The effect of Me₄NBr, Et₄NBr, Bu₄NBr, and (EtOH)₃EtNBr on the Temperature of Maximum Density of Water

Luis H. Blanco · Alexandra Torres

Received: 22 April 2008 / Accepted: 15 July 2008 / Published online: 21 October 2008 © Springer Science+Business Media, LLC 2008

Abstract The densities of aqueous solutions of Me₄NBr, Et₄NBr, Bu₄NBr, and Et(OH)₃EtNBr were measured in the concentration range 0.002 to 0.05 mol·kg⁻¹. The temperature of the determinations ranged from 275.15 to 279.15 K in 0.5 K steps, and the uncertainty of the densities was around $\pm 1 \times 10^{-6}$ g·cm⁻³. Eleven concentrations were used for each of the salts.

It was found that all the solutes follow Despretz' law. The absolute value of the Despretz's constants increases with increasing number of carbon atoms in the cation, except for $Et(OH)_3EtNBr$ which has the highest value. The ionic contributions to the Despretz's constants were calculated.

The volumetric data obtained allows the calculation proposed by Kalgud and Pokale. The effective ionic radii were calculated using a semi-empirical equation, as proposed previously by several workers. The nonlinearity of the plot of the ionic Despretz constants versus effective ionic radius is confirmed.

Keywords Water · Tetraalkylammonium salts · Maximum density

1 Introduction

The existence of a temperature of maximum density for water is one of the so-called "anomalies" that make the substance unique in nature [1, 2]. The effect of dissolved substances on this property has received attention since the nineteen century when the French physicist

L.H. Blanco (🖂) · A. Torres

Laboratorio de Investigaciones Básicas, Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia e-mail: lhblancoc@unal.edu.co

Present address: A. Torres Grupo de Biocalorimetría, Departamento de Biología - Química, Universidad de Pamplona, km 1 vía Bucaramanga-Pamplona, Pamplona, Colombia e-mail: datorres@unipamplona.edu.co

Despretz [3] studied it. Since then, there have been a number of studies by several workers, some of the more recent ones being from this laboratory [4, 5].

The experimental technique most frequently used for the measurements is dilatometry [4, 6]. In this work we made direct measurements of density as a function of temperature. For this purpose, a version of a magnetic float densimeter was built, following the design of Vargas and Blanco [7].

2 Experimental Section

A description of the technique and equipment has been reported elsewhere [5, 7].

Water was purified according to recommendations in the literature [8]. The conductivity of the purified water was always less than 4 μ S. The KCl used for calibration purposes was Merck analytical grade with purity 99.99%. It was dried at 373 K for 12 h and kept in a desiccator until used.

The symmetric tetraalkylammonium bromides used were obtained as follows: Me₄NBr, Merck, purity > 99%; Et₄NBr, ICN Pharmaceuticals Inc. purity > 98%; and Bu₄NBr, Sigma purity > 99%. They were further purified according to recommendations in the literature [9, 10]. The salts were crystallized from ethanol solutions. Full precipitation was achieved using diethyl ether. After this, they were kept under vacuum until used.

The salt (EtOH)₃EtNBr was prepared according to the method of Wen and Saito [10]. A mixture of triethanolamine in excess and ethylbromide was heated in anhydrous methanol under reflux for 24 h. The resulting salt was purified by repeated crystallizations from ethanol and ethanol + chloroform mixture; it was subsequently kept dry under vacuum.

All the bromides were analyzed after purification and before use for their halide content, by potentiometric titration with AgNO₃. The purities were better than 99.9% in all cases.

The solutions were prepared by weight using a Mettler AT 261 balance, which had a sensitivity of $\pm 1 \times 10^{-5}$ g between 0 and 50 g, and of $\pm 1 \times 10^{-4}$ g between 50 and 210 g. The concentration range was varied from 0.00200 to 0.05000 mol·kg⁻¹.

The densimeter was calibrated [7] using platinum rings and checked using solutions of known density [11]. This procedure is fully described by Torres [5]. The temperature was kept constant to within 0.001 K and densities were measured to $\pm 1 \times 10^{-6}$ g·cm⁻³ in the range of temperature from 275.15 to 279.15 K. Measurements were done at intervals of 0.5 K.

