 nM for the first eluted
(AG525E1), the meso form and the second eluted iso-
mer, respectively. The difference in affinity between the
two enantiomers (AG525E1: Ki = 293 ± 22 nM; second
enantiomer: Ki = 1885 ± 105 nM) indicates that the ste-
reochemistry is an important feature for interacting with
SK channels, while enantiomers of NML were previ-
ously found to be equipotent on apamin-sensitive sites.25

The absolute configuration of AG525E1 was determined
by X-ray crystallography after the crystallisation of the
dihydrochloride from MeCN.43 This experiment showed
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that it possesses a S,S configuration associated with a
dextrorotatory activity. The affinity of this enantiomer
(Ki = 293 nM) is similar to that of the reference charged
compound dequalinium (Ki = 221 nM) but clearly supe-
rior to that of laudanosine (Ki � 30 lM.24 As is the case
for quaternary compounds,34 the development of non-
quaternary bis-derivatives is highly favourable for the
interaction with SK channels. From laudanosine, an
approximately 100-fold increase in affinity is observed.
An extensive binding profile performed in another labo-
ratory on 65 receptors or channels and 7 enzymes at
10 lM confirms that the compound has a high affinity
for SK channels (61% inhibition of specific binding) ver-
sus other targets. AG525E1 has weaker affinity (% inhi-
bition of specific binding) for serotonin 5-HT1A (39%),
sigma2 (39%), histamine H3 (37%) and dopamine D2

receptors (31%) and the verapamil site of the L type cal-
cium channel (36%).

Whole-cell patch-clamp experiments in transfected cell
lines were used to confirm that the compound effectively
blocks SK currents (Fig. 1).44 AG525E1 completely
blocked SK1, SK2 and SK3 currents with IC50’s of
3.8 ± 0.8 lM (n = 13), 2.6 ± 0.3 lM (n = 13) and
3.0 ± 0.4 lM (n = 14), respectively.

The affinity for the apamin-sensitive binding sites of SK
channels depends on the presence of positive charges in
the structure,32 but, in order to develop compounds with
potential effect on CNS, the basic character of the mole-
cule is important in terms of bioavailability. Unlike
NML, dequalinium and UCL1684, the bis-tertiary amine
AG525E1 does not bear one or two permanent positive
charge(s). Therefore, physicochemical parameters such
as pKa and logP were determined using potentiometric
titration procedures on a Sirius� PCA200 apparatus.45

AG525E1 possesses two values of pKa, namely 9.3 and
8.1. Therefore, at physiological pH, this stereoisomer
has mostly (�83%) a positive charge on both nitrogens,
and a small fraction (�17%) is ionised just once whilst
the free base represents a minor proportion (<1%). The
lipophilicity of the compound was also measured by
potentiometric titration using the same equipment.45

The logP value is 2.90. More generally from a theoretical
point of view, the structure of AG525E1 is in accordance
with the classical Lipinski’s Rule of Five. Indeed, this ste-
reoisomer possesses six H bond acceptors and has a logP
which is smaller than 5. It has a molecular weight of�527
daltons and does not possess H bond donors.46 All these
parameters support the ability of the compound to reach
CNS targets after crossing the blood–brain barrier. Preli-
minary experiments in rats showed that, following ip
injection, the compound tends to increase motor activity
(data not shown) as previously reported for apamin.10

Of course, this effect is quite unspecific and the compound
will be better characterized in further pharmacological
and psychopharmacological experiments since the non-
selectivity for SK channel subtypes probably leads to a
global behaviour resulting from combined SK channel
subtype blockade.

In summary, a new scaffold of tertiary SK channel
blockers has been obtained from the structure of lauda-
nosine. We demonstrate the feasibility of targeting cen-
tral SK channels after the systemic administration of
non-quaternized compounds. Further efforts will be di-
rected towards the discovery of molecules with a higher
selectivity for SK channels versus other targets, on the
one hand, and subtype-specific blockers, on the other
hand. Although the search for high affinity ligands is fre-
quently a challenge in medicinal chemistry, medium
affinity blockers with a high reversibility, as shown in
patch-clamp experiments for NML,26 will be valuable
tools for electrophysiological exploration of SK channel
physiology.
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