Structural and Stereodynamic Studies on Molecular Early Transition Metal Derivatives. V. NMR Study of Isolated Tungsten Dioxofluoride Adducts of Type WO₂F₃L⁻

M. POSTEL, J. G. RIESS

Laboratoire de Chimie Minérale Moléculaire, Equipe de Recherche Associée au CNRS, Parc Valrose, 06034, Nice, France J. Y. CALVES and J. GUERCHAIS

Laboratoire de Chimie Moléculaire Inorganique, Université de Bretagne Occidentale, Avenue Victor le Gorgeu, 29N, Brest, France Received May 11, 1978

The title compounds (L = phosphine oxide, pyridine N-oxides) have been isolated and characterized, and their ClCH₂CN solutions studied by variable temperature ¹H, ¹⁹F and ³¹P NMR. A detailed investigation on $Et_4N[WO_2F_3(OPMe_3)]$ shows that the F atom trans to an oxo ligand, as well as the OPMe₃ ligand trans to the other oxo ligand in the cis-dioxo structure A, are rapidly dissociated on the NMR timescale, while the apical F atoms trans to each other are not, which illustrates the trans-labilizing effect of the oxo ligands. Upon ageing new species are formed in the solutions, including $WO_2F_2(OPMe_3)_2$, $[WO_2F_3 (ClCH_2CN)]^-$, $WO_2F_2(ClCH_2CN)_2$, F^- and $OPMe_3$. An equilibrium situation is reached after 4 days' heating at 80 °C. The neutral $WO_2F_2(OPMe_3)_2$ is then largely predominant. Material balance calculations indicate that polynuclear species are also likely to be present.

Introduction

The *trans* influence of multiply bonded ligands on the structure of coordination compounds is abundantly documented [1]. However, in Mo(VI) and W(VI) dioxo compounds where a *cis*-MO₂ arrangement is always found [1, 2], this *trans* influence becomes in some cases less obvious: for example in $[MoO_2F_4]^{2-}$ only one of the Mo-F bonds *trans* to the oxygen atoms is longer (2.00 Å) while the other is, within experimental error, equal to the Mo-F bonds *trans* to each other (1.94 Å) [3].

The *trans*-labilising effect of the multiply bonded oxygen atoms in Mo(VI) and W(VI) dioxo compounds was first studied by Buslaëv *et al.* They showed, through ¹⁹F NMR of aqueous solutions of $(NH_4)_2[WO_2F_4]$, that the bonds formed by tungsten with the fluorine atoms in the *trans* positions relative to the oxygens are much more labile: they readily undergo a dissociative exchange at room temperature. A greater reactivity is therefore expected for W-F bonds *trans* to oxygen [4].

As an illustration of this *trans*-labilisation effect, Buslaëv reported on the composition of dioxotungsten(VI) fluoride mixtures formed in hydrofluoric acid solutions and on their *in situ* reactions with a number of ligands. From the NMR spectra measured on the quite intricate solutions obtained in this way, he recognized the formation of $[WO_2-F_3L]^-$, $WO_2F_2L_2$ and WO_2F_2LL' (L,L' = DMSO, MeOH, EtOH, MeCN, SCN⁻); however, none of these derivatives were isolated. The results obtained by Buslaëv again indicate that the ligands *trans* to oxygen are rather labile and are readily substituted by other donors [5, 6].

As part of our search into the fate of early transition metal derivatives in solution [7], we have isolated several [WO₂F₃L]- anions (L = phosphine oxide, pyridine N-oxides) as their tetraethylammonium salts. This in turn allowed us to investigate the behavior of these now well characterized isolated species once they are put back in solution under welldefined conditions. We also avoided using aqueous hydrofluoric acid as a solvent, it being too reactive, and preferred CH₂ClCN in which the adducts are still soluble and which was expected to give less complex mixtures. This paper is devoted to the variable temperature ¹⁹F, ¹H and ³¹P NMR study of the [WO₂F₃L]⁻ anions.

