# Tin-119 Mössbauer and X-Ray Crystallographic Evidence for Differences in the Co-ordination of Tin in Oxalatostannates(II) and Malonatostannates(II) †

Zai Arifin and Edward J. Filmore

Department of Chemistry, Chelsea College, Manresa Road, London SW3 6LX John D. Donaldson and Susan M. Grimes \* Department of Chemistry, The City University, Northampton Square, London EC1V 0HB

The Mössbauer parameters for the series of oxalatostannates(II)  $M_2Sn(C_2O_4)_2 \cdot xH_2O$  are rationalised in terms of distorted square-pyramidal tin environments. The crystal structure of the malonato-complex  $K_2Sn_2[CH_2(CO_2)_2]_3 \cdot H_2O$  is reported : monoclinic, space group  $P2_1/n$ , with a = 11.233(2), b = 18.776(2), c = 8.171(1) Å,  $\beta = 90.15(1)^\circ$ , and Z = 4; R = 0.0277 for 5 805 reflections. Unlike the oxalate groups in the oxalato-complexes, the malonate moieties are bridging rather than chelating and the tin atoms are in trigonal rather than distorted four-pyramidal environments. Mössbauer data are reported for the malonate series of compounds  $M_2Sn_2[CH_2(CO_2)_2]_3 \cdot xH_2O$  (M = NH<sub>4</sub>, K, Na, Rb, or Cs; x = 0, 1, or 3) and the data for the potassium salt are shown to be consistent with the crystal structure.

The crystal structures of only five carboxylatostannate(II) complexes are known. The structures determined to date can be described as one of two types viz. (i) monocarboxylatocomplexes with unidentate ligands and (ii) dicarboxylatocomplexes with bidentate ligands. The monocarboxylato-KSn(O<sub>2</sub>CH)<sub>3</sub>,<sup>1</sup> complexes KSn(O<sub>2</sub>CCH<sub>2</sub>Cl)<sub>3</sub><sup>2</sup> Ca[Sn- $(O_2CMe)_3]_2$ ,<sup>3</sup> and  $Sr[Sn(O_2CCH_2Cl)_3]_2$ <sup>4</sup> have tin atoms surrounded by trigonal-pyramidal arrangements of nearestneighbour oxygen atoms with short Sn-O bonds to three unidentate ligands. Distorted octahedral environments for the tin atoms are completed by three long tin-to-oxygen distances. This is the most common environment found for tin in tin(II) compounds and the longer  $Sn \cdots O$  contacts arise because close approach of oxygen atoms to the tin in these directions is prevented by the presence of sterically active non-bonding electron pairs.<sup>5</sup> The complexes Na<sub>2</sub>Sn(C<sub>2</sub>O<sub>4</sub>)<sub>2</sub><sup>6</sup> and K<sub>2</sub>Sn- $(C_2O_4)_2$ ·H<sub>2</sub>O<sup>7</sup> contain bidentate oxalato-groups and have tin atoms in distorted four-pyramidal sites with two shorter and two longer Sn-O bonds. The series of complexes formed between tin(II) and the potentially bidentate malonate groups, however, cannot belong to either of the two known types because the complexes have the compositions M2Sn2[CH2- $(CO_2)_2]_3 \cdot xH_2O$  (M = NH<sub>4</sub>, K, Na, Rb, or Cs).

We now report the crystal structure determination of dipotassium trimalonatodistannate(II) monohydrate and discuss the thermal analytical data and <sup>119</sup>Sn Mössbauer parameters of the complex tin(II) malonates and oxalates in the light of the structural information available on them.

### Experimental

**Preparations**—Tin(II) malonate. Blue-black tin(II) oxide (13.4 g, 0.1 mol) was added to an aqueous solution of malonic acid (40% w/v; 50 cm<sup>3</sup>, 0.2 mol) and the mixture heated under reflux, in an oxygen-free atmosphere, until the oxide had completely dissolved. The cloudy solution was filtered hot and the clear filtrate allowed to cool slowly to room temperature. The white crystalline product was filtered off, washed with acetone and diethyl ether, and dried *in vacuo* over KOH pellets. Malonato-complexes  $M_2Sn_2[CH_2(CO_2)_2]_3 \cdot xH_2O$ . Tin(II) malonate (2.2 g, 10 mmol) was added to a solution of malonic acid (3.1 g, 30 mmol) in distilled water (25 cm<sup>3</sup>) and the mixture heated under reflux until all the tin(II) malonate had dissolved. To this solution was added the appropriate alkalimetal or ammonium carbonate (10 mmol). The resulting mixture was filtered and colourless crystals were obtained when the solution was kept for several days. The crystals were filtered off, washed with acetone and diethyl ether, and dried *in vacuo* over KOH pellets. Analytical data are in Table 1.

Oxalato-complexes  $M_2Sn(C_2O_4)_2 \cdot H_2O$ . The ammonium, sodium, and potassium derivatives of tin(II) oxalate were prepared by the literature method.<sup>8</sup> The crystalline products analysed as  $M_2Sn(C_2O_4)_2 \cdot H_2O$  (M = NH<sub>4</sub> or K) and  $M_2Sn-(C_2O_4)_2$  (M = Na). To prepare the rubidium and caesium derivatives, the metal carbonate (40 mmol) was dissolved in a solution of oxalic acid (5.4 g, 60 mmol) in water (25 cm<sup>3</sup>). Tin(II) oxalate (4.1 g, 20 mmol) was then added and the mixture heated until the oxalate had dissolved completely. The volume of the solution was then reduced and the products crystallised out on cooling the solution. These products also analysed as  $M_2Sn(C_2O_4)_2 \cdot H_2O$  (M = Rb or Cs).

Thermal Analysis.—The thermal analyses of the complex tin(II) malonates and oxalates from ambient temperatures to 400 °C were obtained using a Stanton Redcroft ST760 analyser with a heating rate of 3 °C min<sup>-1</sup>. The tin(II) derivatives of the dicarboxylic acids were also decomposed *in vacuo* and the gaseous and solid products collected for identification by i.r. spectroscopy and X-ray powder diffraction respectively. The presence of carbon in the residue was shown by heating it in a stream of oxygen and analysing the outflowing stream by i.r. spectroscopy for CO<sub>2</sub>. The only identifiable condensate in the cold-trap was water.

Tin-119 Mössbauer Spectra.—The spectra of all materials were recorded at liquid-nitrogen temperature using a barium stannate source. The Mössbauer equipment has been described previously.<sup>9</sup>

Crystal Data.—C<sub>9</sub>H<sub>6</sub>K<sub>2</sub>O<sub>12</sub>Sn<sub>2</sub>·H<sub>2</sub>O, M = 639.7, monoclinic, a = 11.233(2), b = 18.776(2), c = 8.171(1) Å,  $\beta = 90.15(1)^\circ$ , U = 1.723.4 Å<sup>3</sup>,  $D_m = 2.38$  g cm<sup>-3</sup>, Z = 4,  $D_c = 2.46$  g cm<sup>-3</sup>, F(000) = 1.216, space group  $P2_1/n$  ( $P2_1/c$ , no. 14), from systematic absences 0k0 for k = 2n + 1, h0l for h + l = 2n + 1 (Mo-K<sub>a</sub> radiation:  $\lambda = 0.710$  7 Å,  $\mu = 31.92$  cm<sup>-1</sup>).

<sup>†</sup> Supplementary data available (No. SUP 23957, 36 pp.): thermal parameters, H-atom co-ordinates, structure factors. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1984, Issue 1, pp. xvii—xix.