3 Results and Discussion

Tables 1 to 4 show the density data obtained for the four salts at the selected temperatures. The data were fitted by equations using the least-squares method, and from them the temperatures of maxima density were calculated.

According to the traditional treatment, Despretz's law is written as:

$$\Delta \theta_{\rm obs} = K_m m \tag{1}$$

where $\Delta_{obs} = \theta - \theta_w$. θ and θ_w are the temperatures of maximum density of the solution and of water, K_m is Despretz's constant and *m* the concentration of the solutions in molality units.

Temperature (K)	m (mol·kg ⁻	-1)									
	0.00200	0.00500	0.01000	0.01500	0.02000	0.02500	0.03000	0.03500	0.04000	0.04500	0.05000
	Density (g.c	:m ⁻³)									
279.0	1.000020	1.000150	1.000364	1.000566	1.000774	1.000980	1.001185	1.001391	1.001600	1.001803	1.002005
278.5	1.000040	1.000165	1.000374	1.000580	1.000787	1.000993	1.001200	1.001406	1.001611	1.001818	1.002022
278.0	1.000047	1.000172	1.000391	1.000591	1.000799	1.001006	1.001211	1.001416	1.001622	1.001827	1.002032
277.5	1.000057	1.000181	1.000388	1.000598	1.000807	1.001015	1.001222	1.001427	1.001634	1.001839	1.002044
277,0	1.000059	1.000186	1.000395	1.000605	1.000812	1.001022	1.001228	1.001435	1.001642	1.001848	1.002053
276.5	1.000058	1.000183	1.000393	1.000603	1.000810	1.001019	1.001230	1.001436	1.001642	1.001849	1.002055
276.0	1.000052	1.000178	1.000388	1.000598	1.000807	1.001016	1.001224	1.001430	1.001638	1.001846	1.002053
275.5	1.000042	1.000168	1.000378	1.000589	1.000800	1.001007	1.001219	1.001425	1.001637	1.001844	1.002051
275.0	1.000026	1.000152	1.000362	1.000572	1.000783	1.000992	1.001201	1.001416	1.001618	1.001825	1.002031

nd temperature	
concentration an	
nction of	
: as a fur	
Me4NB1	
of aqueous	
Density	
Table 1	

concentration and temperature
of
a function
ŝ
a
Br
.4
Щ
of aqueous
t,
Densi
2
Table

Temperature (K)	m (mol·kg ⁻	-1)									
	0.00200	0.00500	0.01000	0.01500	0.02000	0.02500	0.03000	0.03500	0.04000	0.04500	0.05000
	Density (g.	cm ⁻³)									
279.0	1.000020	1.000139	1.000333	1.000528	1.000725	1.000917	1.001110	1.001306	1.001496	1.001685	1.001880
278.5	1.000035	1.000152	1.000349	1.000540	1.000735	1.000933	1.001123	1.001316	1.001509	1.001697	1.001893
278.0	1.000040	1.000159	1.000353	1.000548	1.000744	1.000936	1.001132	1.001325	1.001517	1.001706	1.001903
277.5	1.000051	1.000168	1.000365	1.000561	1.000758	1.000952	1.001145	1.001340	1.001533	1.001726	1.001918
277.0	1.000056	1.000175	1.000372	1.000568	1.000763	1.000958	1.001154	1.001349	1.001543	1.001733	1.001929
276.5	1.000051	1.000169	1.000367	1.000564	1.000761	1.000958	1.001155	1.001350	1.001545	1.001734	1.001935
276.0	1.000046	1.000165	1.000363	1.000560	1.000757	1.000953	1.001151	1.001347	1.001541	1.001733	1.001931
275.5	1.000036	1.000155	1.000353	1.000551	1,000747	1.000944	1.001143	1.001339	1.001534	1.001725	1.001925
275.0	1.000018	1.000137	1.000335	1.000533	1.000731	1.000930	1.001128	1.001324	1.001522	1.001710	1.001908

