Published on 01 January 1966. Downloaded by Freie Universitaet Berlin on 18/12/2016 15:10:35

The Structure of N-Methyltrichlorophosphinimine Dimer

By Laurence G. Hoard and Robert A. Jacobson

The structure of N-methyltrichlorophosphinimine dimer, (CH₃NPCl₃)₂, has been determined by three-dimensional Fourier synthesis and full-matrix least-squares refinement of X-ray diffraction data. The structure is composed of discrete centrosymmetric dimeric molecules with a planar four-membered ring of alternate phosphorus and nitrogen atoms (P-N-P = $99.5^{\circ} \pm 0.4^{\circ}$ and N-P-N = $80.5^{\circ} \pm 0.4^{\circ}$). The co-ordination of each phosphorus atom is approximately a trigonal bipyramid of three chlorine atoms and two nitrogen atoms, one apical and one equatorial. The apical bond distances are P-CI = 2.133 ± 0.003 Å and P-N = 1.769 ± 0.007 Å; the equatorial are P-CI = 2.026 ± 0.004 Å and P-N = 1.635 ± 0.007 Å. The co-ordination of the nitrogen is trigonal with a N-C bond distance of 1.475 ± 0.010 Å. The shortness of the P-N bonds and the planar co-ordination of the nitrogen atoms suggest some $d\pi - p\pi$ bonding between the phosphorus and nitrogen atoms.

ANY elucidation of the nature of bonding in phosphonitriles is rendered difficult by the dearth of accurate structural data. Detailed crystallographic data are available only for cyclic polymers. The P-N bond distances within the $(P-N)_n$ ring are equal for any given compound of the type $(X_2PN)_n$, but are not necessarily equal if the exocyclic ligands on the phosphorus atoms are not equivalent. A summary of these studies is given in Table 1.1-7

In all previous stucture determinations of molecular cyclophosphonitriles, the nitrogen and phosphorus

¹ H. McGeachin and F. R. Tromans, J. Chem. Soc., 1961, 4777. ² A. Wilson and D. F. Carroll, J. Chem. Soc., 1960, 2548. Bizemonti Ricerca sci., 1959, 29, 15

³ F. Pompa and A. Ripamonti, Ricerca sci., 1959, 29, 1516.

atoms were found to be two- and four-co-ordinate, respectively. Recently, Chapman et al.⁸ prepared N-

methyltrichlorophosphinimine dimer and the molecular configuration (I) has been proposed. We have carried

- ⁵ G. J. Bullen, Proc. Chem. Soc., 1960, 425.
 ⁶ M. W. Dougill, J. Chem. Soc., 1961, 5471.
 ⁷ N. V. Mani, F. R. Ahmed, and W. H. Barnes, Program and Abstracts, Amer. Cryst. Soc. Meeting, Gatlinburg, Tennessee,

1965; Paper G-10.
A. C. Chapman, W. S. Holmes, N. L. Paddock and H. T. Searle, J. Chem. Soc., 1961, 1825.

⁴ R. Hazekanap, T. Migchelsen, and A. Vos, Acta Cryst., 1962, 15, 539.

TABLE 1 Molecular structures of cyclophosphonitriles as determined by X-ray analyses

$\begin{array}{c} Compound \\ (F_2PN)_4 & \dots \\ (Cl_2PN)_3 & \dots \\ [(CH_3)_2N]_8P_4N_4 & \dots \\ [(CH_3)_2PN]_4 & \dots \\ [(CH_3)_2PN]_4 & \dots \\ (C_6H_5)_2Cl_4P_3N_3 * \dots \end{array}$	$\begin{array}{c} P-N \ \text{length} \\ (\text{ring}) \ (\text{\AA}) \\ 1.51 \ \pm \ 0.02 \\ 1.59_5 \ \pm \ 0.017 \\ 1.570 \ \pm \ 0.009 \\ 1.59 \\ 1.596 \ \pm \ 0.005 \\ 1.555 \\ 1.578 \\ 1.615 \end{array}$	Conformation of ring Planar Virtually planar Slightly puckered Puckered Slight chair form	Ref. 1 2,3 8 5 6 7
	1 010		

* 1,1,3,3-Tetrachloro-5,5-diphenyltriphosphinimine.

out a detailed crystal and molecular structure determination of this compound.