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              | м                                  |                   | Formu                                            | Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | Analyses (%)           |              |                                       |                                                                 |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------|-------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|--------------|---------------------------------------|-----------------------------------------------------------------|--------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                                    | A                 | 1 Office                                         | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | С                  | Н                      |              | M                                     | Sn                                                              |              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              | NH₄                                | 0                 | C₀H₁₄N₂O                                         | $_{12}Sn_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.6 (18.          | 6) 2.5 (               | 2.4)         | 5.0 (4.8) *                           | 40.9 (4                                                         | 1.0)         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              | Na                                 | 3                 | $C_9H_{12}Na_2$                                  | O <sub>15</sub> Sn <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.0 (16.          | 8) 1.7 (               | 1.9)         | 7.0 (7.1)                             | 36.8 (3                                                         | 6.9)         |
| $ \begin{array}{c} k_0 & 3 \\ C_8 & 3 \\ C_4H_1C_8, Rb_5 n_1 & 12.1 (12.1) \\ C_4H_1C_8, Rb_5 n_1 & 12.5 (12.5) \\ 1.4 (1.4) & 30.7 (30.8) \\ 27.6 (27.5) \\ \hline \end{tabular} \label{eq:star} \end{tabular} \\ \end{tabular} \label{eq:star} \end{tabular} \label{eq:star} \end{tabular} \label{eq:star} \end{tabular} \end{tabular} \label{eq:star} \end{tabular} \label{eq:star} \end{tabular} $                                                                                                                                                                                                                                                                                           |                                              | K                                  | 1                 | $C_9H_8K_2O_1$                                   | $_3Sn_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.1 (16.          | 9) 1.2 (               | 1.3) 1       | 2.1 (12.2)                            | 37.1 (3                                                         | 7.1)         |
| * Values for N.<br>* Values for N.<br>Table 2. Fractional atomic co-ordinates for $K_s Sn_2[CH_4(CO_2)_2]_1 H_2O$<br>Atom $X/a$ $Y/b$ $Z/c$ Atom $X/a$ $Y/b$ $Z/c$ (bower for $X_s Sn_2[CH_4(CO_2)_2]_1 H_2O$<br>Atom $X/a$ $Y/b$ $Z/c$ (bower for $X_s Sn_2(CH_4(CO_2)_2)_1 H_2O$<br>Atom $X/a$ $Y/b$ $Z/c$ (bower for $X_s Sn_2(CH_4(CO_2)_2)_2 H_2O$<br>(b) $Sn(2)$ 0.570 3(1) 0.366 4(1) - 0.613 5(1) O(10) -0.166 1(2) 0.326 5(1) -0.341 5(3) (10) 0.246 2(2) 0.256 5(1) -0.341 5(3) (10) 0.216 2(2) 0.256 5(1) -0.341 5(3) (10) 0.216 2(2) 0.0380 4(4) (10) 0.101 2(2) 0.105 2(4) (10) 0.021 4(2) -0.434 7(11) (10) 0.122 0(2) 0.035 4(1) -0.275 1(4) (10) 0(12) 0.192 9(3) 0.005 3(2) -0.380 4(4) (10) 0(3) 0.015 2(3) 0.075 6(2) 0.507 3(2) -0.704 4(5) (22) 0.078 2(3) 0.075 5(2) -0.640 0(3) (10) 0.035 2(3) 0.179 8(2) -0.356 4(3) (23) 0.005 2(3) 0.277 5(2) -0.073 5(3) (10) -0.058 2(3) 0.005 2(3) 0.277 5(2) -0.073 5(3) (10) -0.018 0(2) 0.390 6(2) 0.352 8(3) (24) -0.058 8(3) 0.057 4(2) -0.719 7(4) (10) 0.008 9(3) 0.015 4(7) -0.718 9(5) (10) -0.110 7(2) 0.089 6(1) -0.150 0(4) (C(5) 0.281 8(3) 0.014 7(1) -0.718 9(5) (10) 0(6) 0.574 4(2) -0.448 8(3) (C(6) 0.0157 1(2) -0.648 4(3) (10) -0.648 4(3) (10) -0.648 4(3) (10) -0.648 4(3) (10) -0.648 4(3) (10) -0.648 4(3) (10) -0.648 4(3) (10) -0.648 4(3) (10) -0.648 4(3) (10) -0.648 4(3) (10) -0.648 4(3) (10) -0.648 4(3) (10) -0.648 4(3) (10) -0.648 4(3) (10) -0.648 4(3) (10) -0.648 4(3) (10) -0.648 4(3) (10) -0.648 4(3) (10) -0.648 4(3) (10) -0.648 4(3) (10) -0.648 4(3) (10) -0.668 4(3) (10) -0.668 4(3) (10) -0.668 4(3) (10) -0.671 2.176(6) Sn(1)-0(1) 2.240(8) Sn(2)-0(3) 2.240(8) Sn(2)-0(4) 2.2776(6) (10) 2.240(8) Sn(2)-0(6) 73.22 (0) (10) Sn(1)-0(7) 2.177(6) Sn(1)-0(1) 2.240(8) Sn(2)-0(6) 73.22 (10) Sn(1)-0(1) 2.240(9) Sn(2)-0(6) 73.22 (10) Sn(1)-0(1) 2.28(6) O(5)-C(7) 1.28(1) O(3)-C(6) -(13) 1.360(9) C(9)-C(1) 1.226(5) (10) -0(7) -C(6) 1.231(3) C(6)-C(5) 1.504(4) C(8)-0(1) 1.226(5) (10) -0(7) -C(6) 1.231(3) C(6)-C(5) 1.504(6) C(9)-C(1) 1.226(5) (10) -0(7) -C(6) 1.231(3) C(6)-C(7) -C(5) 116.48 (3) Sn(1)-0(7)-C(                                                                                                                                                                                                                                                                                                        |                                              | Kb<br>Ca                           | 3                 | $C_9H_{12}O_{15}R$                               | lb <sub>2</sub> Sn <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.1 (14.          | 1) 1.4 (               | 1.6) 2       | 2.0 (22.2)                            | 30.7 (3                                                         | 0.9)         |
| Table 3. Bond lengths (Å) and angles (°), with estimated standard deviations in parentheses, for K <sub>2</sub> Sn <sub>1</sub> [CH <sub>4</sub> (CO <sub>2</sub> ) <sub>2</sub> ] <sub>2</sub> ·H <sub>2</sub> O<br>(a) Trable 3. Bond lengths (Å) and angles (°), with estimated standard deviations in parentheses, for K <sub>2</sub> Sn <sub>2</sub> [CO <sub>4</sub> (2O <sub>2</sub> ) <sub>2</sub> ] <sub>2</sub> ·H <sub>2</sub> O<br>(a) Trable 3. Bond lengths (Å) and angles (°), with estimated standard deviations in parentheses, for K <sub>2</sub> Sn <sub>2</sub> (CO <sub>4</sub> ) 2.872(0)<br>Sn(1) -O(4) 2.177(2) Sn(1)-O(1A) 2.945(1) Sn(2)-O(3) 2.161(2) Sn(2)-O(4A) 2.877(0)<br>(a) Constraint on<br>Sn(1)-O(7) 2.177(6) Sn(1)-O(1A) 2.945(1) Sn(2)-O(3) 2.161(2) Sn(2)-O(6) 73.23<br>(b) Malonate group co-ordination<br>O(1) Sn(1)-O(4) 8.3.69<br>O(1) Sn(1)-O(4) 8.3.69<br>O(1) Sn(1)-O(4) 1.283(2) C(3)-O(6) 1.282(9) C(6)-C(5) 1.504(4) C(8)-O(11) 1.226(5)<br>O(1) C(1) 2.198(8) Sn(1)-O(1A) 2.945(1) Sn(2)-O(3) 2.161(2) Sn(2)-O(1A) 2.877(0)<br>Sn(1)-O(1) 2.197(8) Sn(1)-O(1A) 2.945(1) Sn(2)-O(3) 2.161(2) Sn(2)-O(1A) 2.877(0)<br>Sn(1)-O(1) 2.197(8) Sn(1)-O(1A) 2.945(1) Sn(2)-O(3) 2.161(2) Sn(2)-O(1A) 2.877(0)<br>Sn(1)-O(1) 2.197(8) Sn(1)-O(1A) 2.945(1) Sn(2)-O(3) 2.161(2) Sn(2)-O(A) 2.877(0)<br>Sn(1)-O(4) 2.177(2) Sn(1)-O(1A) 2.945(1) Sn(2)-O(3) 2.161(2) Sn(2)-O(A) 2.877(0)<br>Sn(1)-O(7) 2.177(6) Sn(1)-O(7) 4.407 O(3)-C(6) 1.231(3) C(8)-C(2) 1.234(3) C(6)-C(2) 1.234(3) C(6)-C                                                                             | * Values for N                               | Cs                                 | 3                 | C <sub>9</sub> H <sub>12</sub> CS <sub>2</sub> C | V <sub>15</sub> SN <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.5 (12.          | 5) 1.4 (               | 1.4) 3       | 0.7 (30.8)                            | 27.6 (2                                                         | .7.5)        |
| Table 2. Fractional atomic co-ordinates for K <sub>2</sub> Sn <sub>1</sub> (CH <sub>4</sub> (CO <sub>2</sub> ) <sub>2</sub> ) <sub>2</sub> H <sub>4</sub> O         Atom       X/a       Y/b       Z/c       Atom       X/a       Y/b       Z/c         Sn(1)       -0.041 3(1)       0.397 4(1)       -0.613 3(1)       O(10)       -0.166 1(2)       0.326 9(1)       -0.341 5(3)         Sn(2)       0.570 3(1)       0.356 4(1)       -0.367 1(1)       O(12)       0.165 9(4)       0.0246 9(1)       -0.434 7(11)         K(2)       0.286 9(1)       0.312 4(1)       0.120 1(1)       O(13)       0.005 2(2)       0.355 4(1)       -0.275 1(6)         O(1)       0.007 6(2)       0.507 3(2)       -0.704 4(3)       C(3)       0.005 2(3)       0.176 3(2)       -0.600 0(3)         O(3)       0.017 9(2)       0.303 6(1)       -0.562 4(3)       C(3)       0.005 2(3)       0.277 5(2)       -0.601 9(3)         O(4)       -0.000 8(2)       0.352 8(3)       C(4)       -0.038 9(3)       0.347 6(2)       -0.091 7(3)         O(6)       -557 4(2)       0.721 0(1)       -0.448 3(3)       C(6)       0.175 1(2)       0.466 0(1)       -0.718 9(5)         O(6)       0.347 7(2)       0.775 5(1)       -0.4413 1(4)       C(9)       0.099 9(3)       0.246 1(1)       -0.648 4(3)         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                    |                   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                        |              |                                       |                                                                 |              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Table 2. Fraction                            | al atomi                           | c co-ordina       | tes for K <sub>2</sub> Sn <sub>2</sub> [(        | CH₂(CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0₂)₂]₃∙H₂O         |                        |              |                                       |                                                                 |              |
