
CHEMICAL COMMUNICATIONS, 1970

Synthesis of Fluorinated Allenes using Atomic Carbon

By M. J. MCGLINCHEY, T. REYNOLDSON, and F. G. A. STONE* (Department of Inorganic Chemistry, The University, Bristol BS8 1TS)

Summary Carbon vapour generated with a carbon arc reacts with $CF_2: CFX$ (X = CF_3 , Cl, or Br) to give the fluoro-allenes $(X)(F)C:C:CF_2$. The products are rationalised in terms of cyclopropylcarbene intermediates.

PREVIOUS routes to fluorinated allenes involve multi-stage syntheses.¹⁻⁴ We now report that perfluoropropene reacts with carbon vapour generated in an arc^{5,6} to give perfluorobuta-1,2-diene (I) (b.p. -5°) in yields of 20%. In a

single arcing experiment⁶ it is possible to prepare a gram of (I). The nature of (I) was established by its mass spectrum,

and i.r. and ¹⁹F n.m.r. spectra. The mass spectrum showed a molecular ion at m/e 162, and major ions corresponding to $C_4F_5^+$, $C_4F_4^+$, $C_3F_3^+$, $C_3F_2^+$, CF_3^+ , C_3F^+ , and CF^+ . The i.r. spectrum had an allene band at 2056 cm⁻¹, together with C-F stretching vibrations similar to those observed in the spectra of fluoro-allenes.^{2-4,7} The ¹⁹F n.m.r. spectrum showed signals (relative to CCl₃F) at 72.2 (3F, d of t), 73.5 $(2F, d \text{ of } q) \text{ and } 103 \cdot 2 (1F, t \text{ of } q) \text{ p.p.m., with } |J_{ab}| = 15 \cdot 0$, $|J_{ac}| = 4.3$, and $|J_{bc}| = 36.4$ Hz. Similarly, chlorotrifluoroethylene reacted with carbon vapour to give CIFC : C : CF_2 (II) (b.p. 12.6°) in yields of 10-15%. The i.r. spectrum of (II) showed bands at 2044 and 2016 cm⁻¹, and the ¹⁹F n.m.r. spectrum had signals at 48.2 (1F, t, $|J_{FF}|$ 30.2 Hz) and 75.0 (2F, d) p.p.m.

Products from bromotrifluoroethylene and carbon vapour are obtained in low yield (ca. 5%), but besides $BrFC:C:CF_2$ (III) [v_{max} 2030 cm⁻¹] include 1-bromo-2,3,3-trifluorocyclopropene (IV) [b.p. 44°: vmax 1844 cm⁻¹]. The ¹⁹F n.m.r. spectrum of (IV) showed peaks at 97.9 (2F, d, $|J_{FF}| 40.7$ Hz) and 126.0 (1F, t) p.p.m., and is consistent with a cyclopropene having a CF₂ bridge.⁸ The two major peaks in the mass spectrum are the parent ion and $C_3F_3^+$. Formation of (III) and (IV) may be visualised as involving an intermediate cyclopropylcarbene which either rearranges to an allene, or stabilises itself by bromine migration.

We thank the S.R.C. for a research studentship (T.R.).

(Received, July 20th, 1970; Com. 1166.)

 ¹ R. E. Banks, M. G. Barlow, W. D. Davies, R. N. Haszeldine, and D. R. Taylor, J. Chem. Soc. (C), 1969, 1104.
² W. T. Miller, W. Frass, and P. R. Resnick, J. Amer. Chem. Soc., 1961, 83, 1767.
³ D. C. England and C. G. Krespan, J. Amer. Chem. Soc., 1966, 88, 5582.
⁴ R. E. Banks, A. Braithwaite, R. N. Haszeldine, and D. R. Taylor, J. Chem. Soc. (C), 1968, 2593.
⁵ P. S. Skell, L. D. Wescott, J. P. Goldstein, and R. R. Engel, J. Amer. Chem. Soc., 1965, 87; 2829.
⁶ J. E. Dobson, P. M. Tucker, F. G. A. Stone, and R. Schaeffer, J. Amer. Chem. Soc. (A), 1969, 1882.
⁷ T. L. Jacobs and R. S. Bauer, J. Amer. Chem. Soc., 1959, 81, 606.
⁸ W. R. Cullen and M. C. Waldman, Inorg. Nuclear Chem. Letters, 1970, 6, 205.