Temperature (K)	m (mol·kg ⁻	-1)									
	0.00200	0.00500	0.01000	0.01500	0.01999	0.02499	0.03000	0.03500	0.04000	0.04500	0.05000
	Density (g.c	cm ⁻³)									
279.0	666666.0	1.000080	1.000213	1.000345	1.000477	1.000613	1.000745	1.000879	1.001016	1.001149	1.001282
278.5	1.000009	1.000090	1.000225	1.000360	1.000492	1.000626	1.000761	1.000898	1.001033	1.001167	1.001302
278.0	1.000017	1.000100	1.000233	1.000368	1.000502	1.000637	1.000774	1.000908	1.001045	1.001180	1.001316
277.5	1.000027	1.000108	1.000244	1.000379	1.000516	1.000655	1.000790	1.000925	1.001064	1.001197	1.001333
277.0	1.000031	1.000112	1.000249	1.000386	1.000522	1.000659	1.000795	1.000933	1.001071	1.001209	1.001344
276.5	1.000028	1.000111	1.000248	1.000386	1.000522	1.000660	1.000797	1.000934	1.001074	1.001211	1.001348
276.0	1.000024	1.000107	1.000244	1.000381	1.000520	1.000658	1.000796	1.000934	1.001073	1.001209	1.001350
275.5	1.000013	1.000096	1.000235	1.000376	1.000514	1.000654	1.000794	1.000935	1.001073	1.001209	1.001349
275.0	0.999994	1.000077	1.000217	1.000357	1.000495	1.000635	1.000775	1.000917	1.001057	1.001195	1.001336

concentration and temperature
of
a function
as
NBr
Bu4
aqueous
of
Density
Table 3

us $({\rm EtOH})_{3}{\rm EtNBr}$ as a function of concentration and temperature	
of aqueor	
Density	
Table 4	

Temperature (K)	m (mol·kg ⁻	-1)										
	0.00100	0.00200	0.00350	0.00476	0.00800	0.01000	0.01250	0.01500	0.01700	0.02000	0.02500	0.03000
	Density (g.	cm ⁻³)										
279.0	1.000031	1.000115	1.000239	1.000346	1.000622	1.000788	1.001003	1.001214	1.001387	1.001635	1.002054	1.002474
278.5	1.000039	1.000124	1.000252	1.000357	1.000631	1.000797	1.001009	1.001219	1.001387	1.001640	1.002054	1.002472
278.0	1.000044	1.000129	1.000259	1.000365	1.000638	1.000808	1.001017	1.001226	1.001394	1.001643	1.002064	1.002479
277.5	1.000057	1.000141	1.000270	1.000377	1.000654	1.000823	1.001033	1.001246	1.001411	1.001666	1.002091	1.002509
277.0	1.000061	1.000147	1.000275	1,000382	1.000658	1.000827	1.001039	1.001250	1.001421	1.001675	1.002098	1.002519
276.5	1.000058	1.000143	1.000271	1.000379	1.000655	1.000825	1.001038	1.001252	1.001418	1.001673	1.002096	1.002519
276.0	1.000053	1.000138	1.000266	1.000375	1.000651	1.000822	1.001035	1.001248	1.001416	1.001671	1.002095	1.002517
275.5	1.000044	1.000129	1.000259	1.000366	1.000645	1.000816	1.001028	1.001240	1.001413	1.001672	1.002097	1.002517
275.0	1.000026	1.000110	1.000238	1.000345	1.000624	1.000793	1.001008	1.001220	1.001390	1.001644	1.002071	1.002491

Table 5 Variation of

$\Delta \theta + 1.074 m^{3/2}$ (K) with	$m/\mathrm{mol}\cdot\mathrm{kg}^{-1}$	$\Delta\theta + 1.074m^{3/2} \text{ (K)}$
molality, m , for aqueous solutions of Et ₄ NBr	0.001999	-0.004
	0.005000	-0.016
	0.01000	-0.071
	0.01500	-0.135
	0.02000	-0.157
	0.02500	-0.236
	0.03000	-0.339
	0.03500	-0.383
	0.04000	-0.472
	0.04490	-0.453
	0.05000	-0.517
Table 6 Variation of $\Delta\theta + 1.074m^{3/2}$ (K) with	$m/\text{mol}\cdot\text{kg}^{-1}$	$\Delta\theta + 1.074m^{3/2} \text{ (K)}$
molality, m , for aqueous solutions of Me (NBr	0.002000	_0.054
solutions of Megrubi	0.005000	-0.050
	0.009999	0.000
	0.01500	-0.115
	0.02000	-0.184
	0.02500	-0.197
	0.03000	-0.285
	0.03500	-0.418
	0.04000	-0.373
	0.04500	-0.421
	0.05000	-0.467