| $ \begin{array}{c} \mathrm{Sn}(1) & -0.041 3(1) & 0.397 4(1) & -0.613 5(1) & O(10) & -0.166 1(2) & 0.326 9(1) & -0.341 5(3) \\ \mathrm{Sn}(2) & 0.750 3(1) & 0.366 4(1) & -0.619 0(1) & O(11) & -0.982(2) & 0.246 9(1) & -0.639 6(3) \\ \mathrm{K}(1) & 0.244 2(1) & 0.339 2(1) & -0.367 1(1) & O(12) & 0.165 9(4) & 0.102 4(2) & -0.434 7(11) \\ \mathrm{K}(2) & 0.386 9(1) & 0.312 4(1) & 0.120 1(1) & O(13) & 0.192 9(3) & 0.009 3(2) & -0.380 4(4) \\ \mathrm{O}(1) & 0.073 6(2) & 0.303 0(1) & -0.629 0(3) & C(1) & -0.080 2(2) & 0.355 4(1) & -0.275 1(4) \\ \mathrm{O}(2) & -0.507 6(2) & 0.507 3(2) & -0.704 4(5) & C(2) & 0.005 2(3) & 0.176 3(2) & -0.640 0(3) \\ \mathrm{O}(3) & 0.035 2(3) & 0.179 8(2) & -0.356 4(3) & C(3) & 0.005 2(3) & 0.176 3(2) & -0.640 0(3) \\ \mathrm{O}(3) & 0.035 2(3) & 0.179 8(2) & -0.356 4(3) & C(3) & 0.005 2(3) & 0.3147 6(2) & -0.091 7(3) \\ \mathrm{O}(5) & -0.110 7(2) & 0.089 6(1) & -0.150 0(4) & C(5) & 0.281 8(3) & 0.514 7(1) & -0.718 9(5) \\ \mathrm{O}(6) & 0.557 4(2) & 0.721 0(1) & -0.443 8(3) & C(6) & 0.175 1(2) & 0.466 0(1) & -0.719 7(4) \\ \mathrm{O}(7) & 0.126 0(2) & 0.454 2(1) & -0.581 8(3) & C(7) & 0.399 (3) & 0.246 1(1) & -0.648 4(3) \\ \mathrm{O}(9) & 0.384 7(2) & 0.775 5(1) & -0.413 1(4) & C(9) & 0.009 9(3) & 0.246 1(1) & -0.648 4(3) \\ \mathrm{O}(9) & 0.384 7(2) & 0.775 5(1) & -0.413 1(4) & C(9) & 0.009 9(3) & 0.126 0(4) \\ \mathrm{Sn}(1) - \mathrm{O}(4) & 2.177(2) & \mathrm{Sn}(1) - \mathrm{O}(1A) & 2.934(0) & \mathrm{Sn}(2) - \mathrm{O}(6) & 2.240(8) & \mathrm{Sn}(2) - \mathrm{O}(A) & 2.87(6) \\ \mathrm{O}(1) - \mathrm{Sn}(1) - \mathrm{O}(4) & 2.945(1) & \mathrm{Sn}(2) - \mathrm{O}(6) & 2.240(8) & \mathrm{Sn}(2) - \mathrm{O}(A) & 2.87(5) \\ \hline (a) \text{Tin co-ordination} & \\ \mathrm{Sn}(1) - \mathrm{O}(4) & 1.28(2) & C(3) - \mathrm{O}(6) & 1.282(9) & C(6) - C(5) & 1.504(4) & C(8) - \mathrm{O}(1) & 1.226(5) \\ \mathrm{O}(4) - \mathrm{C}(8) & 1.323(2) & C(3) - \mathrm{O}(6) & 1.281(2) & C(3) - \mathrm{O}(6) & 78.22 \\ \mathrm{O}(1) - \mathrm{Sn}(1) - \mathrm{O}(1) & 1.284(7) & C(5) - \mathrm{C}(7) & 1.514(5) & C(2) - \mathrm{C}(6) & 1.532(6) \\ \mathrm{O}(4) - \mathrm{C}(1) & 1.18(8) & \mathrm{O}(3) - \mathrm{C}(2) & 1.144(5) \\ \mathrm{O}(4) - \mathrm{C}(4) & 1.284(8) & C(6) - \mathrm{C}(8) & 1.231(3) & C(4) - \mathrm{C}(3) & 1.504(9) & C(9) - \mathrm{C}(2) & 1.520(6) \\ \end{array}$ | Atom                                         |                                    | X/a               | Y/b                                              | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /c                 | Atom                   | X/a          |                                       | Y/b                                                             | Z/c          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sn(1)                                        | -0.0                               | 041 3(1)          | 0.397 4(1)                                       | -0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13 5(1)            | O(10)                  | -0.166       | (2) 0.                                | 326 9(1)                                                        | -0.341 5(3)  |
| K(1) 0.244 2(1) 0.39 2(1) -0.367 1(1) O(12) 0.165 9(4) 0.102 4(2) -0.434 7(11)<br>K(2) 0.286 9(1) 0.312 4(1) 0.120 1(1) O(13) 0.129 2(3) 0.069 3(2) -0.380 4(4)<br>O(1) 0.073 6(2) 0.303 0(1) -0.629 0(3) C(1) -0.080 2(2) 0.355 4(1) -0.275 1(4)<br>O(2) -0.507 6(2) 0.507 3(2) -0.704 4(5) C(2) 0.078 2(3) 0.175 3(2) -0.640 0(3)<br>O(3) 0.035 2(3) 0.179 8(2) -0.356 4(3) C(3) 0.005 2(3) 0.277 5(2) -0.073 5(3)<br>O(4) -0.000 8(2) 0.390 6(2) 0.352 8(3) C(4) -0.088 9(3) 0.347 6(2) -0.091 7(3)<br>O(5) -0.110 7(2) 0.089 6(1) -0.150 0(4) C(5) 0.281 8(3) 0.514 7(1) -0.718 9(5)<br>O(6) 0.557 4(2) 0.721 0(1) -0.443 8(3) C(6) 0.175 1(2) 0.466 0(1) -0.719 7(4)<br>O(7) 0.126 0(2) 0.454 2(1) -0.581 8(3) C(7) 0.399 1(3) 0.475 5(2) -0.691 6(4)<br>O(8) 0.141 4(2) 0.453 8(1) -0.848 0(2) C(8) 0.009 9(3) 0.246 1(1) -0.648 4(3)<br>O(9) 0.384 7(2) 0.775 5(1) -0.413 1(4) C(9) 0.096 9(3) 0.151 0(2) -0.465 0(4)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sn(2)                                        | 0.                                 | 5/0 3(1)          | 0.366 4(1)                                       | -0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19 0(1)            | O(11)                  | -0.982(2     | 2) 0.                                 | 246 9(1)                                                        | -0.669 6(3)  |
| $ \begin{array}{c} K(2) & 0.269  9(1) & 0.312  4(1) & 0.122  1(1) & O(13) & 0.192  9(3) & 0.069  3(2) & -0.330  4(4) \\ O(1) & 0.073  6(2) & 0.303  0(1) & -0.629  0(3) & C(1) & -0.080  2(2) & 0.355  4(1) & -0.275  1(4) \\ O(2) & -0.507  6(2) & 0.507  3(2) & -0.704  4(5) & C(2) & 0.078  2(3) & 0.176  3(2) & -0.073  5(3) \\ O(4) & -0.000  8(2) & 0.179  8(2) & -0.356  4(3) & C(3) & 0.005  2(3) & 0.277  5(2) & -0.073  5(3) \\ O(4) & -0.000  8(2) & 0.390  6(2) & 0.352  8(3) & C(4) & -0.038  9(3) & 0.347  6(2) & -0.091  1(3) \\ O(5) & -0.110  1(2) & 0.089  6(1) & -0.150  0(4) & C(5) & 0.281  8(3) & 0.514  7(1) & -0.718  9(5) \\ O(6) & 0.577  4(2) & 0.721  0(1) & -0.443  8(3) & C(7) & 0.399  1(3) & 0.476  5(2) & -0.691  6(4) \\ O(7) & 0.126  0(2) & 0.454  2(1) & -0.581  8(3) & C(7) & 0.399  1(3) & 0.476  5(2) & -0.691  6(4) \\ O(8) & 0.141  4(2) & 0.438  8(1) & -0.848  0(2) & C(8) & 0.009  9(3) & 0.246  1(1) & -0.648  4(3) \\ O(9) & 0.384  7(2) & 0.775  5(1) & -0.413  1(4) & C(9) & 0.096  9(3) & 0.151  0(2) & -0.465  0(4) \\ \hline \end{tabular}$ $ \begin{array}{c} \text{Table 3. Bond lengths} (\dot{A}) \text{ and angles} (^\circ), \text{ with estimated standard deviations in parentheses, for \mathbf{K}_{3}\mathbf{Sn}_{1}[\mathbf{CO}_{3})_{2}], \mathbf{H}_{4}\mathbf{O} \\ (a) \ \text{Tin co-ordination} \\ & \mathbf{Sn}(1)-O(1) \ 2.199(8)  \mathbf{Sn}(1)-O(10A) \ 2.945(1)  \mathbf{Sn}(2)-O(5) \ 2.206(3)  \mathbf{Sn}(2)-O(4A) \ 2.877(0) \\ & \mathbf{Sn}(1)-O(7) \ 2.177(6)  \mathbf{Sn}(1)-O(11A) \ 2.933(0)  \mathbf{Sn}(2)-O(6) \ 2.240(8)  \mathbf{Sn}(2)-O(1A) \ 2.287(5) \\ & O(1)-\mathbf{Sn}(1)-O(7) \ 8.4.07  O(3)-\mathbf{Sn}(2)-O(6) \ 8.3.32  O(5)-\mathbf{Sn}(2)-O(6) \ 7.3.23 \\ (b) \ \text{Malonate group co-ordination} \\ & O(1)-C(8) \ 1.362(2)  C(3)-O(9) \ 1.238(1)  O(8)-C(6) \ 1.301(4) \ C(8)-O(11) \ 1.226(5) \\ & O(7)-C(6) \ 1.273(8)  O(3)-C(9) \ 1.238(1)  O(8)-C(6) \ 1.231(3) \ C(8)-C(2) \ 1.449(5) \\ & O(7)-C(6) \ 1.273(8)  O(3)-C(9) \ 1.238(1)  O(8)-C(6) \ 1.231(3) \ C(8)-C(2) \ 1.449(5) \\ & O(7)-C(6) \ 1.238(6) \ O(3)-C(9) \ 1.238(6) \ C(7)^{-O}(2) \ 1.101(1) \ 1.7.83 \\ & $                                                                                                                                                                                                                                                  | K(1)                                         | 0.2                                | 244 2(1)          | 0.339 2(1)                                       | -0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67 1(1)            | O(12)                  | 0.165 9      | 9(4) 0.                               | 102 4(2)                                                        | -0.434 7(11) |
| $ \begin{array}{c} 0(1) & 0.013 0(2) & 0.033 0(1) & -0.629 0(3) & C(1) & -0.080 2(2) & 0.355 4(1) & -0.275 1(4) \\ 0(2) & -0.507 6(2) & 0.507 3(2) & -0.704 4(5) & C(2) & 0.078 2(3) & 0.175 3(2) & -0.640 0(3) \\ 0(3) & 0.035 2(3) & 0.179 8(2) & -0.356 4(3) & C(3) & 0.005 2(3) & 0.277 5(2) & -0.073 5(3) \\ 0(4) & -0.000 8(2) & 0.390 6(2) & 0.352 8(3) & C(4) & -0.058 9(3) & 0.347 6(2) & -0.091 7(3) \\ 0(5) & -0.110 7(2) & 0.089 6(1) & -0.150 0(4) & C(5) & 0.281 8(3) & 0.514 7(1) & -0.718 9(5) \\ 0(6) & 0.557 4(2) & 0.721 0(1) & -0.443 8(3) & C(6) & 0.175 1(2) & 0.466 0(1) & -0.719 7(4) \\ 0(7) & 0.126 0(2) & 0.454 2(1) & -0.581 8(3) & C(7) & 0.399 1(3) & 0.446 5(2) & -0.691 6(4) \\ 0(8) & 0.141 4(2) & 0.438 8(1) & -0.848 0(2) & C(8) & 0.009 9(3) & 0.246 1(1) & -0.648 4(3) \\ 0(9) & 0.384 7(2) & 0.775 5(1) & -0.413 1(4) & C(9) & 0.096 9(3) & 0.151 0(2) & -0.465 0(4) \\ \hline \end{array} $ <b>Table 3.