EXPERIMENTAL

Single crystals of N-methyltrichlorophosphinimine dimer were prepared using the method of Chapman et al.⁸ Methylammonium chloride (0.11 mole) and phosphorus pentachloride (0.10 mole) were refluxed in 1,1,2,2-tetrachloroethane (0.1 l.) for 5 hr. The insoluble salts were filtered off, and the solvent was distilled off in vacuo. The product was recrystallised from carbon tetrachloride and sublimed at $150^{\circ}/0.5$ torr. Monoclinic needles of dimeric N-methyltrichlorophosphinimine were formed, m. p. 160° (decomp.).

Suitable single crystals for X-ray analysis were selected by microscopic examination and mounted in 0.3 mm. diameter Lindemann glass capillaries. Selection and mounting of the crystals were done in a dry-box since the compound is hygroscopic.

Crystal Data.— $(CH_3NPCl_3)_2$, M = 332.7, monoclinic, space group $P2_1/n$, $a = 6.95 \pm 0.02$, $b = 14.06 \pm 0.03$, $c = 6.02 \pm 0.02$ Å, $\beta = 99.3 \pm 0.2^{\circ}$, $D_{\rm m} = 1.93 \pm 0.03$ (by flotation), Z = 4 units of (CH_3NPCl_3) , $D_c = 1.90$. The space group and lattice parameters were determined using single-crystal precession techniques.

Intensity Data .--- Complete three-dimensional X-ray diffraction intensity data (up to sin $\theta/\lambda = 0.7247$) were taken with zirconium-filtered molybdenum K_{α} radiation from a crystal approximately 0.32 mm. long and 0.17 mm. in diameter. A General Electric XRD-5 X-ray unit equipped with a single-crystal orienter and scintillation counter was used, and the data were collected using the stationary-crystal, stationary-counter technique.9 A fortysecond peak height intensity was recorded for each of 2005 reflections (including the systematically extinct reflections of the type h0l, h + l = 2n + 1). The background intensity, found to be independent of ϕ and χ , was tabulated as a function of 2θ . Four standard reflections were measured periodically; the average decrease in their intensities compared with the number of reflections observed was used to correct for decomposition effects. The maximum decrease in intensity was 18%.

Streak corrections were made using the technique of Benson and Fitzwater, 10 a method essentially equivalent to that of Williams and Rundle.¹¹ A theoretical curve was

⁹ T. C. Furnas, "Single Crystal Orienter Instruction Manual," General Electric Company, Milwaukee, Wisconsin, 1957. ¹⁰ J. E. Benson and D. R. Fitzwater, Iowa State University,

a streak calculation program for the IBM 7074, personal com-

munication, 1964. ¹¹ D. E. Williams and R. E. Rundle, J. Amer. Chem. Soc., 1964, **86**, 1660.

¹² L. E. Alexander and G. S. Smith, Acta Cryst., 1962, 15, 983.

used to convert from peak-height into integrated intensity data after the method of Alexander and Smith.¹² Intensities were corrected for Lorentz and polarisation factors. Because of the small absorption coefficient of the compound ($\mu/\rho = 8.9$ cm.²/g.), no absorption correction was made.

Treatment of Errors and " Unobserved " Reflections.-The estimated error in each intensity measurement was calculated by the formula

$$egin{aligned} (\Delta I)^2 &= C_{\mathrm{T}} + C_{\mathrm{B}} + (K_{\mathrm{T}}C_{\mathrm{T}})^2 + (K_{\mathrm{B}}C_{\mathrm{B}})^2 \ &+ (K_{\mathrm{S}}C_{\mathrm{S}})^2 + (K_{\mathrm{D}}DC_{\mathrm{T}})^2 \end{aligned}$$

where $C_{\rm T}$, $C_{\rm B}$, and $C_{\rm S}$ are the total, background, and streak counts, respectively, and D is the decomposition correction. In addition to the statistical errors, this formula assumes relative errors of $K_{\rm T}$, $K_{\rm B}$, $K_{\rm S}$, and $K_{\rm D}$ in the total, background, and streak intensities, and in the decomposition correction, respectively. The relative errors assigned are 2% for K_S, and 5% for K_B, K_S, and K_D.