Several modifications of the original equation have been proposed [12], including a work by Kaulgud and Pokale [13] that uses the equation proposed by Wakabayashi and Takaizumi [14]:

$$\Delta\theta + 1.074m^{3/2} = K_m m. \tag{2}$$

A plot of $\Delta \theta + 1.074m^{3/2}$ versus m should yield a straight line with a slope equal to Despretz's constant K_m . Blanco and Torres [4] found that the values of the constant differ little from those calculated using Eq. 1. Tables 5 to 8 and Figs. 1 to 4 show the variation of $\Delta \theta + 1.074m^{3/2}$ with molality for all of the systems studied, and Table 9 reports the calculated constants. These values obtained are compared with those of Wada and Miura [15] for the three salts that were studied in common. The values are quite similar in all cases. However, the agreement is not complete, probably due to the fact that Wada and Miura used higher concentrations in their work.

To calculate the ionic contributions to the constant, and following earlier workers such as Wakabayashi and Takaizumi [14], we took a value of $K_m = 6.6 \text{ K} \cdot \text{mol}^{-1}$ for the Br⁻ ion from the report of Kaulgud and Pokale [13]. The calculated values are shown in Table 10.

Kaulgud and Pokale [13], following the method proposed by Leyendekkers in a series of papers [16–21], used values of the "real" radii of ions in aqueous solutions at 298.15 K.

Table 7 Variation of $\Delta \theta + 1.074m^{3/2}$ (K) with	$m/\text{mol}\cdot\text{kg}^{-1}$	$\Delta\theta + 1.074m^{3/2} \text{ (K)}$
molality, m , for aqueous solutions of Bu ₄ NBr	0.002000	-0.002
	0.005000	-0.037
	0.01000	-0.126
	0.01500	-0.247
	0.01999	-0.320
	0.02499	-0.407
	0.03000	-0.508
	0.03500	-0.654
	0.04000	-0.696
	0.04500	-0.720
	0.05000	-0.852
Table 8 Variation of $\Delta \theta + 1.074m^{3/2}$ (K) with	m/mol·kg ⁻¹	$\Delta\theta + 1.074m^{3/2} \text{ (K)}$
$\Delta \theta + 1.074 m^{5/2}$ (K) with molality. <i>m</i> . for aqueous	<i>m</i> /morkg	$\Delta b + 1.074m^{-1}$ (K)
solutions of (EtOH)3EtNBr	0.001000	-0.006
	0.002000	-0.018
	0.003500	-0.052
	0.004762	-0.068
	0.008000	-0.139
	0.009999	-0.185
	0.01250	-0.239
	0.01500	-0.266
	0.01700	-0.308
	0.02000	-0.410
	0.02500	-0.541
	0.03000	-0.558

These radii are larger than the corresponding Pauling's radii by an amount Δ . According to Kaulgud and Pokale [13], the radii are larger that the Pauling ionic radii (*r*) by an amount Δ that is defined by the positional correlation of the ion and the adjacent water molecules.

Using the measured densities at 277.15 K we calculated the limiting partial molar ionic volumes using Conway's method [22]. A plot of the partial molar volumes at infinite dilution $\overline{V^{\circ}}$ versus molar mass allows the calculation of $\overline{V^{\circ}}$ for the anion. Then, using the additivity principle, $\overline{V^{\circ}}$ is obtained for each cation. From these values it is possible to obtain the effective radii for the cations. Several workers [23–31] have used the semi-empirical equation:

$$V_{\rm ion}^{\rm o} = 2.5(r+\Delta)^3 \tag{3}$$

that we also used here to get the values reported in Table 11. In reference [13], a plot of $K_{m(\text{ion})}$ versus $(r + \Delta)$ is presented. It was found that the values for the tetraalkylammonium cations deviate from a linear tendency as shown in Fig. 5. The deviations were attributed partially to the fact that no values for the volumes at 277.15 K were known at the time, even though they expected there to be a small correction. According to our results, when using