</b> Bond lengths (Å) and angles (°), with estimated standard deviations in parentheses, for K <sub>2</sub> Sn <sub>2</sub> [CH <sub>2</sub> (CO <sub>2</sub> ) <sub>2</sub> ], H <sub>2</sub> O (a) Tin co-ordination Sn(1)-O(1) 2.199(8) Sn(1)-O(8A) 2.916(9) Sn(2)-O(3) 2.161(2) Sn(2)-O(A) 2.2724(4) Sn(1)-O(7) 2.177(6) Sn(1)-O(10A) 2.945(1) Sn(2)-O(5) 2.206(3) Sn(2)-O(A) 2.2724(4) Sn(1)-O(7) 2.177(6) Sn(1)-O(10A) 2.933(0) Sn(2)-O(5) 2.206(3) Sn(2)-O(A) 2.2724(4) Sn(1)-O(7) 2.177(6) Sn(1)-O(10A) 2.933(0) Sn(2)-O(5) 2.206(3) Sn(2)-O(A) 2.287(5) O(1)-Sn(1)-O(7) 84.07 O(3)-Sn(2)-O(6) 73.23 \\ (b) Malonate group co-ordination O(1)-Sn(1)-O(4) 83.69 O(4)-Sn(1)-O(7) 74.65 O(3)-Sn(2)-O(6) 73.23 \\ (b) Malonate group co-ordination O(1)-Sn(1)-O(4) 1.281(2) C(3)-O(6) 1.281(7) C(5)-C(7) 1.514(4) C(8)-O(11) 1.226(5) O(4)-C(1) 0.128(6) O(5)-C(7) 1.238(1) O(8)-C(7) 1.514(5) C(2) 1.449(5) O(7)-C(6) 73.23 \\ (b) Malonate group co-ordination O(1)-C(8) 1.362(3) C(3)-O(6) 1.231(3) C(4)-C(3) 1.504(9) C(9)-C(12) 1.520(6) C(1)-O(10) 1.228(6) O(5)-C(7) 1.238(1) O(8)-C(7) 1.514(5) C(2) 1.248(7) C(5)-C(7) 1.514(5) C(2) 1.248(7) C(5)-C(7) 1.514(5) C(2) 1.248(7) C(5)-C(7) 1.514(5) C(2) 1.248(7) C(5)-C(7) 1.514(6) C(9)-O(                                                                                                                                                                                                                                            | K(2)                                         | 0.2                                | 286 9(1)          | 0.3124(1)                                        | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 1(1)            | O(13)                  | 0.192 9      | 0(3) 0.                               | 069 3(2)                                                        | -0.380 4(4)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              | 0.0                                | 507 6(2)          | 0.3030(1)                                        | -0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29 0(3)            | C(1)                   | -0.0802      | 2(2) 0.                               | 355 4(1)                                                        | -0.275 1(4)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O(2)                                         | -0.                                | $\frac{10}{0}$    | 0.50/3(2)                                        | -0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 04 4(5)            | C(2)                   | 0.078 2      | 2(3) 0.                               | 176 3(2)                                                        | -0.640 0(3)  |
| $\begin{array}{c} O(9) & -0.008 8(2) & 0.322 8(3) & C(4) & -0.038 9(3) & 0.347 8(2) & -0.091 7(3) \\ O(5) & -0.110 7(2) & 0.089 6(1) & -0.150 0(4) & C(5) & 0.281 8(3) & 0.514 7(1) & -0.718 9(5) \\ O(6) & 0.557 4(2) & 0.721 0(1) & -0.443 8(3) & C(7) & 0.399 1(3) & 0.476 5(2) & -0.691 6(4) \\ O(7) & 0.126 0(2) & 0.454 2(1) & -0.848 0(2) & C(8) & 0.009 9(3) & 0.246 1(1) & -0.648 4(3) \\ O(9) & 0.384 7(2) & 0.775 5(1) & -0.413 1(4) & C(9) & 0.096 9(3) & 0.151 0(2) & -0.465 0(4) \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(3)                                         | 0.0                                | 3332(3)           | 0.1798(2)                                        | -0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56 4(3)            | C(3)                   | 0.005 2      | 2(3) 	0.                              | 277 5(2)                                                        | -0.073 5(3)  |
| $ \begin{array}{c} 0(3) & -0.110 \ (2) & 0.039 \ (1) & -0.130 \ (4) & 0.13 & 0.281 \ (3) & 0.281 \ (3) & 0.514 \ (1) & -0.718 \ (5) \\ 0(6) & 0.557 \ (42) & 0.721 \ (01) & -0.443 \ (3) & 0.175 \ (12) & 0.466 \ (01) & -0.719 \ (14) \\ 0(7) & 0.126 \ (02) & 0.454 \ (21) & -0.581 \ (83) & 0.77 & 0.399 \ (13) & 0.476 \ 5(2) & -0.691 \ 6(4) \\ 0(8) & 0.141 \ (42) & 0.438 \ (1) & -0.848 \ (02) & C(8) & 0.009 \ (93) & 0.246 \ (11) & -0.648 \ 4(3) \\ 0(9) & 0.384 \ 7(2) & 0.775 \ (1) & -0.413 \ (14) & C(9) & 0.096 \ (93) & 0.151 \ (02) & -0.465 \ 0(4) \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0(4)                                         | -0.0                               |                   | 0.3900(2)                                        | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52 8(3)            | C(4)                   | -0.058 9     | <i>y</i> (3) 0.                       | 347 6(2)                                                        | -0.0917(3)   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0(5)                                         | -0.                                | 57 4(2)           | 0.0690(1)                                        | -0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50 0(4)<br>43 8(3) | C(5)                   | 0.281 8      | s(3) 0.                               | 514 7(1)                                                        | -0.7189(5)   |
| $\begin{array}{c} O(3) & O(1250C) & O(2572C) & O(3572C) & O(3572C)$                                                                                                                                                                                                                                                                                                       | O(0)                                         | 0.1                                | 26 0(2)           | 0.7210(1)<br>0.454 2(1)                          | -0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +3 0(3)            | C(0)                   | 0.175 1      | (2) 0.                                | 466 0(1)                                                        | -0.719 7(4)  |
| $\begin{array}{c} 0(9)  0.384\ 7(2)  0.755\ 5(1)  -0.443\ 0(2)  0.09\ 9(3)  0.099\ 9(3)  0.246\ 1(1)  -0.648\ 4(3) \\ 0(9)  0.384\ 7(2)  0.775\ 5(1)  -0.413\ 1(4)  C(9)  0.099\ 9(3)  0.151\ 0(2)  -0.465\ 0(4) \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O(8)                                         | 0.1                                | (200(2))          | 0.4342(1)                                        | -0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{19}{12}$    | C(7)                   | 0.399 1      | (3) 0.                                | 4/6 5(2)                                                        | -0.6916(4)   |
| $\begin{array}{c} \text{C(9)} & 0.935\ 9(3) & 0.193\ 0(2) & -0.485\ 0(4) \\ \hline \text{Table 3. Bond lengths (Å) and angles (°), with estimated standard deviations in parentheses, for K_2Sn_2[CH_2(CO_2)_2]_3, H_2O \\ (a) Tin co-ordination \\ & Sn(1)-O(1) & 2.199(8) & Sn(1)-O(8A) & 2.916(9) & Sn(2)-O(3) & 2.161(2) & Sn(2)-O(2A) & 2.872(0) \\ & Sn(1)-O(4) & 2.177(2) & Sn(1)-O(10A) & 2.945(1) & Sn(2)-O(5) & 2.206(3) & Sn(2)-O(9A) & 2.724(4) \\ & Sn(1)-O(7) & 2.177(6) & Sn(1)-O(11A) & 2.933(0) & Sn(2)-O(6) & 2.240(8) & Sn(2)-O(1A) & 2.857(5) \\ & O(1)-Sn(1)-O(7) & 84.07 & O(3)-Sn(2)-O(5) & 83.32 & O(5)-Sn(2)-O(6) & 78.22 \\ & O(1)-Sn(1)-O(7) & 84.07 & O(3)-Sn(2)-O(5) & 83.32 & O(5)-Sn(2)-O(6) & 73.23 \\ \hline (b) Malonate group co-ordination \\ & O(1)-C(8) & 1.362(3) & C(3)-O(6) & 1.282(9) & C(6)-C(5) & 1.504(4) & C(8)-O(11) & 1.226(5) \\ & O(4)-C(1) & 1.281(2) & C(3)-O(9) & 1.238(1) & O(8)-C(6) & 1.231(3) & C(8)-C(2) & 1.449(5) \\ & O(7)-C(6) & 1.273(8) & O(3)-C(9) & 1.248(7) & C(5)-C(7) & 1.514(5) & C(2)-C(9) & 1.520(6) \\ & C(1)-O(10) & 1.228(6) & O(5)-C(7) & 1.290(6) & C(7)-O(2) & 1.201(6) & C(9)-O(12) & 1.220(7) \\ & C(1)-C(4) & 1.524(8) & C(6)-O(8) & 1.231(3) & C(4)-C(3) & 1.504(9) & C(9)-C(12) & 1.520(6) \\ & Sn(1)-O(4)-C(1) & 111.98 & O(9)-C(3)-C(4) & 117.88 & O(5)-C(7)-C(5) & 114.83 \\ & Sn(1)-O(4)-C(1) & 111.98 & O(9)-C(3)-C(4) & 119.60 & O(1)-C(8)-O(11) & 117.83 \\ & Sn(1)-O(4)-C(1) & 113.41 & O(7)-C(6)-O(8) & 123.34 & O(1)-C(8)-C(2) & 115.56 \\ & O(4)-C(1)-C(4) & 115.62 & O(8)-C(5)-C(7) & 116.64 & O(11)-C(8)-C(2) & 115.56 \\ & O(4)-C(1)-C(4) & 115.62 & O(8)-C(5)-C(7) & 119.99 & O(3)-C(9)-O(12) & 112.18 \\ & O(10)-C(1)-C(4) & 120.93 & C(6)-C(5)-C(7) & 119.99 & O(3)-C(9)-O(12) & 112.18 \\ & O(10)-C(1)-C(4) & 120.93 & C(6)-C(5)-C(7) & 119.99 & O(3)-C(9)-C(2) & 117.24 \\ & O(1)-C(4)-C(3) & 104.65 & O(2)-C(7)-O(5) & 123.85 & O(12)-C(9)-C(2) & 120.51 \\ & O(6)-C(3)-O(9) & 122.32 & O(2)-C(7)-C(5) & 121.29 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                           | 0(0)                                         | 0.1                                | (41 + (2))        | 0.7755(1)                                        | - 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +0.0(2)            | C(0)                   | 0.009 9      | (3) 0.                                | 240 1(1)                                                        | -0.648 4(3)  |