The finite difference method was used to derive the formula for the estimated standard error for each reflection:

$$\Delta F = (Lp)^{-\frac{1}{2}} \left[(I + \Delta I)^{\frac{1}{2}} - I^{\frac{1}{2}} \right]$$

where I is the calculated intensity and Lp is the Lorentzpolarisation correction. A reflection having an intensity less than three times its ΔF was considered to be "un observed" and was not used in the refinement. The standard errors were used during refinement to weight the 801 observed structure factors.

Structure Determination.-The presence of dimeric molecules in a unit cell with space group symmetry of order 4 requires the dimer to be centrosymmetric. The positions of the phosphorus and the three chlorine atoms were obtained from an analysis of the Harker sections of a sharpened Patterson map, the data having been sharpened using a programme of Granoff and Jacobson.¹³ Using these four atoms to determine the signs, an electron-density map was then computed which revealed the positions of the nitrogen and carbon atoms in the asymmetric unit. The hydrogen atoms were neglected for this structure determination. The Patterson and electron-density maps were computed using the programme of Ledet.14 The HFS atomic scattering factors 15 were used in all structure-factor calculations. All computations were performed using an IBM 7074 computer.

A full-matrix least-squares refinement was initiated with all atoms isotropic, using the programme of Fitzwater.¹⁶ When the residual factor $(R = \Sigma ||F_o| - |F_c||/\Sigma |F_o|)$ reached 0.233, anisotropic refinement was begun. The final R-factor was 0.0574; the weighed R-factor $\{R_{weighted} =$ $\Sigma ||(F_0/\sigma)| - |(F_c/\sigma)||/\Sigma |(F_0/\sigma)|$ was 0.0561. A list of the calculated and observed structure factors is given in Table 2 on an absolute scale. The final positional and thermal parameters and their errors are given in Table 3. The interatomic distances and angles, and their errors, were

¹³ B. Granoff and R. A. Jacobson, Iowa State University, a data sharpening program for the IBM 7074, personal com-

¹⁴ M. Ledet, MFOUR Crystallographic Fourier Summation
 ¹⁵ Program, U.S. Atomic Energy Commission report IS-876, Ames
 ¹⁶ Laboratory, Ames, Iowa, 1964.
 ¹⁵ H. P. Hanson, F. Herman, J. D. Lea, and S. Skillman, Acta

Cryst., 1964, 17, 1040. ¹⁶ D. R. Fitzwater, Iowa State University, a crystallographic least-squares program for the IBM 7074, personal communication, 1964.

ı k z

98 66 63

15

68

second $10|F_{\rm o}|$, and the third $10F_{\rm c}$)

7 k 3

-1 k 8

1206

J. Chem. Soc. (A), 1966

TABLE 3

Final parameters and standard errors for $(CH_3NPCl_3)_2$. (The thermal parameters and errors are $\times 10^4$, and the standard errors are given in parentheses below the parameter)

Atom	x/a 0.0363	y/b 0:1864	<i>z c</i> 0:1468	β ₁₁ 364	β ₂₂ 35	β ₃₃ 366	β_{12}	β ₁₃ 67	$\beta_{23} = 27$
01(1)	(0.0003)	(0.0001)	(0.0003)	(7)	(1)	(7)	(2)	(6)	(2)
Cl(2)	0·3769 (0·0003)	0·1265 (0·0002)	0·1823 (0·0003)	242 (6)	71 (2)	356 (7)	$-53 \\ (2)$	$-13 \\ (5)$	-14 (3)
Cl(3)	$0.1726 \\ (0.0003)$	0.1177 (0.0002)	-0.2869 (0.0003)	287 (6)	67 (1)	262 (6)	-32 (2)	79 (5)	$28 \\ (2)$
P	0·0996 (0·0003)	0·0783 (0·0001)	0·0127 (0·0003)	176 (4)	29 (1)	200 (5)	8 (2)	28 (4)	$\begin{pmatrix} 0\\(2) \end{pmatrix}$
N	$0.1246 \\ (0.0007)$	-0.0283 (0.0004)	0·1186 (0·0009)	144 (13)	32 (3)	258 (17)	2 (5)	-4 (11)	4 (6)
C	0·2781 (0·0010)	$-0.0772 \\ (0.0006)$	$0.2761 \\ (0.0012)$	180 (20)	74 (6)	316 (25)	40 (8)	-35 (18)	57 (10)

computed using the function and error programme of Busing, Martin, and Levy.¹⁷ These are given in Table 4

TABLE 4

Interatomic distances and angles (Å) (errors in parentheses) for $(CH_3NPCl_3)_2$. (The atoms are labelled as shown in the Figure) - - - .

