Journal of Organometallic Chemistry, 132 (1977) 45-51
© Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

SILACYCLOBUTANE MIT SPERRIGEN SUBSTITUENTEN

PETER JUTZI * und PETER LANGER

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D 87 Würzburg, (B.R.D.)

(Eingegangen den 8. November 1976)

Summary

By the reaction of 1,1-dichloro-1-silacyclobutane with mesitylmagnesium bromide and with t-butyllithium, we have synthesized 1-chloro-1-mesityl-1-silacyclobutane (II), 1,1-dimesityl-1-silacyclobutane (III), 1-t-butyl-1-chloro-1-silacyclobutane (IV), 1,1-di-t-butyl-1-silacyclobutane (V) and 1-t-butyl-1-mesityl-1-silacyclobutane (VI). ¹H NMR, IR and mass spectra of these compounds and of 1-chloro-1-phenyl-1-silacyclobutane (VII) and 1,1-diphenyl-1-silacyclobutane (VIII) are described.

Zusammenfassung

Durch Umsetzung von 1,1-Dichlor-1-silacyclobutan mit Mesitylmagnesiumbromid bzw. t-Butyllithium haben wir 1-Chlor-1-mesityl-1-silacyclobutan (II), 1,1-Dimesityl-1-silacyclobutan (III), 1-t-Butyl-1-chlor-1-silacyclobutan (IV), 1,1-Di-t-butyl-1-silacyclobutan (V) und 1-t-Butyl-1-mesityl-1-silacyclobutan (VI) hergestellt. H-NMR-, IR- und Massenspektren dieser Verbindungen sowie von 1-Chlor-1-phenyl-1-silacyclobutan (VII) und 1,1-Diphenyl-1-silacyclobutan (VIII) werden beschrieben.

Synthesen und Reaktionen einer Reihe von Silacyclobutanen sind bereits ausführlich beschrieben worden. [1]. Thermolyse- und Photolysereaktionen einiger dieser Verbindungen führten jeweils zu Produkten, die durch das intermediäre Auftreten von Silaalkenen erklärt werden konnten [1,2,3]. Im Rahmen unserer Untersuchungen über Element—Kohlenstoff p_{π} — p_{π} -Bindungen [2] hatten wir uns die Aufgabe gestellt, Silacyclobutane mit sterisch auspruchsvollen Substituenten darzustellen. Für die bei Thermolysereaktionen möglicherweise entstehenden Silaalkene erwarten wir insofern eine gewisse Stabilisierung, als Folgereaktionen, insbesondere die Kopf—Schwanz-Dimerisierung zu 1,3-Disilacyclobutanen, durch die sperrigen siliciumständigen Substituenten erschwert sein sollten. Wir berichten hier über die Synthese und die spektroskopische Charak-

terisierung einiger 1,1-disubstituierter 1-Silacyclobutane mit raumerfüllenden Substituenten

Darstellung

1,1-Disubstituierte 1-Silacyclobutane können prinzipiell nach zwei Verfahren dargestellt werden: einmal durch Ringschlussreaktionen mit entsprechend substituierten 3-Halopropyl-halogensilanen nach Gl. 1 zum anderen durch Substitutionsreaktionen am bereits geschlossenen Silacyclobutanring nach Gl. 2.

$$Hal-CH_2-CH_2-CH_2-\frac{R}{Si-R} - \frac{Mg}{-MgHal_2}$$
 Si_R (1)

Zur Synthese von Silacyclobutanen mit organischen Substituenten am Silicium erweist sich das Verfahren nach Gl. 2 als günstiger. Bei der Synthese nach Gl. 1 ergeben sich Schwierigkeiten bei der Darstellung entsprechend substituierter Halopropylhalogensilane, da mit der Hydrosilysierung ein Halogen-Wasserstoff-Austausch konkurriert [4-7]. Das weiteren erschweren vor allem sterisch anspruchsvolle Substituenten am Silicium die Ringschlussreaktion [8]. Wir haben deshalb sperrige organische Substituenten durch Substitutionsreaktionen am 1,1-Dichlor-1-silacyclobutan (I) [4] eingeführt.