Fig. 1 Plot of $\Delta \theta + 1.074m^{3/2}$ against molality (m/mol·kg⁻¹) for aqueous solutions of Me₄NBr

Fig. 2 Plot of $\Delta \theta + 1.074m^{3/2}$ against molality (*m*/mol·kg⁻¹) for aqueous solutions of Et₄NBr

values of volumes determined at temperatures in the neighborhood of the temperature of maximum density, the tetraalkylammonium cations still deviate from a straight line.

In Fig. 5 the filled triangles represent the experimental results reported in Ref. [13] and the open ones are the results of this work. There is a small difference as had been predicted

Fig. 3 Plot of $\Delta \theta + 1.074m^{3/2}$ against molality (m/mol·kg⁻¹) for aqueous solutions of Bu₄NBr

Fig. 4 Plot of $\Delta \theta + 1.074m^{3/2}$ against molality (m/mol·kg⁻¹) for aqueous solutions of (EtOH)₃EtNBr

earlier [4, 13]. In Ref. [13], density data at 298.15 K were used because at that time data were not available at lower temperatures. We used our data in the vicinity of 277.15 K and thus, the values of the calculated radii are slightly lower that those reported earlier. As we had pointed out before [4], the simplest prediction of the effect of the tetraalkylammonium

^a Calculated using Eq. 1 ^b Calculated using Eq. 2 ^c From [15] Table 10 Despretz constants $K_m (K \cdot mol^{-1} \cdot kg)$ for individual ions Table 11 Effective ionic radii of alkylammonium cations ^a This work ^b From [13] Fig. 5 Variation of the Despretz constant K_m with the effective ionic radii $r + \Delta$) (nm) ^a $(r + \Delta)$ (nm) ^a $(r + \Delta)$ (nm) ^a $me_4 N^+$ 0.305 0.3194 0.3366 $me_4 N^+$ 0.369 0.3816 0.3956 $me_4 N^+$ 0.468 0.4722 0.4843 Fig. 5 Variation of the Despretz constant K_m with the effective ionic radii $r + \Delta$) Symbols: (a) Experimental values from Kaulgud and Pokate [13]; (b) this work $me_4 N^+$ 0.205 0.3194 0.3366 $me_4 N^+$ 0.468 0.4722 0.4843 $me_4 N^+$ 0.468 0.4720 0.4843	Table 9Despretz constants $(K \cdot mol^{-1} \cdot kg)$		Me ₄ NBr	Et ₄ NBr	Bu ₄ NBr	(EtOH) ₃ EtNBr
$ \begin{array}{c} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	^a Calculated using Eq. 1	$K_m^{\mathbf{a}}$	-10.10	-11.47	-17.93	-20.48
Calculated using Eq. 2 c From [15] Table 10 Despretz constants K_m (K-mol ⁻¹ ·kg) for individual ions Table 11 Effective ionic radii of alkylammonium cations This work ^b From [13] Fig. 5 Variation of the Despretz constant K_m with the effective ionic radii $(r + \Delta)$, Symbols: (\square), tetraalkyl ammonium salts calculated according to their size, (Δ) Experimental values from Kaulgud and Pokate [13]; (Δ) this work ^c $= 0$, $= 0$	^b Coloulated using Eq. 2	$K_m^{\mathbf{b}}$	-9.86	-11.23	-17.69	-20.30
Table 10 Despretz constants K_m (K-mol ⁻¹ -kg) for individual ions Table 11 Effective ionic radii of alkylammonium cations Table 11 Effective ionic radii of alkylammonium salts calculated according to their size, (A) Experimental values from Kaulgud and Pokate [13]; (A) this work Table 11 Effective ionic radii of f_{0} f_{0}	^c From [15]	K_m^{c}	-9.9	-11.0	-15.9	-