Bond distances						
P–Cl(1)	2.029(0.005)	NCl'(1)	2.758(0.008)			
P-Cl(2)	2.133 (0.003)	N-Cl'(2)	3-898 (0-011)			
P–Cl(3)	2.023(0.003)	N-Cl'(3)	2.740 (0.009)			
P–N `	1.635 (0.007)	$Cl(1) - Cl(2) \dots$	2.954(0.009)			
P–N′	1.769 (0.007)	$Cl(1) - Cl(3) \dots$	3.320(0.009)			
P–P′	2.600 (0.004)	Cl(1)-C `	4.324(0.012)			
Р–С	2·870 (0·010)	Cl(1)-C'	3.204(0.012)			
P–C′	2.893 (0.011)	$Cl(2) - Cl(3) \dots$	2.944(0.009)			
N–C	1.475 (0.010)	Cl(2)C	3.036(0.012)			
N–N′	$2 \cdot 202 (0 \cdot 013)$	Cl(2)-C'	4.955 (0.015)			
N-Cl(1)	3.249 (0.009)	Cl(3)-C	4.332(0.013)			
N–Cl(2)	2.788 (0.008)	Cl(3)-C'	3.179 (0.013)			
N-Cl(3)	3.250 (0.010)	C–C′	5.143 (0.019)			
Bond angles						
Cl(1)-P-Cl(2)	90·4° (0·2)	Cl(3)-P-N	. 125·0° (0·3)			
Cl(1) - P - Cl(3)	$110.0_{5}(0.2)$	Cl(3) - P - N'	. 92.3 (0.3)			
Cl(1) - P - N	124·6 (0·3)	P−N−P′	. 99.5 (0.4)			
$Cl(1) - P - N' \dots$	92.9 (0.3)	N-P-N'	. 80.5 (0.4)			
Cl(2) - P - Cl(3)	90·2 (0·2)	С-N-Р	. 134.6 (0.6)			
Cl(2)-P-N	94.5 (0.3)	C-N-P'	. 125.9 (0.6)			
$Cl(2) - P - N' \dots$	175.0 (0.3)		• •			

with the labelling of the atoms corresponding to that in the Figure.

Molecule of (CH₃NPCl₃)₂

DISCUSSION

Structure.---Visualisation of the structure of Nmethyltrichlorophosphinimine dimer is simplified by first examining a molecule of gaseous phosphorus pentachloride.¹⁸ The five chlorine atoms are arranged at the vertices of a trigonal bipyramid centred on the phosphorus atom. The P-Cl bond distances for equatorial and apical chlorine atoms are 2.026 ± 0.006 and 2.133 ± 0.006 Å, respectively.

The co-ordination of each phosphorus atom in (CH₃NPCl₃)₂ is similar to that in PCl₅ if two nitrogen atoms are substituted for chlorine atoms, one in an apical, and the other in an equatorial position. In this way a planar, four-membered ring of alternating phosphorus and nitrogen atoms is formed as the molecular framework.

The Cl-P-Cl bond angle for equatorial chlorine atoms in (CH₃NPCl₃)₂ is the only phosphorus-chlorine parameter which is not identical, within experimental error, with its equivalent in PCl₅. This is due to packing effects between adjacent non-bonded equatorial chlorine atoms. This distance reaches a minimum value of 3.486 ± 0.007 Å compared with the van der Waals 3.60 Å as given by Pauling.¹⁹ This is the only intermolecular distance less than the sum of van der Waals radii.

The carbon atoms lie in the plane of the $(P-N)_2$ ring and are equidistant from the two phosphorus atoms. The carbon temperature factors suggest no pronounced anisotropic character, and thus it appears that these are the correct positions for the carbon atoms rather than a statistical averageing of non-planar positions. Also, no significant electron density was found in the difference electron-density map in the non-planar regions. This planar co-ordination of the nitrogen atoms is unusual, since three-co-ordinate nitrogen is tetrahedral in

17 W. R. Busing, K. O. Martin, and H. A. Levy, OR FFE, a Fortran crystallographic function and error program, U.S. Atomic Energy Commission report ORNL-TM-306, Oak Ridge National Laboratory, Tennessee, 1964.