| $ \begin{array}{c} \text{(s) finite ordination} \\ & \text{Sn(1)-O(1) } 2.199(8) \\ \text{Sn(1)-O(1) } 2.177(2) \\ \text{Sn(1)-O(10A) } 2.945(1) \\ \text{Sn(1)-O(7) } 2.177(6) \\ \text{Sn(1)-O(11A) } 2.933(0) \\ \text{Sn(2)-O(5) } 2.206(3) \\ \text{Sn(2)-O(6) } 2.240(8) \\ \text{Sn(2)-O(1A) } 2.857(5) \\ \hline \\ & \text{O(1)-Sn(1)-O(7) } 84.07 \\ O(3)-Sn(2)-O(5) \\ \text{O(3)-Sn(2)-O(6) } 83.32 \\ O(3)-Sn(2)-O(6) \\ \text{O(3)-Sn(2)-O(6) } 78.22 \\ O(5)-Sn(2)-O(6) \\ \text{73.23} \\ \hline \\ & \text{O(4)-C(1) } 1.281(2) \\ O(4)-C(1) \\ 1.281(2) \\ O(4)-C(9) \\ 1.228(6) \\ O(5)-C(7) \\ 1.290(6) \\ C(7)-C(6) \\ 1.273(8) \\ O(3)-C(9) \\ 1.238(1) \\ O(6)-C(3) \\ C(1)-O(10) \\ 1.228(6) \\ O(5)-C(7) \\ 1.290(6) \\ C(7)-O(2) \\ 1.201(6) \\ C(9)-O(12) \\ 1.504(4) \\ C(8)-O(11) \\ 1.226(5) \\ O(4)-C(2) \\ 1.449(5) \\ O(7)-C(6) \\ 1.273(8) \\ O(3)-C(9) \\ 1.238(1) \\ O(6)-C(7) \\ 1.290(6) \\ C(7)-O(2) \\ 1.201(6) \\ C(9)-O(12) \\ 1.504(9) \\ C(9)-O(12) \\ 1.520(6) \\ \hline \\ & \text{Sn(1)-O(1)-C(8) } 110.32 \\ O(6)-C(3)-C(4) \\ 117.88 \\ \text{Sn(1)-O(1)-C(8) } 110.32 \\ O(6)-C(3)-C(4) \\ 119.60 \\ O(1)-C(8)-C(2) \\ 114.83 \\ \text{Sn(1)-O(7)-C(6) } 110.86 \\ O(7)-C(6)-O(8) \\ 123.34 \\ O(1)-C(8)-C(2) \\ 115.56 \\ O(4)-C(1)-C(4) \\ 115.62 \\ O(8)-C(5)-C(7) \\ 114.05 \\ O(3)-C(9)-O(12) \\ 112.18 \\ O(10)-C(1)-C(4) \\ 120.93 \\ C(6)-C(5)-C(7) \\ 121.29 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Table 3. Bond len         (a) Tin co-ordina: | gths (Å)                           | and angles        | (°), with estim                                  | ated sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | andard dev         | iations in par         | entheses, fo | or K <sub>2</sub> Sn <sub>2</sub> [CH | H <sub>2</sub> (CO <sub>2</sub> ) <sub>2</sub> ] <sub>3</sub> · | H₂O          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                    | 100(0)            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                        |              |                                       |                                                                 |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sn(1)-                                       | O(1)                               | 2.199(8)          | Sn(1) = O(8A)                                    | ) 2.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (6(9)              | Sn(2) - O(3)           | 2.161(2      | 2) Sn(2                               | )-O(2A)                                                         | 2.872(0)     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sn(1)-                                       | O(4)                               | 2.177(2)          | Sn(1) = O(10A)                                   | (1) 2.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15(1)              | Sn(2) - O(5)           | 2.206(3      | 5) Sn(2                               | )-O(9A)                                                         | 2.724(4)     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51(1)                                        | 0(7)                               | 2.177(0)          | 51(1)-0(11)                                      | 1) 2.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55(0)              | Sn(2) = O(6)           | 2.240(8      | 5) Sn(2                               | )-O(1A)                                                         | 2.857(5)     |
| $\begin{array}{c} (b) \ \text{Malonate group co-ordination} \\ \hline O(1)-C(8) \ 1.362(3) \ C(3)-O(6) \ 1.282(9) \ C(6)-C(5) \ 1.504(4) \ C(8)-O(11) \ 1.226(5) \\ O(4)-C(1) \ 1.281(2) \ C(3)-O(9) \ 1.238(1) \ O(8)-C(6) \ 1.231(3) \ C(8)-C(2) \ 1.449(5) \\ O(7)-C(6) \ 1.273(8) \ O(3)-C(9) \ 1.248(7) \ C(5)-C(7) \ 1.514(5) \ C(2)-C(9) \ 1.520(6) \\ C(1)-O(10) \ 1.228(6) \ O(5)-C(7) \ 1.290(6) \ C(7)-O(2) \ 1.201(6) \ C(9)-O(12) \ 1.220(7) \\ C(1)-C(4) \ 1.524(8) \ C(6)-O(8) \ 1.231(3) \ C(4)-C(3) \ 1.504(9) \ C(9)-C(12) \ 1.520(6) \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              | O(1                                | -Sn(1)-O(         | 4)       83.69         7)       84.07            | 0(4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -Sn(1)-O(0)        | (7) 74.65<br>(5) 83.32 | O(3) - S     | n(2) - O(6)                           | 78.22                                                           |              |
| (b) Malonate group co-ordination<br>$\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              | ~(*                                | ,                 | .,                                               | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | 05.54                  | 0(3)~3       | n(2) (())                             | 13.23                                                           |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (b) Malonate grou                            | ip co-ord                          | lination          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                        |              |                                       |                                                                 |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O(1)C                                        | C(8) 1                             | 1.362(3)          | C(3)-O(6)                                        | 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2(9)               | C(6)-C(5)              | 1.504(4      | ) C(8)                                | -O(11)                                                          | 1.226(5)     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O(4)-C                                       | C(1) 1                             | 1.281(2)          | C(3)-O(9)                                        | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8(1)               | O(8)-C(6)              | 1.231(3      | ) C(8)                                | -C(2)                                                           | 1.449(5)     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0(7)-0                                       | C(6)                               | 1.273(8)          | O(3)-C(9)                                        | 1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8(7)               | C(5)-C(7)              | 1.514(5      | ) C(2)-                               | -C(9)                                                           | 1.520(6)     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(1)-C                                       | D(10) 1                            | .228(6)           | O(5)-C(7)                                        | 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0(6)               | C(7)-O(2)              | 1.201(6      | ) C(9)-                               | -O(12)                                                          | 1.220(7)     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(1)-C                                       | (4)                                | 1.524(8)          | C(6)-O(8)                                        | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1(3)               | C(4)-C(3)              | 1.504(9      | ) C(9)-                               | -C(12)                                                          | 1.520(6)     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              | Sn(1)-O                            | (1)-C(8)          | 110.32                                           | O(6)-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(3)-C(4)          | 117.88                 | O(5)-C       | c(7)-C(5)                             | 114.83                                                          | 3            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              | Sn(1)-O                            | (4) - C(1)        | 111.98                                           | O(9)-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(3)-C(4)          | 119.60                 | O(1)-C       | (8)-0(11)                             | 117.83                                                          | 3            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              | Sn(1)-O                            | (7) <b>-C(</b> 6) | 110.86                                           | O(7)-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(6)-O(8)          | 123.34                 | O(1)-C       | (8)-C(2)                              | 115.56                                                          | 5            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              | U(4)-C(                            | 1)-O(10)          | 123.41                                           | O(7)-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(6)-C(5)          | 116.64                 | O(11)-0      | C(8)-C(2)                             | 112.29                                                          | )            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              | U(4)-C(                            | I)-C(4)           | 115.62                                           | O(8)-(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(6)-C(5)          | 119.99                 | O(3)-C       | (9)-O(12)                             | 112.18                                                          | 3            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              | O(10) - C                          | (1) - C(4)        | 120.93                                           | C(6)-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2(5)-C(7)          | 114.05                 | O(3)-C       | (9)-C(2)                              | 117.24                                                          | ļ            |
| O(0) = O(3) = 122.32 = O(2) = O(3) = 121.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              | O(1) = O(4)                        | H)-C(3)           | 104.05                                           | O(2) - | L(7) = O(5)        | 123.85                 | O(12)-0      | C(9)-C(2)                             | 120.51                                                          |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              | $\mathcal{O}(0)^{-}\mathcal{O}(1)$ | y-0(9)            | 142.32                                           | 0(2)-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | J(1)-C(3)          | 121.29                 |              |                                       |                                                                 |              |