ions $\frac{K_m -4.85 -3.48 -11.31 -13.86}{K_m -4.85 -3.48 -11.31 -13.86}$ $\frac{K_m -4.85 -3.48 -11.31 -13.86}{K_m + 4.85 -3.48 -11.31 -13.86}$ $\frac{K_m -4.85 -3.48 -11.31 -13.86}{(r + \Delta) (nm)^4 (r + \Delta) (nm)^4}$ $\frac{K_m + 4.85 -3.48 -11.31 -13.86}{(r + \Delta) (nm)^4 (r + \Delta) (nm)^4}$ $\frac{K_m + 4.85 -3.48 -11.31 -13.86}{(r + \Delta) (nm)^4 (r + \Delta) (nm)^4}$ $\frac{K_m + 4.85 -3.48 -11.31 -13.86}{(r + \Delta) (nm)^4 (r + \Delta) (nm)^4}$ $\frac{K_m + 4.85 -3.48 -11.31 -13.86}{(r + \Delta) (nm)^4 (r + \Delta) (nm)^4}$ $\frac{K_m + 4.85 -3.48 -11.31 -13.86}{(r + \Delta) (nm)^4 (r + \Delta) (nm)^4}$ $\frac{K_m + 4.85 -3.48 -11.31 -13.86}{(r + \Delta) (nm)^4 (r + \Delta) (nm)^4}$ $\frac{K_m + 4.85 -3.48 -11.31 -13.86}{(r + \Delta) (nm)^4 (r + \Delta) (nm)^4}$ $\frac{K_m + 4.85 -3.48 -11.31 -13.86}{(r + \Delta) (nm)^4}$ $K_m + 4.85 -3.48 -11.31 -13.48 -13.$	Table 10 Despretz constants K_m (K·mol ⁻¹ ·kg) for individual	Ion	Et ₄ N ⁺	Me ₄ N ⁺	Bu ₄ N ⁺	(EtOH) ₃ EtN ⁺
Table 11 Effective ionic radii of alkylammonium cations a This work b From [13] Fig. 5 Variation of the Despretz constant K_m with the effective ionic radii $(r + \Delta)$. Symbols: (\bigcirc) cations; (\bigcirc), anions; (\bigcirc), tetraalkyl ammonium salts calculated according to their size, (\triangle) Experimental values from Kaulgud and Pokate [13]; (\triangle) this work (\triangle) this work	ions	K _m	-4.85	-3.48	-11.31	-13.86
^a This work ^b From [13] Fig. 5 Variation of the Despretz constant K_m with the effective ionic radii $(r + \Delta)$. Symbols: (D), tetraalkyl ammonium salts calculated according to their size, (Δ) Experimental values from Kaulgud and Pokate [13]; (Δ) this work Solution Given and Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solu	Table 11 Effective ionic radii of alkylammonium cations	Ion	<i>r</i> Pauling	(nm)	$(r + \Delta) (\mathrm{nm})^{\mathrm{a}}$	$(r + \Delta) (\mathrm{nm})^{\mathrm{b}}$
^a This work ^b From [13] Fig. 5 Variation of the Despretz constant K_m with the effective ionic radii $(r + \Delta)$. Symbols: (C), tetraalkyl ammonium salts calculated according to their size, (Δ) Experimental values from Kaulgud and Pokate [13]; (Δ) this work ^{Top} $\frac{1}{2}$ $\frac{1}$		Me ₄ N ⁺	0.305		0.3194	0.3366
Find that $b_{\text{From [13]}}$ Fig. 5 Variation of the Despretz constant K_m with the effective ionic radii $(r + \Delta)$. Symbols: (\bigcirc , \bigcirc) cations; (\bigcirc), anions; (\bigcirc , \bigcirc) cations; (\bigcirc), anions; (\bigcirc , \bigcirc) cations; (\bigcirc), anions; (\bigcirc , \bigcirc) catalkyl ammonium salts calculated according to their size, (\triangle) Experimental values from Kaulgud and Pokate [13]; (\triangle) this work F ⁻⁰ CI $\stackrel{Na^+}{}$ $\stackrel{K^+}{}$ $\stackrel{Me_4N^+}{}$ $\stackrel{Me_4N^+}{}$ $\stackrel{E_4N^+}{}$ $\stackrel{A}{}$ $\stackrel{Pr_4N^+}{}$ $\stackrel{Bu_4N^+}{}$ $\stackrel{Clo_4^-}{}$ $\stackrel{SO_4^{2^-}}{}$ $\stackrel{NO_3^{2^-}}{}$ $\stackrel{Me_4N^+}{}$ $\stackrel{E_4N^+}{}$ $\stackrel{E_4N^+}$	^a This work	$\mathrm{Et}_4\mathrm{N}^+$	0.369		0.3816	0.3956
Fig. 5 Variation of the Despretz constant K_m with the effective ionic radii $(r + \Delta)$. Symbols: ((), betraalkyl anmonium salts calculated according to their size, (() Experimental values from Kaulgud and Pokate [13]; ((Δ) this work	bErom [12]	Bu_4N^+	0.468		0.4722	0.4843
	constant n_m with the electron of the elect	0 -5 -10 -15 -15 -20 ₩ -25 -30 -35	H*• F- 0	L [†] Na ⁺ K ⁺ C [†] Br 0 NO ₃ ClO ₄ SO ₄ ²	H_4^+ Me_4N^+ Cs^+ Me_4N^+ Et_4N^+ Pr_4I	$^{1}N^{+}$ $^{1}Pr_{4}N^{+}$ ^{1}D
U I Z J 4 J O		-40		2	3 1	5 6
		,	U I	2	ل 4 (۳±۸) ۸	5 6

