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Pt doped 122 iron arsenide SrFe;_,Pt,As; (0 < x < 0.4) was successfully synthesized. The tetragonal unit-
cell volume and the lattice constant a increase with increasing the Pt content, while c decreases, suggest-
ing that the Fe ions are indeed replaced by Pt ions. By the Pt doping, the magnetic order of the parent
phase is suppressed, and superconductivity emerges at approximately x = 0.15. T, reaches the maximum
of 16 K at x = 0.2. The compounds series can be a suitable subject to investigate role of the doped 5d state
in the superconducting 3d Fe-As layer.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the past several years, the Fe-based superconductor has at-
tracted broad attentions. Superconductivity (SC) has been reported
one after another for the family members, like REFeAsO; _.Fx (RE = -
rare-earth metal) [1-3], doped AEFe,As, (AE=Ca, Sr, Ba) [4-7],
AFeAs (A =Li, Na) [8,9], FeSe, [10,11], and Sr,V,0gFe,As, [12]. All
of them have a common structure piece, the Fe-As layer, which
is directly responsible for the SC.

In the materials system, AEFe,As, has several advantages for
investigating nature of the FeAs layer [1]; there is no complication
caused by oxygen nonstoichiometry [2]. AEFe,As, widely accepts
chemical doping to the AE, Fe, or As sites [4-7]. Some doped ele-
ments eventually induce the SC [3]. Besides, applied pressure can
also induce the SC; CaFe,As, indeed shows crossover to the SC at
12K at pressure as low as 0.4 GPa [13-15] as does SrFe,As, at
27 K at 3 GPa and BaFe,As, at 29 K at 3.5 GPa [16].

In this paper, we report SC induced by replacing Fe of SrFe,As,
with the 5d element Pt. The doped compound crystallizes into the
ThCr,Si,-type structure with the space group I4/mmm as well as
the host compound. The lattice parameters variation over the Pt sub-
stitution demonstrates that Fe is successfully replaced by Pt up to
20 at.%. The spin-density-wave (SDW) transition of the parent com-
pound is suppressed gradually with the Pt doping, and the SC
emerges. A comparable feature was observed for the Pt doped
SrFe,As; by other independent groups very recently [17,18]. Single-
crystal and polycrystal samples of Pt-doped SrFe,As, had been
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studied, separately. The maximum T, is about 17 K in our samples,
which is almost same as in above two works. There is an interesting
phenomenon that the T, is almost independent with Pt doping con-
tent in Ref. [18]. However, the T. is dependent Pt doping content
strongly in our work and Ref. [17]. Stoichiometry and homogeneity
of Pt element should been the key point for this behavior.

2. Experiments

Polycrystalline sample was prepared by a solid-state reaction
method with two steps. First, StAs and FeAs were prepared by
the method from Sr pieces (99.9%, Strem Chemicals), Fe powder,
and As grains (99.999%, High Purity Chem.). Second, they were
mixed with Pt (99.9%, Strem Chemicals) and Fe powder (99.9%,
100 mesh, Rare Metallic Co.) with the proportions of SrFe,_,Pt,As,
(x=0, 0.1, 0.15, 0.2, 0.3, 0.4). The mixture was pressed into a Ta
capsule. The capsule was sealed in an evacuated quartz tube, fol-
lowed by heating at 1000 °C for 48 h. The weighing, grounding,
and pressing were processed in a glove box, which was constantly
maintained under a protective argon atmosphere.

Phase identification was carried out by an X-ray diffraction
(XRD) method in Philips X'pert PRO X-ray diffractometer using a
0-20 scan with Cu Ko radiation at room temperature. Structural
refinement was performed by a standard Rietveld technique [19].
Electronic resistivity measurements were conducted in physical
property measurements system, Quantum Design, by a standard
four-probe method. DC magnetization measurements were done
in magnetic property measurements system, Quantum Design.

3. Results and discussion

Fig. 1 shows the XRD patterns of the SrFe,_,Pt,As, samples at
x=0, 0.1, 0.15, 0.2, 0.3 and 0.4. Obvious impurity peaks were
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undetected, indicating that all the samples are of single phase. We
indexed all peaks with a tetragonal lattice model [[4/mmm; Sr 2a
(0, 0, 0), Fe/Pt 4d (0.5, 0, 0.25), As 4d (0.25, 0, 0.3608)] [17] by a
standard Rietveld method. As a representative, fit to the pattern
for SrFe; gsPto 15As; is shown in Fig. 2. The lattice constants a, c,
a/c and the unit-cell volume V obtained by the fits are shown in
Fig. 3. It reveals that the lattice constants a, a/c, V increase with
the Pt content, while ¢ decreases. Distance between the Fe-As lay-
ers is slightly shortened, however the increase of unit-cell volume
indicates a negative chemical pressure is actually introduced by
the Pt-doping.