Experimental

The $(Et_4N)(WO_2F_3L)$ compounds were prepared from $(Et_4N)[WO_2F_3(H_2O)]$ through substitution of the aquo ligand by phosphine oxide (1) or pyridine oxides (II-VI) in hot ($\cong 60$ °C) acetonitrile solutions [8].

TABLE I. Analytical Data and Princip	oal IR At	bsorptions	of Compc	ounds Et4	N[WO2F ₃	3L]. ⁸						
Compounds	Analyti	ical					Infra-red					
		C	Н	z	۲u	d	$\nu(cis-MO_2)$	(M-F)	δ(<i>cis</i> -MO ₂)	(OMF)	v (PO or NO)	Δν (PO or NO)
I JUND E COMPANY	calcd	26.67	5.86	2.83	11.57	6.26	950 v.s.	580 s	2 276	316	1005	3 L
Et4 ^M [WO2 ^F 3(UFME3)]	found	26.81	5.85	2.94	11.34	6.72	905 v.s.	555 v.s.	\$ 0/0	III CTC	CON	c
	calcd	31.32	5.02	5.62	11.44		960 s	. 073	016	305 ch	1220.2	36
E14N[WU2F3(L5H5NU)]	found	31.10	5.10	5.62	11.65		905 v.s.	5 000	111 0/ 6	118 COC	5 0771	64
	calcd	32.81	5.27	5.46	11.13		960 s	. 073			1210.5	9
Et4N[WU2F3(Z-U13 L5114NU)]	found	32.80	5.29	5.56	10.74		s 006	\$ 000			• • • • • • •	10
	calcd	32.81	5.27	5.46	11.13		940 s	575 s			1760.0	16
Eldin[WU2F3(J-CH3C5H4INU)]	found	32.84	5.27	5.52	10.85		895 v.s.	545 s	III 7/C	III 07 C	S 0.07T	2
	calcd	32.81	5.27	5.46	11.13		965 s	° U73		310 ab	1210.0	36
LL4M [WU2F 3(4-CU3U5A4MU)]	found	33.14	5.55	5.66	10.59		905 v.s.	¢ 000	mcic		S UL 2 I	2
VI E4 NUMO E 24 OC 11 NOVI	calcd	31.76	5.10	5.29	10.77		950 s	575 s	377	316	1310 2	5
LI4M [WO2F 3(4-CH3OC5H4MO)]	found	31.82	5.12	5.41	10.77		900 v.s.	550 v.s.	III 7/0		.6.7 0121	16

^ay.s. = very strong; s = strong; m = medium; w = weak; sh = shoulder.

Preparation of $(Et_4N)[WO_2F_3(H_2O)]$

Et₄NCl (3.3 g, 0.02 mmol) dissolved in HF (20 ml) is added to a solution of H₂WO₄ (2.5 g, 0.01 mmol) in HF (20 ml). The solution is then concentrated, the white crystalline precipitate is filtered off, washed with water and dried under vacuum. Yield 3.8 g (90%). Anal. Calcd for WC₈H₂₂F₃NO₃: C, 22.81; H, 5.22; F, 13.54. Found: C, 22.82; H, 5.29; F, 12.87. Ir (Nujol, cm⁻¹): $\nu_{s}cis(WO_2)$ 997(s); $\nu_{as}cis(WO_2)$ 900(vs); $\delta cis(WO_2)$ 390(m); $\nu(W-F)$ 590(sh), 565(vs), 472(s); $\nu(OH)$ 3220(s).

Preparation of $(Et_4N)[WO_2F_3(OPMe_3)]$

(Et₄N)[WO₂F₃(H₂O] (420 mg, 1 mmol) is added to a solution of OPMe₃ (110 mg, 1.20 mmol) in acetonitrile (40 ml). The mixture is heated to 50– 60 °C until dissolution is complete. After cooling the white crystals are filtered off, washed with ethanol and dried under vacuum. Yield 420 mg (85%).

The other $(Et_4N)[WO_2F_3L]$ compounds were prepared according to the same procedure; their analytical and i.r. data are given in Table I.

