J. Chem. Soc. (B), 1966

Kinetics of Aliphatic Nitrone Formation on the Addition of N-Alkylhydroxylamines to Aliphatic Aldehydes in Aqueous Solution ¹

By Masaichiro Masui and Chino Yijima

The formation of aliphatic nitrones from N-cyclohexylhydroxylamine and aldehydes has been followed spectrophotometrically in aqueous buffer solution of pH 1.5-94. The reaction is second-order at constant pH, being dependent on the free hydroxylamine concentration and the free aldehyde concentration. The second-order rate constant shows a linear dependence on [H+] below pH 7, but is independent of it above pH 8. From the values of the reaction constant, ρ^* , the activation parameters ΔS^{\ddagger} and E_{a} , and the known mechanism of several carbonyl reactions, a reaction scheme is proposed. Intermediate diol formation is a specific-acid-catalysed reaction and is rate-determining in acidic media, but the dehydration of the intermediate diol is rate-determining in alkali.

In the preparation of α -hydroxyamino-nitriles by the addition of hydrogen cyanide to aliphatic oximes² it was found that NN-di-(1-cyanoalkyl) hydroxylamines were formed as by-products, and a general procedure for the preparation of the latter compounds was reported.³ Contrary to the mechanism proposed by Stadinikoff⁴ for the formation of iminodinitriles in the Strecker reaction, dialkylhydroxylamines were found to be formed via aliphatic nitrones, and the existence of the nitrone intermediates was demonstrated by ultraviolet and infrared spectroscopy, polarography, and an asymmetric synthesis of NN-di-(1-cyanoalkyl)hydroxylamine, though the nitrone itself was not isolated. Generally, aliphatic nitrones are more unstable than aryl nitrones, and very few are known at present except those having a cyclic structure.⁵ However, it is recognised that both aliphatic and aryl nitrones can be hydrolysed to give N-substituted hydroxylamines and aldehydes or ketones.⁶⁻⁸ Alkyl nitrones are particularly susceptible to hydrolysis or solvolysis and it is stated that in some cases they readily solvolyse even in dry ethanol.⁹ There have been many reports on the preparation of nitrones and many of these are on the reaction between *N*-substituted hydroxylamines and carbonyl compounds. However, there have been no reports on kinetic studies of the reaction. Since the reaction is commonly used

to prepare nitrones, and on hydrolysis these give Nsubstituted hydroxylamines and carbonyl compounds, the reaction may be expressed by the reversible equation (1),

$$R-NHOH + O = C R' R' R-N=C R' H_2O (1)$$

that is, the components of the equation must be in equilibrium, and the equilibrium is approached from either direction. In practice, an equimolar mixture of α -hydroxyaminonitrile and aldehyde in aqueous solution develops a nitrone absorption in time, and the absorption gradually becomes the same as that of a nitrone solution of the same initial concentration. The change in the intensity of the absorption maximum with time is shown in Figure 1. In this work, the mechanism of the reaction has been studied kinetically. The instability of N-alkylhydroxylamines rather than nitrones, in aqueous solution, particularly on the alkaline side, made this kinetic study very difficult. Therefore, N-cyclohexylhydroxylamine, which is considered to be one of the most stable free N-substituted hydroxylamines, was mainly used. The nitrone formed from N-cyclohexylhydroxylamine is also relatively stable.

¹ A part of this Paper was read at the Annual Meeting of the

Pharmaceutical Society of Japan, Tokyo, November 1963. ² W. V. Miller and J. Ploechl, *Ber.*, 1893, **26**, 1545; G. Muench, *Ber.*, 1896, **29**, 62; C. D. Hurd and J. M. Longfellow, J. Org. Chem., 1951, 16, 761; L. Neelakantan and W. Hartung, *ibid.*, 1958, 23, 964. ⁸ M. Masui, Y. Tsuda, and C. Yijima, J. Chem. Soc., 1961,

^{4063.}

 ⁴ G. Stadnikoff, Ber., 1908, **41**, 4364; 1911, **44**, 38.
 ⁵ L. I. Smith, Chem. Rev., 1938, **23**, 193; J. Hamer and A. Macaluso, ibid., 1964, 64, 473.

P. Grammaticakis, Compt. rend., 1937, 205, 60. ⁷ H. Staudinger and K. Miesher, Helv. Chim. Acta, 1919, 2,

^{554.}

⁸ H. Krimm, Chem. Ber., 1958, 91, 1057.

⁹ O. Exner, Coll. Czech. Chem. Comm., 1951, 16, 258; Chem. listy., 1951, 45, 398; (Chem. Abs., 1953, 47, 5884).