cations on the TMD is that they should increase its value, because the cations are supposed to be water structure makers. In fact this does not happen: as shown in this work, among others, and $\Delta\theta$ is negative in all cases. Some authors, for instance Darnell and Greyson [12], propose that at lower temperatures near the TMD the structural effect is the opposite. That is, it changes sign. This is not in agreement with experimental observations [13]. Earlier reports in the literature [4, 13] show that the change in sign does not happen. This work shows clearly that the values of the calculated radii support the conclusion that the tetrabutylammonium cations enhance the water structure at temperatures in the neighborhood of the TMD.

Acknowledgements We thank the Universidad Nacional de Colombia, Fundación para la Promoción de la Investigación y la Tecnología del Banco de la República and the Universidad de Pamplona for financial support.

References

- 1. Franks, F.: Water: A Comprehensive Treatise, vol. II and IV. Plenum, New York (1978)
- 2. www.lsbu.ac.uk/water/index2.html
- Despretz, M.-C.: Recherches sur le maximum de densité de l'eau et des dissolitions aqueoses. Ann. Chem. Phys. 70, 49–81 (1839)
- Blanco, L.-H., Torres, A.: Determination of Despretz constants of some salts and ions. Phys. Chem. Liq. 36, 187–197 (1998). doi:10.1080/00319109808030609
- Torres, A.: Ph.D. Thesis. Facultad de Ciencias, Departamento de Química, Universidad Nacional de Colombia, Bogotá D.C. (2002)
- Wada, G., Umeda, S.: Effects of nonelectrolytes on the temperature of the maximum density of water. I. Alcohols. Bull. Chem. Soc. Jpn. 35, 646–652 (1962). doi:10.1246/bcsj.35.646
- Blanco, L.-H., Vargas, E.-F.: An improved magnetic float densimeter. Instrum. Sci. Technol. 32, 13–20 (2004). doi:10.1081/CI-120027343
- 8. Riddik, J.-A., Bunger, W.-B.: Techniques of Chemistry, vol. II, 3rd edn. Wiley, New York (1970)
- Conway, B.-E., Verrall, R.-E., Desnoyers, J.-E.: Partial molal volumes of tetraalkylammonium halides and assignment of individual ionic contributions. Trans. Faraday Soc. 62, 2738–2750 (1966). doi:10. 1039/tf9666202738
- Wen, W.-Y., Saito, S.: Activity coefficients and molal volumes of two tetraethanolammonium halides in aqueous solutions at 25°C. J. Phys. Chem. 69, 3569–3574 (1965). doi:10.1021/j100894a053
- Smith, H.-T.: Solute-water interactions in dilute solutions by precision density measurements. Ph.D. Thesis. Bradford University (1967)
- Darnell, A.-J., Greyson, J.: The effect of structure-making and -breaking solutes on the temperature of maximum density of water. J. Phys. Chem. 72, 3021–3025 (1968). doi:10.1021/j100854a060
- Kaulgud, M.-V., Pokale, W.-K.: Measurement of the temperature of maximum density of aqueous solutions of some salts and acids. J. Chem. Soc., Faraday Trans. 91, 999–1004 (1995). doi:10.1039/ ft9959100999