Preparation of $WO_2F_2(OPMe_3)_2$

A large excess of OPMe₃ (370 mg, 4 mmol) dissolved in ethanol (10 ml) is added to a solution of H_2WO_4 (250 mg, 1 mmol) in HF (10 ml). The solution is concentrated to *ca*. 10 ml. After 3 days at room temperature the white crystals of WO_2F_2 -(OPMe₃)₂ are collected, washed with ethanol and dried under vacuum. Yield 330 mg (75%). *Anal.* Calcd for $WC_6H_{18}F_2O_4P_2$: C, 16.33; H, 4.08; P, 14.06. Found: C, 16.06; H, 3.97; P, 14.21%.

The i.r. spectra of the $(Et_4N)(WO_2F_3L)$ compounds (Nujol mulls) show the two intense bands at *ca.* 900 and 950 cm⁻¹ that are characteristic of a *cis*dioxo configuration [1, 2]. All the compounds are 1:1 electrolytes in acetonitrile ($\Lambda = 150 \ \Omega^{-1} \ mol^{-1} \ cm^2$ for 10^{-3} solutions).

The NMR spectra were recorded on a Jeol C-60 HL spectrometer (¹⁹F), A Bruker WH 90/DS spectrometer (³¹P) and, in one case, on a 250 MHz Cameca spectrometer. Infrared spectra were obtained on a Perkin-Elmer 225 spectrometer. Conductance measurements were performed with a Tacussel CD 6AB conductimeter.

Results and Discussion

Low Temperature NMR of Fresh Solutions

The ¹⁹F spectrum (Fig. 1a) measured on a *freshly* prepared 0.55 *M* solution of Et₄N [WO₂F₃(OPMe₃)] (I), in monochloroacetonitrile at -40 °C, consists of a doublet (F_a, $\delta = +4.5$ ppm from CF₃COOH) and a triplet (F_e, $\delta = -14.3$ ppm; J_{FF} = 65 Hz) the areas of which are in a 2:1 ratio. These data are consistent with structure A where F_a is assigned to the axial

Figure 1. ¹⁹F NMR spectra of a 0.55 *M* solution of (Et_4N) -[WO₂F₃(OPMe₃)] in CH₂ClCN (reference: external CF₃-COOH).

Compound	L	WO ₂ F ₂ L ₂		$[WO_2F_3L]^-$		Coalesc. ^a
		δ (ppm)	δ F _{axial} (ppm)	δ F _{eq.} (ppm)	J (Hz)	°C
I	OPMe ₃	+11.6	4.5	-14.3		-8
II	C ₅ H ₅ NO	12.8	3.6	-13.6	$J_{FF} = 65$	-20
III	2-CH ₃ C ₅ H ₄ NO	13.6	5.3	-15.1	I = 107	-18
IV	3-CH ₃ C ₃ H ₄ NO	12.7	3.4	-13.5	JWFax - 107	-15
v	4-CH ₃ C ₅ H ₄ NO	12.9	3.9	-14.3	$J_{WFeq} = 73$	-18
VI	4-CH ₃ OC ₅ H ₄ NO	11.3	2.4	-12.9		-1

TABLE II. ¹⁹F NMR Data Measured on 0.7 *M* Chloroacetonitrile Solutions of $Et_4N[WO_2F_3L]$ at -40 °C; external reference: CF₃COOH.

^aCoalescence temperature of the F_{axial} doublets as measured on freshly prepared solutions (F⁻ and WO₂F₂L₂ not yet detectable).

fluorine atoms and F_e to the equatorial one, and which also takes into account the i.r. data

The ¹⁹F⁻¹⁸³W coupling satellites are observed for both axial and equatorial fluorines: $J_{F_a-W} = 107$ Hz; $J_{F_e-W} = 65$ Hz. The significant difference between these one-bond coupling constants indicates that the metal forms a stronger covalent bond with the axial than with the equatorial fluorine atom [9].