Table 1. Analytical data (calculated values in parentheses) for the malonato-complexes M2Sn2[CH2(CO2)2]3\*xH2O

Structure Determination.—Preliminary unit-cell data were obtained from oscillation and Weissenberg photographs, whilst the intensity data were collected at Queen Mary College, London, on an Enraf-Nonius CAD4 diffractometer for  $\theta$  up to a maximum value of 35°. Graphite-monochromatised Mo- $K_{\alpha}$  radiation was used with an  $\omega$ —2 $\theta$  scan technique. Two standard reflections were measured every hour as a check on the crystal and instrument stability. Each scan consisted of 96 steps with the first and last 16 forming the background counts; the final structure factors were computed taking account of variable measuring times, Lorentz-polarisation factors, and appropriate crystal-decay factors and absorption. A total of 5 805 unique reflections with  $I \ge 2.0\sigma(I)$  were

measured and used in the calculations, which were carried out on a CDC 7 600 computer at the University of London Computer Centre, using SHELX 76.<sup>10</sup> Stereographic projections of the unit cell were obtained using PLUTO.<sup>11</sup>

The co-ordinates of the tin atoms were determined from a Patterson vector map. Fourier syntheses phased on the refined tin positions located the K, O, and C atoms. Least-squares refinement of the atom positions gave an R value of 0.098 8. On the Fourier map a peak corresponding to approximately ten electrons and due to an atom, bonded neither to tin nor to part of the carboxylate group, was assigned to a molecule of water of crystallisation at ca. x = 0.31, y = 0.04, z = 0.88. Full-matrix least-squares refinement of all the