Bei der Umsetzung von I mit ein bzw. zwei Äquivalenten Mesitylmagnesiumbromid entsteht in guter Ausbeute das 1-Chlor-1-mesityl-1-silacyclobutan (II) bzw. das 1,1-Dimesityl-1-silacyclobutan (III); die Substitution des zweiten Halogenatoms gelingt allerdings erst unter drastischeren Reaktionsbedingungen.

Die Einführung von t-Butylgruppen am Silicium ist durch Umsetzung von I mit t-Butyllithium möglich. Hierbei entsteht in hoher Ausbeute das 1-t-Butyl-1-chlor-1-silacyclobutan (IV) bzw. nach längerem Erhitzen am Rückfluss das 1,1-Di-t-butyl-1-silacyclobutan (V).

I tert. Butyl-Li
$$Si$$
 CH_3 H_3C CH_3 H_3C CH_3 CH_3

Der Einbau einer t-Butyl- neben einer Mesitylgruppe ist ebenfalls noch möglich, allerdings erst unter verschärften Reaktionsbedingungen. So entsteht bei der Umsetzung von II mit t-Butyllithium das 1-t-Butyl-1-mesityl-1-silacyclobutan (VI).

Die relativ hohe Ausbeute an den cyclischen Verbindungen IV, V und VI ist insofern etwas überraschend, als andere Silacyclobutane schon bei Raumtemperatur mit Lithiumorganylen nahezu vollständig unter Ringöffnung reagieren [1,9].

Spektroskopische Daten

Zur Charakterisierung der Verbindungen II—VI haben wir deren ¹H-NMR-IR- und Massenspektren aufgenommen. Mit aufgeführt werden die spektroskopischen Daten des 1-Chlor-1-phenyl-1-silacyclobutans (VII) und des 1,1-Diphenyl-1-silacyclobutans (VIII), die bisher in der Literatur noch nicht beschrieben waren [10,11].

Die ¹H-NMR-Spektren von II—VIII sind in Tabelle 1 zusammengestellt. Die Ringprotonen liefern komplizierte Spektren höherer Ordnung, die nicht näher analysiert worden sind. Mit Ausnahme von Verbindung VII beobachtet man deutlich getrennte Multipletts für die C_{α} - und C_{β} -Wasserstoffatome des Silacyclobutan-Ringsystems.

Aus den IR-Spektren von Silacyclobutanen werden zur Charakterisierung im allgemeinen fünf Schwingungen herangezogen [4]. Diese sind für die Verbindungen II—VIII in Tabelle 2 zusammengestellt und zugeordnet worden. Drei

TABELLE 1

1H-NMR-DATEN DER SILACYCLOBUTANE II—VIII
vermessen in CCl₄, δ-Werte in ppm von TMS zu niedrigeren Feldstärken

Verb.	$\delta(H_{\alpha}), \delta(H_{\beta})$	δ(R-Si)
II	H _α 1.58–2.15 m [4]	CH ₃ 2.45 s [3], 2.55 s [6]
	H ₆ 2.22-2.50 m [2]	CH 6.82 s [2]
III	H ₀ 1.55-1.90 m [4]	CH ₃ 2.35 s [6], 2.55 s [12]
	H _S 2.05-2.42 m [2]	CH 6.73 s [4]
IV	H ₀ 1.30—1.70 m [4]	CH ₃ 1.17 s [9]
	H _S 1.87-2.57 m [2]	
v	H _a 0.94—1.64 m [4]	CH ₃ 1.17 s [18]
	H ₃ 1.87-2.54 m [2]	-
VI.	H ₀ 1.32-1.82 m [4]	CH ₃ 1.25 s [9], 2.40 s [3], 2.45 s [6]
	H ₆ 2.05-2.62 m [2]	CH 6.78 s [2]
VII	$H_{\alpha, ff}$ 1.58–2.85 m [6]	CH 7.28-7.85 m [5]
VIII	H ₀ 1.55—1.98 [4]	CH 7.33-7.72 m [10]
	H ₆ 2.25-2.88 [2]	

