Synthesis of polyfluorinated ketones via the ate-complexes

K. I. Pashkevich,* O. G. Khomutov, V. I. Filyakova, and A. V. Kuchin

Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 20 ul. S. Kovalevskoi, 620219 Ekaterinburg, Russian Federation. Fax: +7 (343) 244 4433

Asymmetric polyfluorinated ketones R^FCOR are formed by treating various derivatives of (polyfluoro)alkanoic acids (esters, anhydrides, acid chlorides) with lithium tetraalkylaluminates ("ate-complexes"). The highest yields of the ketones (65–78 %) were obtained from (polyfluoro)alkanoyl chlorides.

Key words: fluorinated ketones, synthesis; lithium tetraalkylaluminates, reaction with (polyfluoro)alkanoyl chlorides.

Fluorinated ketones are used as fire-resistant solvents for polymers as well as synthons for obtaining biologically active compounds and thermo-, light-, and chemically stable polymers. Traditionally, ketones of the R^FCOR type are obtained by treating fluorocarboxylic acids or their derivatives (esters, nitriles, acid halides) with organomagnesium and organolithium compounds.¹ Surprisingly, the much more available organoaluminum compounds have not been utilized for this purpose. Moreover, the records of their use for the synthesis of organofluorine compounds are rather scarce.^{2,3}

We have elaborated an efficient method for the synthesis of nonsymmetric ketones of the general formula $R^{F}COCH_{2}CH_{2}R$ (1a-f) by treating the derivatives of (polyfluoro)alkanoic acids of the general formula $R^{F}COX$ (2a-d, X = Cl, MeO or EtO, 4-NO₂C₆H₄O, CF₃COO) with lithium tetraalkylaluminates ("ate-complexes") of general type 3. The latter are readily formed from terminal alkenes and LiAlH₄ in the presence of a TiCl₄ catalyst (Scheme 1, A). The reaction is easy to perform and, unlike most reactions involving organo-aluminum compounds, does not require that the synthesis be performed under a stream of argon.

The reactions of fluorine-substituted substrates $(2\mathbf{a}-\mathbf{d})$ (X = Cl, OMe, OEt, 4-NO₂C₆H₄O, CF₃COO) with ate-complexes $3\mathbf{a}-\mathbf{d}$ result exclusively in asymmetric ketones $1\mathbf{a}-\mathbf{f}$ (Scheme 1, *B*; Tables 1 and 2), the yield of which strongly depends on the reactivity of the carbonyl component, *i.e.*, on the nature of the ligand X in compounds $2\mathbf{a}-\mathbf{d}$. When X = OMe or OEt, the yields of compounds $1\mathbf{a}-\mathbf{d}$ are as small as 7–10 %. If *p*-nitrophenyl fluorocarboxylates are used, the yields of compounds $1\mathbf{a}-\mathbf{f}$ increase significantly, but these substrates tend to decompose on storage. The anhydrides (X = CF₃COO) react satisfactorily, but a sixfold excess of these compounds with respect to **3** is required. The best yields of fluoroketones are attained using the

Scheme 1 $CH_2 = CHR + LiAIH_4 \xrightarrow{\text{TiCl}_4(\text{cat})/\text{THF}} \text{Li}[Al(CH_2CH_2R)_4] \quad (A)$ 3a-d $R = n - C_7H_{15}(a), n - C_6H_{13}(b),$ $n - C_3H_7(c), n - C_4H_9(d)$

$$3(a-d) + R^{F}COX \xrightarrow{-10^{\circ}}_{24 \text{ h}} R^{F}COCH_{2}CH_{2}R \quad (B)$$

$$2a-d \qquad 1a-f$$

$$\mathsf{R}^{\mathsf{F}} = \mathsf{CHF}_2(\mathbf{a}), \ \mathsf{CF}_3(\mathbf{b}),$$

n-C₄F₉(c), n-C₆F₁₃(d)

 $(X = CI, OMe, OEt, 4-NO_2C_6H_4O, CF_3COO)$

acid chlorides, 2a-d (X = Cl), at a molar ratio atecomplex : acid chloride = 1 : 3.

Tables 1 and 2 present the parameters of the hitherto unknown products synthesized in this work.

Experimental

IR spectra were recorded on a Specord-75 IR spectrophotometer in a 5 mm-thick layer. ¹H NMR spectra were recorded on a Tesla BS-567A spectrometer (100 MHz) using Me_4Si as the internal standard. Elemental analysis data are in accordance with the structures presented.

Preparation of ate-complexes (general procedure). 1-Nonene (56 g, 0.48 mol) and TiCl₄ (0.5 g, 3.7 mmol) were added dropwise with stirring to a suspension of LiAlH₄ (4.7 g, 0.12 mol) in THF (200 mL) in such a way that the temperature did not exceed 40 °C. The mixture was kept for one day at ~20 °C and then used in reactions with derivatives of fluorocarboxylic acids.

Synthesis of fluoro-substituted ketones. Method 1. The reaction of perfluorovaleroyl chloride with lithium tetraoctyl-aluminate (3b).