Fig. 1 also illustrates the temperature dependence of the ¹⁹F spectra measured on the same freshly prepared solution of I. The striking features to be noticed when the temperature is increased are: (i) the disappearance of F_{axial} — $F_{equatorial}$ coupling; (ii) the slow lowfield shift of signal F_a while signal F_e shifts towards higher fields much more rapidly; (iii) the preservation of the ¹⁸³W—¹⁹F coupling satellites of signal F_a (axial fluorines) up to 90 °C when compound I starts decomposing. These results imply that the exchange process responsible for the observed change in NMR pattern occurs through dissociation of the equatorial W—F bond.

After the solution has been kept for two hours at room temperature, two new signals become detectable in the low temperature ¹⁹F spectrum of compound I (F_c , $\delta = +4.35$ ppm with $J_{F-W} = 110$ Hz and F_d , $\delta = -50.05$ ppm). Signal F_c was assigned to $WO_2F_2(OPMe_3)_2$ through comparison with an authentic, independently prepared sample of the latter [8]. The second signal, F_d , was assigned to the F⁻ anion on the basis of its chemical shift [10] and by addition of Et₄NF to the solution. It is noteworthy that the use of aqueous hydrofluoric acid as a solvent made it impossible for Buslaëv to detect the formation of F⁻ in his tungsten dioxide fluorides solutions. The trans effect of the terminal oxygen atoms was further confirmed by ¹H NMR. The proton spectrum measured at -40 °C on the same freshly prepared 0.55 *M* solution exhibits two doublets ($\delta_1 = 1.60$ ppm, 95%; $\delta_2 = 1.53$ ppm, $\approx 5\%$; ²J_{PH} = 13.7 Hz). Addition of an excess of free ligand allows the assignment of signal 2 to free OPMe₃ which implies partial dissociation (~5%) of I. In a coordinating solvent such as CH₂CICN, it seems reasonable to assume that OPMe₃ is then replaced by one molecule of the solvent to give a [WO₂F₃(CH₂CICN)]⁻ anion. The coalescence of the signals assigned to free and coordinated OPMe₃ is observed at *ca.* 0 °C.

Both ¹⁹F and ¹H NMR results thus demonstrate the *trans* labilising effect of the terminal oxo groups: both W-OPMe₃ and W-F bonds located in the *cis*-WO₂ plane are immediately partially dissociated in solution, while the *cis*-dioxo *trans*-difluoro scheme:

remains unchanged on the NMR time-scale. A more quantitative study of these phenomena was precluded by the ageing of the solutions: the temperatures of coalescence were found to depend on the amount of the neutral $WO_2F_2L_2$ species present and therefore on time.

The behavior of compounds II to VI in CH_2ClCN solutions was essentially identical with that of compound I. Table II lists the ¹⁹F chemical shifts measured for the compounds.

Ageing of the Solutions

When a chloroacetonitrile solution of compound I is kept at room temperature for three weeks, the *cis*-

Tungsten Dioxofluoride Adducts

Species (S = $CH_2CICN L = OPMe_3$)	OPMe ₃ (from ³¹ P NMR) % of total OPMe ₃	W % of total W	F (from ¹⁹ F NMR) % of Total F
$[WO_2F_3L]^-$	4	4	5
WO ₂ F ₂ L ₂	84	42	28
$[WO_2F_3S]^-$	0	1	1
$WO_2F_2S_2$	0	2	1
F	0	0	10
OPMe ₃	2	0	0
non identified species	10	51	55

TABLE III. Percentage of the Various Species Detected in Equilibrated Solutions of Et₄N[WO₂F₃(OPMe₃)] at 80 °C.

Figure 2. ¹⁹F spectrum measured at -40 °C on a 0.72 *M* solution of (Et₄N)[WO₂F₃(OPMe₃)] kept at room temperature for three weeks (solvent: CH₂ClCN; reference: external CF₃COOH).

dioxo *trans*-difluoro structural pattern is still unchanged while the concentration of both the neutral species $WO_2F_2(OPMe_3)_2$ and the F^- ion formed has considerably increased (Fig. 2).