TABELLE 2

IR-DATEN DER VERBINDUNGEN II—VIII

Vermessen in Substanz (Verb. II in CCl₄), Angaben in cm⁻¹

Verb.	Ring-Schwingungen	CH ₂ -Schwingungen	•		
	860s, 906m, 940m	1130s, 1183w		. • :	
ш	851s, 870s, 918m	1130s, 1180w			
IV	855vs, 896m, 922m	1125vs, 1187w			
\mathbf{v}	845s, 890w, 935m	1122s, 1186w			
VI	860s, 905w, 939w	1129s, 1180w			
VII	855s, 898m, 920m	1129s, 1185w			
VIII	853s, 898m, 925m	1118s, 1185w			

von insgesamt sechs möglichen Ringschwingungen werden im Bereich zwischen 840 und 950 cm⁻¹ erwartet; die beiden anderen Absorptionen zwischen 1100 und 1200 cm⁻¹ entsprechen Schwingungen der CH₂-Gruppen des Silacyclobutansystems.

Wichtige Hinweise für das Verhalten der Silacyclobutane II—VIII bei der Thermolyse erwarteten wir aus den Massenspektren dieser Verbindungen. Nach Untersuchungen von Orlov und Gusel'nikov [12] verlaufen Fragmentierungen unter Elektronenbeschuss und Thermolysereaktionen bei Silacyclobutanen sehr ähnlich. So ist beispielsweise die Abspaltung von Äthylen aus dem 1,1-Dimethyl-1-silacyclobutan, die zum 1,1-Dimethyl-1-silaäthylen führt, in beiden Fällen der bevorzugte Zerfallsprozess.

Die unter nahezu identischen Bedingungen aufgenommen Massenspektren der Silacyclobutane II—VIII sind in Tabelle 3 zusammensgestellt. Sofern Zerfallsprodukte zugeordnet worden sind, zeigen sie die erwartete Isotopenverteilung. Das Molekülion tritt bei allen untersuchten Silacyclobutanen auf, allerdings mit stark variierender Intensität. Auch die durch Äthylenabspaltung entstehenden Silaalken-Ionen sind jeweils unterschiedlich stark ausgebildet, bei VI fehlt dieses Bruchstück völlig. Die meisten der zugeordneten Fragmentierungen lassen sich im folgenden Schema zusammenfassen.

$$[H_2C=SiR_2]^+ \frac{-C_2H_4}{} [Si\zeta_R^R]^+ \frac{-R}{} [Si-R]^+ \frac{-C_3H_6}{} [Si-R]^+$$

Über Thermolyseversuche mit den Silacyclobutanen II—VIII wird an anderer Stelle berichtet.

Experimentelles

Alle Versuche wurden unter Ausschluss von Feuchtigkeit in N₂-Atmosphäre durchgeführt. ¹H-NMR-Spektren: Varian T 60 (60 MHz); IR-Spektren: Perkin—Elmer 457, Massenspektren: Varian MAT, SM 1-BH; C,H-Analysen wurden im Mikrolaboratorium des Instituts durchgeführt. Mol. Massen wurden massenspektrometrisch bestimmt.

1-Chlor-1-mesityl-1-silacyclobutan (II)