Compound	RF	R	Method of synthesis	Yield (%)	B.p./°C (p/Torr)
1,1-Difluoro-2-undecanone (1a)	HCF ₂	C ₇ H ₁₅	1	73	94-95 (34)
1,1,1-Trifluoro-2-decanone (1b)	HF ₃	C_6H_{13}	1	65	96-97 (41)
1,1,1,2,2,3,3,4,4-Nonafluoro-5-decanone (1c)	C_4F_9	C_3H_7	1	68	81-82 (50)
1,1,1,2,2,3,3,4,4-Nonafluoro-5-undecanone (1d)	C_4F_9	C ₄ H ₉	1	76	92-93 (45)
1,1,1,2,2,3,3,4,4-Nonafluoro-5-tridecanone (1e)	C ₄ F ₉	$C_{6}H_{13}$	3	42	111-112 (23)
1,1,1,2,2,3,3,4,4,5,5,6,6-Tridecafluoro-7-pentadecanone (1f)	C ₆ F ₁₃	C ₆ H ₁₃	1	72	110-111 (7)

Table 1. Yields and characteristics of asymmetric polyfluorinated ketones 1

 Table 2. Spectroscopic characteristics of polyfluorinated ketones 1

Ketone	IR, v/cm ⁻¹	¹ H NMR, δ (J/Hz)
1a	1755	$\begin{array}{c} 0.88 \ (t, \ 3 \ H, \ CH_3, \ J_{CH_1CH_2} = 6.0);\\ 1.2-1.36 \ (m, \ 12 \ H, \ (CH_2)_6);\\ 1.46-1.80 \ (m, \ 2 \ H, \ COCH_2CH_2);\\ 2.64 \ (t, \ 2 \ H, \ COCH_2, \\ J_{CH_2CH_2} = 7.0)\end{array}$
1b	1765	0.70 (t, 3 H, CH ₃ , $J_{CH_3CH_2} = 6.1$); 0.92–1.18 (m, 10 H, (CH ₂) ₅); 1.26–1.54 (m, 2 H, COCH ₂ <u>CH₂</u>); 2.71 (t, 2 H, COCH ₂ , $J_{CH_2CH_2} = 6.8$)
1c	1760	0.85 (t, 3 H, CH ₃ , $J_{CH_3CH_2} = 6.0$); 0.90–1.19 (m, 6 H, (CH ₂) ₃); 1.35–1.68 (m, 2 H, COCH ₂ CH ₂); 2.70 (t, 2 H, COCH ₂ , $J_{CH_2CH_2} = 6.8$)
1d	1757	0.91 (t, 3 H, CH ₃ , $J_{CH_3CH_2} = 5.4$); 1.26–1.48 (m, 6 H, (CH ₂) ₃); 1.57–1.84 (m, 2 H, COCH ₂ <u>CH₂</u>); 2.76 (t, 2 H, COCH ₂ , ($J_{CH_2CH_2} = 6.8$)
le	1750	0.89 (t, 3 H, CH ₃ , $J_{CH_3CH_2} = 5.4$); 1.24–1.50 (m, 10 H, (CH ₂) ₅); 1.56–1.84 (m, 2 H, COCH ₂ <u>CH₂</u>); 2.75 (t, 2 H, COCH ₂ , $J_{CH_2CH_2} = 6.8$)
1f	1755	$\begin{array}{l} 0.92 \ (\text{t, 3 H, CH}_3, J_{\text{CH}_3\text{CH}_2} = 5.4);\\ 17.6-1.44 \ (\text{m, 10 H, (CH}_2)_5);\\ 1.56-1.86 \ (\text{m, 2 H, COCH}_2\text{CH}_2);\\ 2.75 \ (\text{t, 2 H, CH}_2, J_{\text{CH}_2\text{CH}_2} = 7.0) \end{array}$

Perfluorovaleroyl chloride (2c, X = Cl) (102 g, 0.36 mol) was added at -10 °C with stirring to the ate-complex **3b** (R =

 C_6H_{13}) obtained by the above procedure. The mixture was kept for one day at ~20 °C, then cooled to 0 °C. Water and 20 % aqueous H_2SO_4 were added dropwise until the inorganic salts dissolved. The mixture was extracted with ether and the extract was dried with MgSO₄ and concentrated, after which the product **1e** was isolated by distillation *in vacuo*.

Method 2. Reaction of trifluoroacetic anhydride with lithium tetraoctylaluminate. Trifluoroacetic anhydride (**2b**, $X = OCOCF_3$) (75.6 g, 0.36 mol) was added dropwise at -20 °C to a stirred solution of the ate-complex **3b** obtained from LiAlH₄ (2.28 g, 0.06 mol), 1-octene (28 g, 0.25 mol), and TiCl₄ (0.25 g, 1.85 mmol). The mixture was kept for one day at ~20 °C and worked up according to method 1 to give ketone **1b**.

Method 3. Reaction of *p*-nitrophenyl perfluorovalerate with Li[AlOct₄]. *p*-Nitrophenyl ester $2c (X = 4-NO_2C_6H_4O)$ (69.3 g, 0.18 mol) was added dropwise at -5 °C with stirring to a solution of the ate-complex 3b obtained as described above. The mixture was kept for one day at -20 °C and worked up as above. Ketone 1e was isolated according to method 1.

Method 4. Reaction of 3b with ethyl perfluorovalerate. Ester 2c (X = OEt) (52.5 g, 0.18 mol) was added dropwise at ~ 20 °C to a stirred solution of the ate-complex 3b obtained as described above. The mixture was refluxed for 3 h. Subsequent work-up and isolation of ketone 1e were carried out according to method 1.

References

- 1. A. Lovelace, D. A. Rausch, and W. Postelnek, *Aliphatic Fluoro-Containing Compounds*, Reinhold, New York, 1958.
- A. V. Kuchin, R. A. Nurushev, A. Yu. Spivak, and G. A. Tolstikov, *Zh. Obshch. Khim.*, 1986, 56, 2306 [J. Gen. Chem., 1986, 56 (Engl. Transl.)].
- O. G. Khomutov, V. I. Filyakova, A. V. Kuchin, K. I. Pashkevich, and G. A. Tolstikov, *Izv. Akad. Nauk, Ser. Khim.*, 1992, 2339 [Bull. Russ. Acad. Sci., Div. Chem. Sci., 1992, 41, 1834 (Engl. Transl.)].

Received October 28, 1993