However, we observed that the composition of the solutions of compound I reach an equilibrium – there is no further change in their NMR spectra – after 4 days' heating at 80 °C. This equilibrium does not depend on the concentration of the solution in the 0.03 to 0.72 M range and no changes were observed in the spectra even after a year.

The molecular constitution of these solutions at equilibrium is very intricate and could only partially be elucidated through low temperature ¹⁹F and ³¹P NMR (Table III). The ¹⁹F spectrum exhibits very numerous signals in as wide a range as from +140 to -30 ppm! (a portion of this spectrum measured at 250 MHz on a Cameca spectrometer is presented in Fig. 3).

Only ca. 4% of the initially dissolved $[WO_2F_3$ -(OPMe₃)]⁻ anion remains present at equilibrium, while the preponderant species has become the neutral WO₂F₂(OPMe₃)₂ (it represents 84% of the total OPMe₃, 42% of the tungsten and 28% of the fluorine). This once more illustrates the stability of the cis-dioxo trans-difluoro structural pattern. The $[WO_2F_3(CH_2CICN)]^-$ anion (1%) and WO₂-F₂(CH₂CICN)₂ (1% in fluorine) could also be identified. Surprisingly no $[WO_2F_4]^{2-}$ was detected at equilibrium. Free OPMe₃ accounts for 2% of the ³¹P spectrum, while the amount of F⁻ present at equilibrium is quite large (10% of the fluorine).

The starting material being $[WO_2F_3(OPMe_3)]^-$, this implies that, whatever species are present at equilibrium, the overall composition of the solution still corresponds to 3 F atoms for 1 OPMe₃ group and one W atom. Taking into account the abundance

of the *identified* species (Table III), one is left with 3.3 F and 0.2 OPMe₃ per W atom to fit the remaining signals in both the ¹⁹F and the ³¹P spectra. This, and the fact that the unidentified signals appear mostly at low fields in the ¹⁹F spectra, may be taken as an indication of the formation of polynuclear species having bridging axial fluorine atoms [9, 11].

These results again illustrate the drastic changes that early transition metals derivatives, that are well-defined in the solid state, often undergo once they are put in solution [7].

Acknowledgements

We wish to thank Mrs Hajdukovic (Cameca) for recording the 250 MHz ¹⁹F spectrum.

References

- 1 E. M. Shustorovitch, M. A. Porai-Koshits and Yu. A. Buslaëv, Coord. Chem. Rev., 17, 1 (1975).
- 2 F. A. Cotton, J. Less Common Met., 36, 13 (1974).
- 3 D. Grandjean and K. Weiss, Bull. Soc. Chim. Fr., 3058 (1967).
- 4 Yu. A. Buslaëv and S. P. Petrosyants, Zh. Strukt. Khim., 10, 1105 (1969).
- 5 Yu. A. Buslaëv, S. P. Petrosyants and V. I. Chagin, *Zh. Neorg. Khim.*, 17, 704 (1972).
- 6 R. Kergoat and J. E. Guerchais, Bull. Soc. Chim. Fr., 2932 (1970).
- 7 J. G. Riess, R. C. Muller and M. Postel, *Inorg. Chem.*, 13, 1802 (1974); L. G. Hubert-Pfalzgraf, R. C. Muller, M. Postel and J. G. Riess, *Inorg. Chem.*, 15, 40 (1976);
 L. G. Hubert-Pfalzgraf, A. A. Pinkerton and J. G. Riess, *Inorg. Chem.* 17, 668 (1978).
- 8 J. Y. Calves and J. E. Guerchais, *Bull. Soc. Chim. Fr.*, 1220 (1973); J. Y. Calves, *Thesis*, Brest (France), (1975).
- 9 Yu. A. Buslaëv, Yu. A. Kokunov and V. A. Bochkareva, Zh. Strukt. Khim., 13, 611 (1972).
- 10 C. H. Duncan and J. R. Van Wazer, "Compilation of Reported ¹⁹F NMR Chemical Shifts", Wiley-Interscience, New York (1970).
- 11 M. J. Bennett, T. E. Haas and J. T. Purdham, Inorg. Chem., 11, 207 (1972).