Zu einer Lösung von 141.1 g (1.0 Mol) I in 250 ml Diäthyläther und 50 ml

TABELLE 3 MASSENSPEKTREN DER VERBINDUNGEN II-VIII

II (200°C, 200 μA, 70 eV)			III (200°C, 200 μA, 70 eV)			
Ion ⁺	Int. (%)	m/e	Ion ⁺	Int. (%)		
M	0.7	308	M	14.2		
$M-C_2H_4$	1.3	293	$M-CH_3$	10.7		
$M - C_3H_2$			•	3.5		
CoHin				64.3		
			• •	5.3		
				19.6		
00222				14.3		
				19.6		
	45.0			46.4		
•				100		
				21.4		
		133		35.7		
		119	C9H ₁₁	25.0		
•		105	C ₈ H ₉	21.4		
?		91		19.6		
				12.5		
•		45	-03	25.0		
C, 250 µA, 70 eV)		V (250°	C, 250 μA, 70 eV)			
Ion ⁺	Int. (%)	m/e	Ion ⁺	Int. (%)		
M	50.0	184	M	10.0		
$M - C_2H_4$	29.2	156	$M - C_2H_4$	6.0		
$M - C_3H_7$	100	127	$M - C_4 H_0$	13.3		
				100		
				36.5		
				36.6		
•		31	Carry	30.0		
C ₄ H ₉	95.8					
C, 250 µA, 70 eV)		VII (210	°C, 250 µA, 70 eV)			
Ion ⁺	Int. (%)	m/e	Ion ⁺	Int. (%)		
M	7.5	182	M	9.1		
$M - C_4 H_0$	80.3	154	$M-C_2H_4$	61.9		
				33.3		
				100		
				35.7		
				52.4		
		O O	OIDI	34.4		
C ₆ H ₅	12.5					
°C, 230 µA, 70 eV)					
Ion ⁺	Int. (%)		•			
M	1.7					
	2.0					
$M-C_3H_8$	1.4					
	6.1					
C12H10	0.7					
C ₁₂ H ₁₀ C ₆ H ₅ Si						
C ₁₂ H ₁₀ C ₆ H ₅ Si C ₇ H ₁₀	4.2 100					
	M — C ₂ H ₄ M — C ₃ H ₇ C ₉ H ₁₂ C ₈ H ₉ C ₇ H ₇ C ₆ H ₅ C, 250 μA, 70 eV) Ion ⁴ M — C ₂ H ₄ M — C ₃ H ₇ M — C ₄ H ₉ SiClC ₂ H ₆ SiClCH ₄ ClSi C ₄ H ₉ C, 250 μA, 70 eV) Ion ⁴ M — C ₄ H ₉ M — C ₆ H ₁₃ M — C ₇ H ₁₅ C ₉ H ₁₂ C ₈ H ₉ C ₇ H ₇ C ₆ H ₅ C, 230 μA, 70 eV Ion ⁴ M — C ₂ H ₄	Ion ⁺ Int. (%) M	M 0.7 308 M − C ₂ H ₄ 1.3 293 M − C ₃ H ₇ 2.8 280 C ₉ H ₂ 100 265 C ₃ H ₉ >>100 251 C ₇ H ₇ 28.1 235 C ₆ H ₅ 40.6 220 14.1 206 25.0 188 . 163 . 147 . 133 . 119 . 105 . 91 . 77 . 45 C, 250 μA, 70 eV) M 50.0 184 M − C ₂ H ₄ 29.2 156 M − C ₄ H ₉ 52.1 99 SiClC ₂ H ₆ 81.2 85 SiClCH ₄ 45.8 57 ClSi 83.3 C ₄ H ₉ 95.8 C, 250 μA, 70 eV) Vi (210 M 7.5 182 M − C ₄ H ₉ 95.8 C, 250 μA, 70 eV) Vi (210 M 7.5 182 M − C ₄ H ₉ 95.8 C, 250 μA, 70 eV) Vi (210 M 7.5 182 M − C ₄ H ₉ 95.8 C, 250 μA, 70 eV) Vi (210 M 7.5 182 M − C ₄ H ₉ 95.8 C, 250 μA, 70 eV) Vi (210 M 7.5 182 M − C ₄ H ₉ 95.8 C, 250 μA, 70 eV) Vi (210 M 7.5 182 M − C ₄ H ₉ 95.8 C, 250 μA, 70 eV) Vi (210 M 7.5 182 M − C ₄ H ₉ 95.8 C, 250 μA, 70 eV) Vi (210 M 7.5 182 M − C ₄ H ₉ 95.8 C, 250 μA, 70 eV) Vi (210 M 7.5 182 M − C ₄ H ₉ 95.8 C, 250 μA, 70 eV) Vi (210 M 7.5 182 M − C ₄ H ₉ 95.8 C, 250 μA, 70 eV) Vi (210 M 7.5 182 M − C ₄ H ₉ 95.8 C, 250 μA, 70 eV) Vi (210 M 7.5 182 M − C ₄ H ₉ 95.8 C, 250 μA, 70 eV) Vi (210 M 1.7 M − C ₂ H ₄ 2.0	Ion ⁺		