 M. Rouault, Ann. Physique, 1940, 14, 78.
 L. Pauling, "Nature of the Chemical Bond," Cornell University Press, Ithaca, New York, 1960.

virtually all other compounds except trisilylamine,²⁰ $N(SiH_3)_3$, where the nitrogen atom is trigonal.

The optimum values of the angles around the phosphorus and nitrogen atoms would be approximately 90 and 120°, respectively. Non-bonded interactions and orbital-overlap considerations determine the compromise values of N-P-N' = $80.48^{\circ} \pm 0.36^{\circ}$ and P-N-P' = $99.52^{\circ} \pm 0.36^{\circ}$.

Bonding.—On first glance it might seem that a bonding scheme similar to Rundle's proposal ²¹ for PCl₅ could explain the structure of (CH₃NPCl₃)₂. The phosphorus atom uses an sp^2 -hybrid orbital to form σ -bonds to the equatorial chlorine and nitrogen atoms. The apical chlorine and nitrogen atoms form a three-centre fourelectron bond with the remaining phosphorus p-orbital. No *d*-orbitals are used in bonding. An sp^2 -hybrid orbital on the nitrogen atom forms σ -bonds to the carbon and two phosphorus atoms. Using the fractional bond order formula as given by Pauling,19 and considering the equatorial P–N bond to be a whole σ , the apical P-N bond is calculated to be $\frac{1}{2}\sigma$.

However, this first approximation does not explain the planar co-ordination of the nitrogen atoms, or the equality of the apical P-N bond length to the " pure " P-N σ-bond length 22 found in NaHPO₃NH₂, or the relatively high average P-N bond energy as determined by Fowell and Mortimer.²³ They found E[P-N] =74.3 kcal./mole, a higher value than the E[P-N] =66.8 kcal./mole in the tervalent phosphorus compound, $P(NEt_2)_3$.

A calculation of the $d\pi - p\pi$ overlap integral was made

²⁰ K. Hedberg, J. Amer. Chem. Soc., 1955, 77, 6491.
 ²¹ R. E. Rundle, Record of Chemical Progress, 1962, 23, 195.

²² E. Hobbs, D. E. C. Corbridge, and B. Raistrick, Acta Cryst., 1953, **6**, 621.

using the programme of Silver.²⁴ The maximum overlap was found at a P-N bond distance of 1.635 Å, the value for the equatorial P-N bond. The overlap in the case of the longer P-N bond distance was not as favourable for $d\pi - p\pi$ bonding but of a value sufficient to suggest at least a partial π -bond. Thus, it seems likely that both the apical and equatorial P-N bonds have some $d\pi - p\pi$ character.

The minimum intramolecular C-Cl distances are 3.04 ± 0.01 Å [C-Cl(2)] and 3.19 ± 0.01 Å [C-Cl(eq)]. These distances indicate steric repulsion between the carbon and adjacent chlorine atoms which is minimised by the carbon atom assuming coplanarity with the $(P-N)_2$ ring. The resultant destruction of the usual sp^{3} -hydridisation of the nitrogen orbitals could effectively raise the energy of the nitrogen p-orbital perpendicular to the ring, making it more compatible with the relatively higher energy of the phosphorus *d*-orbitals. The lone pair of electrons on the nitrogen atom could now be used to form $d\pi - p\pi$ bonds with the phosphorus atoms. This multiple bonding would explain the P-N bond lengths and bond strengths.

More detailed considerations of the bonding in this compound cannot be made until further structural information on other related compounds is available.

This work was carried out under the auspices of the U.S. Atomic Energy Commission.

INSTITUTE FOR ATOMIC RESEARCH AND DEPARTMENT OF CHEMISTRY, IOWA STATE UNIVERSITY, AMES, [6/159 Received, January 3rd, 1966] IOWA, U.S.A.

²³ P. A. Fowell and C. T. Mortimer, Chem. and Ind., 1960, 444. ²⁴ D. M. Silver, Iowa State University, an overlap integral calcu ation program for the IBM 7074, personal communication, 1965.