- Wakabayashi, T., Takaizumi, K.: Despretz constants for individual ions. Bull. Chem. Soc. Jpn. 55, 3073– 3078 (1982). doi:10.1246/bcsj.55.3073
- Wada, G., Miura, M.: The effects of tetraalkylammonium salts on the structure and the temperature of the maximum density of water. Bull. Chem. Soc. Jpn. 42, 2498–2502 (1969). doi:10.1246/bcsj.42.2498
- Leyendekkers, J.-V.: The Tammann-Tait-Gibson model. J. Chem. Soc., Faraday Trans. I 76, 1206–1218 (1980). doi:10.1039/f19807601206
- Leyendekkers, J.-V.: Volumes of aqueous electrolyte solutions and the Tammann-Tait-Gibson model. J. Chem. Soc., Faraday Trans. I 77, 1529–1542 (1981). doi:10.1039/f19817701529
- Leyendekkers, J.-V.: Ionic contributions to partial molal volumes in aqueous solutions. J. Chem. Soc., Faraday Trans. I 78, 357–375 (1982). doi:10.1039/f19827800357
- Leyendekkers, J.-V.: Ion-water geometry and the Tammann-Tait-Gibson effective pressure and radius. J. Chem. Soc., Faraday Trans. I 78, 3383–3392 (1982). doi:10.1039/f19827803383
- Leyendekkers, J.-V.: Structure of aqueous electrolyte solutions. Thermodynamic internal pressure. J. Chem. Soc., Faraday Trans. 179, 1109–1121 (1983). doi:10.1039/f19837901109
- Leyendekkers, J.-V.: Structure of aqueous electrolyte solutions. Ionic internal pressures and proton chemical shifts. J. Chem. Soc., Faraday Trans. I 79, 1123–1134 (1983). doi:10.1039/f19837901123
- Conway, B.-E., Laliberté, L.-H.: H₂O-D₂O solvent isotope effects in the volume and expansivity behaviour of some organic and inorganic ions. Trans. Faraday Soc. 1, 3032–3048 (1970). doi:10.1039/ tf9706603032
- Lamb, A.-B., Lee, R.-E.: The densities of certain dilute aqueous solutions by a new and precise method. J. Am. Chem. Soc. 35, 1666–1693 (1913). doi:10.1021/ja02200a003
- Panckhurst, M.-H.: Determination and interpretation of absolute partial molal ionic volumes. Rev. Pure Appl. Chem. 19, 45–60 (1969)

- Hepler, L.-G.: Partial molal volumes of aqueous ions. J. Phys. Chem. 61, 1426–1429 (1957). doi:10. 1021/j150556a039
- Mukerjee, P.: On ion-solvent interactions. Part I. Partial molal volumes of ions in aqueous solution. J. Phys. Chem. 65, 740–744 (1961). doi:10.1021/j100823a009
- Stokes, R.-H., Robinson, R.-A.: The application of volume fraction statistics to the calculation of activities of hydrated electrolytes. Trans. Faraday Soc. 53, 301–305 (1957). doi:10.1039/tf9575300301
- Glueckauf, E.: Molar volumes of ions. Trans. Faraday Soc. 61, 914–922 (1965). doi:10.1039/ tf9656100914
- Noyes, R.-M.: Assignment of individual ionic contributions to properties of aqueous ions. J. Am. Chem. Soc. 86, 971–979 (1964). doi:10.1021/ja01060a001
- Millero, F.-J.: Partial molal volume of ions in various solvents. J. Phys. Chem. 73, 2417–2420 (1969). doi:10.1021/j100727a056
- Conway, B.-E., Verrall, R.-E., Desnoyers, J.-E.: Specificity in ionic hydration and the evaluation of individual ionic properties. Z. Phys. Chem. 230, 157–178 (1965)