Tetrahydrofuran wird innerhalb von zwei Stdn. eine Lösung aus 1.0 Mol Mesitylmagnesiumbromid und 300 ml Diäthyläther unter Rühren zugetropft. Man erwärmt anschliessend noch zwei Stdn. unter Rückfluss, filtriert die entstandenen Magnesiumsalze ab und erhält II nach Abziehen des Lösungsmittels durch Vak. Destillation. Verb. II: Kp: $124-126^{\circ}$ C/0.8 Torr; Ausb. 159.5 g (71%). Analysen: Gef.: C, 63.76; H, 7.51; Mol. Masse, 224. C₁₂H₁₇ClSi ber.: C, 64.11; H, 7.61%; Mol. Masse, 224.81. IR (in Substanz): 3020m, 2960vs, 2920vs, 2860vs, 2735w, 2705w, 1610s, 1551w, 1480s, 1469s, 1416m, 1398m, 1382m, 1366m, 1292w, 1238w, 1197w, 1183w, 1130s, 1077s, 1030m, 1012m, 940m, 906m, 860s, 851s, 822m, 805w, 730w, 720w, 689vs, 628s, 570m, 548m, 513s, 389m cm⁻¹.

1,1-Dimesity!-1-silacyclobutan (III)

Zu einer am Rückfluss kochenden Lösung von 90.0 g (0.4 Mol) II in 200 ml Tetrahydrofuran wird innerhalb von fünf Stdn. eine Lösung aus 0.4 Mol Mesitylmagnesiumbromid und 200 ml Tetrahydrofuran unter Rühren zugetropft. Man erwärmt anschliessend fünf Tage unter Rückfluss, die entstandenen Magnesiumsalze werden mit Diäthyläther ausgefällt und abfiltriert. Nach Abziehen der Lösungsmittel erhält man III durch Vak.-Destillation. Der hierbei anfallende Feststoff wird aus Methanol/Äthanol/iso-Propanol (1:1:1) umkristallisiert. Verb. III: Kp.: 190—195°C/0.4 Torr, Fp.: 120°C; Ausb. 72.5 g (59%). Analysen: Gef.: C, 81.96; H, 9.21; Mol. Masse, 308. C₂₁H₂₈Si ber.: C, 81.75; H, 9.15%; Mol. Masse, 308.54. IR (in CCl₄): 3030m, 3000m, 2975s, 2930s, 2865m, 1609s, 1459m, 1455s, 1418s, 1379m, 1294w, 1238w, 1180w, 1130s, 1068m, 1031m, 958m, 937w, 918m, 870s, 851s, 697m, 680s, 638m, 621s, 588w, 568w, 550m, 497m, 399w cm⁻¹.

1-t-Butyl-1-chlor-1-silacyclobutan (IV)

Zu einer Lösung von 56.4 g (0.4 Mol) I in 150 ml Hexan werden bei -78° C 0.4 Mol einer t-Butyllithium/Hexan-Lösung unter Rühren innerhalb von drei Stdn. zugetropft. Man lässt anschliessend langsam bis auf Raumtemperatur erwärmen. Zur Vervollständigung der Reaktion wird noch 6 Stdn. unter Rückfluss erwärmt. Nach Abfiltrieren des ausgefallenen Lithiumchlorids und Abziehen des Hexans wird IV durch Vak.-Destillation erhalten. Verb. IV: Kp. 98° C/100 Torr; Ausb. 52.0 g (80%). Analysen: Gef.: C, 51.57; H, 9.03; Mol. Masse, 162. C₇H₁₅ClSi ber.: C, 51.66; H, 9.29%; Mol. Masse 162.74. IR (in Substanz): 2970vs, 2938vs, 2865vs, 2740w, 2718w, 1426vs, 1419vs, 1398s, 1370s, 1187w, 1125vs, 1071w, 1010m, 943m, 922m, 896m, 855vs, 826s, 703vs, 627m, 579s, 518m, 462m, 425m, 315w cm⁻¹.