Fig. 4 shows the temperature dependence of the electrical resis-
tivity of SrFe,_,Pt,As; at x=0, 0.1, 0.15, 0.2, 0.3 and 0.4. It can be
seen that the parent compound SrFe,;As; exhibits a clear anomaly
at 210K, which corresponds to the SDW transition [17]. The
SDW transition temperature decreases by the Pt doping; 143 K at
x=0.1, 94K at x=0.15, and the anomaly disappears at x=0.2
and higher. Meantime, SC appears at x = 0.1 and higher. The zero
resistivity was observed at x = 0.15, 0.2 and 0.3, but not at x =0.4.
The x =0.4 sample is probably in the “over doped” region. It is
noteworthy that coexistence of SC and SDW was observed for the
samples at x=0.1 and 0.15. Because the coexistence directly re-
flects nature of the unusual SC, further investigation of the samples
is in progress.

Fig. 5a-f. show temperature dependence of the magnetic sus-
ceptibility for all the samples of SrFe,_,Pt,As; (x = 0-0.4) measured
in a magnetic field of 3 kOe at zero field cooling (ZFC) and field
cooling (FC) conditions. Inset to Fig. 5a is an expanded view focus-
ing on the anomaly at 210 K. Other insets to Fig. 5b-f. show addi-
tional data measured at 10 Oe below 30 K.

The 3 kOe data indicate that all of the samples are paramag-
netic-like. The small gap in the ZFC and FC curves at x = 0.1, 0.2,
0.3 indicate magnetic contributions from undetected impurities,
masking the SC diamagnetism. In fact, such the magnetic contribu-
tions are often observed for many iron-based superconducting
compounds [20]. We thus conducted the measurements in a much
weak field of 10 Oe.

As shown in the inset to Fig. 53, a small anomalous peak was ob-
served at 210 K, which is likely due to the SDW transition. With
increasing the Pt content, the SDW gradually disappears. For the
x =0.1 sample, a weak downturn feature in the ZFC curve was de-
tected, while the samples at x = 0.15, 0.2, 0.3 show much larger dia-
magnetic signals below 12K, 16.5K and 16K, respectively.
Because the temperatures are comparable with the zero resistivity
temperature, it is reasonable to attribute the large diamagnetic sig-
nals to the SC. At the maximum Pt concentration x = 0.4, the SC is
suppressed probably due to the over doped carriers.
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Fig. 1. X-ray diffraction patterns of SrFe,_,Pt,As, (x=0, 0.1, 0.15, 0.2, 0.3 and 0.4).
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Fig. 2. X-ray diffraction pattern of SrFe;gsPto15As,. Crosses indicate the experi-
mental data and the calculated data is the continuous line overlapping them. The
lowest curve shows the difference between experimental and calculated patterns.
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Fig. 3. Pt-substitution dependence of lattice constants q, ¢, a/c and unit cell volume V.
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Fig. 4. Temperature dependence of resistivity for SrFe, ,Pt,As, with x =0, 0.1, 0.15,
0.2, 0.3 and 0.4 at zero magnetic field.

In summary, Pt doped 122 iron arsenide SrFe;_,Pt,As, was suc-
cessfully synthesized up to x = 0.4. The structure, electric transport,
and magnetic properties were investigated. With increasing the Pt
content, the SDW transition of the parent phase is gradually sup-
pressed and SC emerges at a doping level of approximately
x=0.15. Although the Pt doping eventually applies a negative
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Fig. 5. (a-f) Temperature dependence of magnetic susceptibility for SrFe,_,Pt As;
withx =0, 0.1,0.15, 0.2, 0.3 and 0.4 measured under a 3000 Oe magnetic field in ZFC
and FC models. The inset of (a) is the magnification of the y(T) between 180 K and
250 K. And the insets of (b-f) show the y(T) measured under a 10 Oe magnetic field
in ZFC and FC models below 30 K.

chemical pressure, which usually works against SC, T, reaches the
maximum of 16 K at x = 0.2. Perhaps, the 5d state in the Fe-As layer
alters the electrical carrier density effectively, overcoming the
pressure effect. Additional studies focusing on nature of the doped
5d state in the superconducting 3d Fe-As layer are in progress.
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