Figure 1. Projection of the unit cell of  $K_2Sn_2[CH_2(CO_2)_2]_3 \cdot H_2O$ ; viewed down z

atoms including the oxygen of the water molecule resulted in an R value of 0.081 6. At this stage 85 weak reflections, for which  $|F_o| \leq 2|F_c|$  or  $|F_c| \leq 2|F_o|$ , were removed and a final refinement was made with anisotropic thermal parameters for all non-hydrogen atoms. The hydrogen atoms were located in a Fourier map but not refined and all the remaining peaks on a final Fourier difference map corresponded to less than one electron. Refinement converged at R = 0.0277. Atomic coordinates are in Table 2 and bond distances and angles in Table 3.

## **Results and Discussion**

The thermal analyses of the oxalatostannates(II) confirm that the ammonium, potassium, rubidium, and caesium derivatives are monohydrates and that the sodium complex is anhydrous. The only gaseous product of the thermal decompositions of the complex oxalates at higher temperatures is  $CO_2$  except in the case of the ammonium derivative where ammonia is also liberated. The solid residues contain tin(II) oxide, carbon, and metal oxalates (metal = Na, K, Rb, or Cs).

The thermal analyses of the malonatostannates(II) confirm that the ammonium derivative is anhydrous, that the potassium derivative is a monohydrate, and that the sodium, rubidium, and caesium derivatives are trihydrates. The complexes all decompose *in vacuo* with the loss of water, CO, CO<sub>2</sub>, and acetone (plus NH<sub>3</sub> for the NH<sub>4</sub> derivative) to give a final residue containing tin(II) oxide.

The fact that tin(II) oxide is the final tin-containing product of the decompositions of the alkali-metal tin(II) oxalates and malonates is consistent with strong complex formation between tin(II) and the dicarboxylate oxygen atoms.<sup>12</sup>

The structure of dipotassium trimalonatodistannate(11) monohydrate consists of polymeric anionic layers of  $\{Sn_2$ -



Figure 2. Schematic diagram of the asymmetric unit of  $K_2Sn_2$ -[CH<sub>2</sub>(CO<sub>2</sub>)<sub>2</sub>]<sub>3</sub>·H<sub>2</sub>O

 $[CH_2(CO_2)_2]_3\}_n^{2n-}$  moieties with discrete potassium ions and water molecules located between the layers (Figure 1). Both tin atoms in the asymmetric unit are co-ordinated through single oxygen atoms of two of the three malonate groups forming a twelve-membered ring. The third malonate group is bonded to two tin atoms of neighbouring twelve-membered rings; *e.g.* Sn(2) of one ring is linked to Sn(1) of a neighbouring ring (Figure 2). The overall structure is that of extended polymeric layers composed of twelve-membered ring systems bridged by malonate groups to neighbouring ring systems through Sn-O bonds.

The bond distances and angles in the malonate groups are typical of those found in many malonates.13 The length of the C-O bond varies according to whether or not the oxygen atom is co-ordinated. Not surprisingly the C-O bond of a co-ordinated oxygen atom is longer than that of an uncoordinated oxygen atom; C-O bonds of both types are found in other tin(II) carboxylates and their complex derivatives. The environments of the two potassium atoms are different. One is surrounded by seven nearest-neighbour malonate oxygen atoms at distances of 2.948, 2.887, 3.081, 2.964, 3.132, 2.941, and 2.929 Å, and an oxygen atom of the water molecule at 2.745 Å, and the other is co-ordinated to eight malonate oxygen nearest-neighbour atoms at 2.920, 2.688, 2.894, 3.229, 2.868, 3.162, 2.653, and 2.799 Å and an oxygen atom of the water molecule at 2.971 Å. The water molecule itself participates in hydrogen bonding to the malonate moiety with the hydrogen atom, H(8), of the water molecule bonding to the oxygen atom, O(9), of the malonate group (2.99 Å).

The co-ordination about each tin(II) atom is that of a trigonal pyramid, in which each tin atom is co-ordinated by three oxygen atoms from bridging malonate groups, and three longer contacts to malonate oxygen atoms complete a distorted octahedral environment about the tin. Although each tin(II) atom lies in a trigonal pyramidal environment, Sn(1) has two short (2.177 and 2.177 Å) and one long bond (2.199 Å) to oxygen, whilst Sn(2) has one short (2.161 Å) and two long bonds (2.206 and 2.240 Å) to oxygen. Unlike oxalate ions which chelate tin(11) to give the metal distorted four-pyramidal environments, the malonate groups, although bidentate, form bridges between different tin atoms; interestingly, each anisobidentate malonate group forms one short (ca. 2.17Å) and one long (ca. 2.20 Å) Sn-O bond. This gives rise to an extended polymeric anionic system of  $\{Sn_2[CH_2(CO_2)_2]_3\}_n^{2n-}$  and not to discrete  $[SnL_2]^2$  ions as found in  $Na_2Sn(C_2O_4)_2$ .<sup>6</sup> A consequence of the trigonal pyramidal co-ordination is that

| <b>1 able 4.</b> Mossbauer parameters of complex tin(11) dicarboxylate | ates | dicarboxy | n(11) d | lex tin( | complex | of | parameters | Mössbauer | 4. | Table |
|------------------------------------------------------------------------|------|-----------|---------|----------|---------|----|------------|-----------|----|-------|
|------------------------------------------------------------------------|------|-----------|---------|----------|---------|----|------------|-----------|----|-------|

| Compound                                             | δ/mm s <sup>-1</sup> | $\Delta/\text{mm s}^{-1}$ |
|------------------------------------------------------|----------------------|---------------------------|
| $Sn(C_2O_4)$                                         | 3.70                 | 1.54                      |
| $(NH_4)_2Sn(C_2O_4)_2H_2O$                           | 3.42                 | 1.88                      |
| $Na_2Sn(C_2O_4)_2$                                   | 3.67                 | 1.47                      |
| $K_2Sn(C_2O_4)_2$ · $H_2O$                           | 3.38                 | 1.97                      |
| $Rb_2Sn(C_2O_4)_2H_2O$                               | 3.19                 | 2.06                      |
| $Cs_2Sn(C_2O_4)_2$ ·H <sub>2</sub> O                 | 3.17                 | 2.06                      |
| Sn[CH <sub>2</sub> (CO <sub>2</sub> ) <sub>2</sub> ] | 3.51                 | 1.74                      |
| $(NH_4)_2 Sn_2 [CH_2(CO_2)_2]_3$                     | 3.25                 | 1.70                      |
| $Na_2Sn_2[CH_2(CO_2)_2]_3 \cdot 3H_2O$               | 3.04                 | 1.81                      |
| $K_2Sn_2[CH_2(CO_2)_2]_3$ ·H <sub>2</sub> O          | 3.15                 | 1.74                      |
| $Rb_2Sn_2[CH_2(CO_2)_2]_3 \cdot 3H_2O$               | 3.23                 | 1.79                      |
| Cs.Sn.(CH.(CO.).).3H.O                               | 3.09                 | 1.99                      |