1,1-Di-t-butyl-1-silacyclobutan (V)

Zu einer Lösung von 32.5 g (0.2 Mol) IV in 150 ml Heptan werden unter Eiskühlung und Rühren 0.2 Mol einer t-Butyllithium/Hexan-Lösung langsam zugegeben. Bei Erwärmen auf Raumtemperatur trübt sich die Lösung durch ausfallendes Lithiumchlorid. Nach zweitägigem Rühren wird zwölf Stdn. unter Rückfluss erwärmt. Nach Abfiltrieren des LiCl und Abziehen der Lösungsmittel wird V durch Vak. Destillation isoliert. Verb. V: Kp.: 132°C/100 Torr; Ausb. 25.1 g (68%). Analysen: Gef.: C, 71.14; H, 12.94; Mol. Masse, 184. C₁₁H₂₄Si gef.: C, 71.14; H, 12.94%; Mol. Masse, 184.40. IR (in Substanz): 2960vs, 2930vs,

2860vs, 2770w, 2738w, 2705w, 1475s, 1392s, 1369s, 1255w, 1186w, 1122vs, 1070w, 1053w, 1015w, 935w, 890w, 845vs, 823s, 684s, 608m, 500m, 375w cm⁻¹.

1-t-Butyl-1-mesityl-1-silacyclobutan (VI)

Zu einer Lösung von 45.0 g (0.2 Mol) II in 150 ml Hexan werden unter Eiskühlung und Rühren 0.2 Mol einer t-Butyllithium/Hexan-Lösung langsam zugegeben. Die Aufarbeitung erfolgt analog der Darstellung von V. Verb. VI: Kp.: $140-142^{\circ}$ C/1 Torr; Ausb. 24.6 g (50%). Analysen: Gef.: C, 77.70; H, 10.57; Mol. Masse, 246. $C_{16}H_{26}$ Si ber.: C, 77.97; H, 10.63%; Mol. Masse, 246.47. IR (in Substanz): 3020m, 2930vs, 2860s, 1608s, 1550w, 1468s, 1418m, 1891m, 1380m, 1362m, 1291w, 1235w, 1195w, 1180w, 1129s, 1075m, 1027w, 1012w, 939w, 905w, 860s, 850s, 821m, 805w, 720w, 687vs, 628s, 569w, 546w, 511m cm⁻¹.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für finanzielle Unterstützung. Herrn Dr. N. Pelz danken wir für die Aufnahme der Massenspektren.

Literatur

- 1 R. Damrauer, Organometal. Chem. Rev. A, 8 (1972) 67.
- 2 P. Jutzi, Angew. Chem., 87 (1975) 269.
- 3 L.E. Gusel'nikov, N.S. Nametkin und V.M. Vdovin, Acc. Chem. Res., 8 (1975) 18.
- 4 J. Laane, J. Amer. Chem. Soc., 89 (1967) 1144.
- 5 J.W. Ryan, G.K. Menzie und J.L. Speier, J. Amer. Chem. Soc., 82 (1960) 3601.
- 6 A.G. Smith, J.W. Ryan und J.L. Speier, J. Org. Chem., 27 (1962) 2190.
- 7 Z.V. Belyakova, M.G. Pomerantseva und Z.V. Belikova, Zh. Obshch. Khim., 44 (1974) 2439.
- 8 P. Langer, Diplomarbeit Univ. Würzburg, 1974.
- 9 N.S. Nametkin und V.M. Vdovin, Izv. Akad. Nauk SSSR, Ser. Khim., (1974) 1153.
- 10 N.S. Nametkin, V.M. Vdovin, E.D. Babich und V.D. Oppengeim, Khim. Geterosikl. Socdin, Akad. Nauk Latv. SSSR, (1965) 455; Chem. Abstr., 63 (1965) 13308d.
- 11 N.S. Nametkin, V.M. Vdovin und V.J. Zav'yalov, Izv. Akad. Nauk SSSR, Ser. Khim., (1965) 1448.
- 12 V.Yu. Orlov, L.E. Gusel'nikow, N.S. Nametkin und R.L. Ushakova, Org. Mass Spectrom., 6 (1972) 309.