K<sub>2</sub>Sn<sub>2</sub>[CH<sub>2</sub>(CO<sub>2</sub>)<sub>2</sub>]<sub>3</sub>·H<sub>2</sub>O has a shorter average tin-to-nearestoxygen bond length than the compounds with distorted fourco-ordination such as Sn(C<sub>2</sub>O<sub>4</sub>),<sup>14</sup> Na<sub>2</sub>Sn(C<sub>2</sub>O<sub>4</sub>)<sub>2</sub>,<sup>6</sup> K<sub>2</sub>Sn- $(C_2O_4)_2$ ·H<sub>2</sub>O<sup>7</sup> and Sn(O<sub>2</sub>CCH=CHCO<sub>2</sub>)·H<sub>2</sub>O<sup>15</sup> This arises because the co-ordination about tin can only be increased from three to four if one of the bonds is lengthened. The short Sn-O bonds are consistent with the thermal analytical data in that they confirm that strong complexes are formed.

The tin-119 Mössbauer parameters for the complex tin(II) malonates and oxalates are in Table 4 together with the data for the parent tin(II) carboxylates. The decrease in chemical isomer shift in going from a tin(11) dicarboxylate to a complex is the expected result for the formation of complex tin(II) ligand anions.<sup>5</sup> The Mössbauer shift parameters for tin(II) oxalate and its alkali-metal derivatives can be rationalised in terms of known crystal structures. We have previously<sup>4</sup> pointed out that there is a relationship between chemical shift and tin-to-ligand bond lengths. In Sn(C<sub>2</sub>O<sub>4</sub>), K<sub>2</sub>Sn- $(C_2O_4)_2$ ·H<sub>2</sub>O, and Na<sub>2</sub>Sn $(C_2O_4)_2$  the tin atoms are in fourco-ordinate environments with the oxalate anions acting as bidentate ligands with two short and two somewhat longer Sn $\neg$ O bond distances. The structure of Sn(C<sub>2</sub>O<sub>4</sub>) consists of infinite chains of alternating tin atoms and oxalate groups in which the shorter and longer Sn-O bond distances are 2.23 and 2.39 Å respectively; Na<sub>2</sub>Sn(C<sub>2</sub>O<sub>4</sub>)<sub>2</sub> contains Sn(C<sub>2</sub>O<sub>4</sub>)<sub>2</sub><sup>2-</sup> moieties in which the corresponding shorter and longer Sn-O bonds are 2.25 and 2.36 Å. The environments in tin(II) oxalate and the sodium complex are very similar; the average Sn-O bond length in the complex is shorter than in the parent compound although the shortest Sn-O bonds are slightly longer than in  $Sn(C_2O_4)$ . The similarity in these environments is reflected in the similarity of the Mössbauer parameters for  $Sn(C_2O_4)$  and  $Na_2Sn(C_2O_4)_2$ . In contrast the potassium complex has both a smaller average Sn-O bond length and a shorter minimum Sn-O distance. The lower chemical shift for the potassium complex is consistent with the increased use of tin s-electron density in forming shorter Sn-O bonds. The quadrupole splitting reflects the imbalance in the *p*-electron density at the tin atom. The increase in asymmetry in the potassium salt compared with the tin(II) oxalate and the sodium salt could arise from greater asymmetry of the environment and/or the increased *p*-electron density in the lone pair Table 5. Relationship between Mössbauer chemical shift data and average tin-to-ligand bond length

| Compound                                             | Average Sn-L bond<br>length/Å | δ/mm s <sup>-1</sup> * |
|------------------------------------------------------|-------------------------------|------------------------|
| $Ca[Sn(O_2CMe)_3]_2$                                 | 2.14                          | 2.90                   |
| KSn(O <sub>2</sub> CCH <sub>2</sub> Cl) <sub>3</sub> | 2.16                          | 2.96                   |
| KSn(O <sub>2</sub> CH) <sub>3</sub>                  | 2.16                          | 3.08                   |
| $K_2Sn_2[CH_2(CO_2)_2]_3 H_2O$                       | 2.19                          | 3.15                   |
| SnSO <sub>4</sub>                                    | 2.26                          | 3.95                   |

\* Chemical shift relative to BaSnO<sub>3</sub>.

that must result from the formation of shorter Sn-O bonds. The values of the shift and splitting parameters for tin(11) malonate suggest that it involves stronger Sn-O interactions and that the overall electronic environment of the tin atom is more asymmetric than in tin(11) oxalate. The lower shifts for the  $M_2Sn_2[CH_2(CO_2)_2]_3$   $xH_2O$  complexes are consistent with complex formation. The average Sn-O bond length in K<sub>2</sub>Sn<sub>2</sub>- $[CH_2(CO_2)_2]_3$ ·H<sub>2</sub>O and its shift value are consistent with the trend found in shift and bond-length data for compounds containing trigonal pyramidal Sn-O co-ordination (Table 5).

### Acknowledgements

We thank the S.E.R.C. and the International Tin Research Institute for a C.A.S.E. studentship (to S. M. G.) and the International Tin Research Institute for a studentship (to E. J. F.).

#### References

- 1 A. Jelen and O. Linquist, Acta Crystallogr., Sect. B, 1971, 27, 1092.
- 2 S. J. Clark, J. D. Donaldson, J. C. Dewan, and J. Silver, Acta Crystallogr., Sect. B, 1979, 35, 2550.
- 3 J. C. Dewan, J. Silver, J. D. Donaldson, and M. J. K. Thomas, J. Chem. Soc., Dalton Trans., 1977, 2319.
- 4 J. D. Donaldson and J. C. Dewan, personal communication.
- 5 J. D. Donaldson and S. M. Grimes, Rev. Silicon, Germanium, Tin, Lead, Compd., in the press.
- 6 J. D. Donaldson, M. T. Donoghue, and C. H. Smith, Acta Crystallogr., Sect. B, 1976, 32, 2098.
- 7 R. M. A. Grimsey, Ph.D. Thesis, London, 1980; A. D. Christie, R. A. Howie, and W. Moser, Inorg. Chim. Acta, 1979, 36, L447.
- 8 S. Hausmann and J. Lowenthal, Liebigs Ann. Chem., 1954, 89, 104
- 9 J. D. Donaldson and B. J. Senior, J. Chem. Soc. A, 1966, 1769. 10 G. M. Sheldrick, SHELX Program for Crystal Structure Determination, University of Cambridge, 1976.
- 11 W. D. S. Motherwell, PLUTO, Plotting Molecular and Crystal Structures, University of Cambridge, 1979.
- 12 J. D. Donaldson, Prog. Inorg. Chem., 1967, 8, 287.
- 13 A. Pajunen and S. Pajunen, Acta Crystallogr., Sect. B, 1980, 36, 2425
- 14 A. D. Christie, R. A. Howie, and W. Moser, Inorg. Chim. Acta, 1979, 36, L447; A. Gleiges and J. Galy, J. Solid State Chem., 1979, 30, 23.
- 15 J. C. Dewan, J. Silver, R. H. Andrews, J. D. Donaldson, and D. R. Laughlin, J. Chem. Soc., Dalton Trans., 1977, 368.

Received 14th October 1983; Paper 3/1823