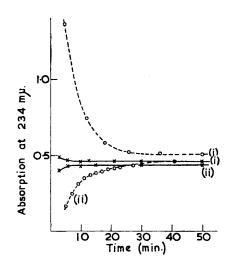


FIGURE 1 Preliminary test for formation and hydrolysis of nitrone in buffered ethanol-water (1:5, v/v). Initial conditions (i) 0.5 mм crude Prⁿ·CH(CN)·N(-O⁻).CH·Prⁿ, (ii) 0.5 mм Pr^{n} ·CH(CN)·NHOH + 0.5 mM Pr^{n} ·CHO; -- O --, pH 5.0;

EXPERIMENTAL

Materials .- All aldehydes were used soon after purification in a nitrogen atmosphere. Acetaldehyde and nand iso-butyraldehydes used were reagent-grade materials from commercial sources, but pivalaldehyde was synthesised by a known method.¹⁰ The purity of pivalaldehyde was examined by thin-layer chromatography 11 and gravimetric determination as the 2,4-dinitrophenylhydrazone; the estimated value was over 75% of the distillate and no other carbonyl compound was found. N-Cyclohexylhydroxylamine,¹² m. p. 140-142°, and a-hydroxyaminovaleronitrile,² m. p. 103-104°, were prepared by known methods. Dry ethanol was refluxed for 1-2 days with 2,4-dinitrophenylhydrazine, and then distilled just before use. The components of the buffer solutions prepared from reagentgrade materials were; pH 1.5-2.0, HCl-NaCl; pH 2.5-3.5, ClCH₂CO₂H-NaOH; pH 4.0-5.5, CH₃CO₂H-NaOH; pH 6.0-7.5, H₃PO₄-NaOH; pH 8.0-9.5, H₃BO₃-NaOH. The ionic strengths of the solutions were maintained at 0.1by the addition of sodium chloride.

A Hitachi EPU-2A spectrophotometer with a jacketed cell compartment was used. To follow fast reactions a modified Honeywell recorder, model 153X18V-X-118, was The temperature of the cell compartment was mainused. tained within $\pm 0.2^{\circ}$ of the stated temperature during the run. A Toadempa, model HM-5 pH meter with glasssaturated calomel electrodes was used.

Kinetic Measurements.-Reaction rates were determined by observing the increase in nitrone absorption at the absorption maximum (Table 1) in the reaction mixture without quenching the reaction. The runs were generally followed to at least 70% completion, except at above pH 8 where decomposition of N-alkylhydroxylamine was significant. Above about pH 8, the infinity value was obtained from a separate sample which was acidified to complete the reaction quickly and then brought to the required pH

¹⁰ H. C. Brown and A. Tsukamoto, J. Amer. Chem. Soc., 1961, 83, 4549. ¹¹ J. H. Dhont, Analyst, 1961, 86, 74.

value and concentration. The sample solution was prepared by adding 0.5 ml. of aldehyde solution in ethanol to 9 ml. of buffer solution in a stoppered flask, which was transferred to the thermostat at the given temperature $\pm 0.1^{\circ}$. A volume of 0.5 ml. of ethanolic hydroxylamine solution which has been previously brought to the given temperature

TABLE 1

Ultraviolet absorption of nitrones, R·NOCHR', and pK_{a} ' values of the conjugate acids

Nitrone '	F				
R	R'		Solvent	$\lambda_{max.}$ (m μ)	pK_{a}'
Cyclohexyl	Me	(<i>a</i>)	EtOH EtOH H. O †	231 227	1.85
Cyclohexyl Cyclohexyl Cyclohexyl Pr ⁿ ·CH(CN) ⁻	Pr ⁿ Pr ⁱ Bu ^t Pr ⁿ	(b) (c) (d) (e)	EtOH-H ₂ O † EtOH-H ₂ O † EtOH-H ₂ O † EtOH-H ₂ O † EtOH-H ₂ O †	228 229 227 234 240	2·4 2·7 4·04

* The letters in parentheses refer to Figures 2 and 3. + 1:9 (v/v).

was added to the flask. After mixing well, part of the reaction solution was transferred to a 1-cm. silica cell, which was placed in a thermostat cell-housing attached to the spectrophotometer. Readings of nitrone absorption were taken at intervals. For fast reactions the change of the absorbance was recorded with a pen recorder. The exact pH value of the reaction solution was measured just after the run was complete. The initial concentration of N-alkylhydroxylamine was usually 10⁻⁴M. A large excess of aldehyde over hydroxylamine was found spectrophotometrically to make the equilibrium move well to the right, and it was possible to assume that nitrone formation was almost complete when more than 5×10^{-3} M-aldehyde had been used. By this procedure, the reaction in the opposite direction became negligible and the rate of the forward reaction was accelerated. Hence, the effect of decomposition of N-alkylhydroxylamines was usually avoided. Rate constants were calculated from the slopes of the straight lines obtained by plots $\log(D_{\infty} - D_{t})$ vs. time, where D is absorbance and the subscripts t and ∞ refer to time tand infinity.

Determination of pK_{a} ' Values.—Values for α -hydroxyaminovaleronitrile and N-cyclohexylhydroxylamine were obtained potentiometrically in water-ethanol (9:1, v/v)in a nitrogen atmosphere. The pK_{a2} of the conjugate acid of nitrone was determined spectrophotometrically.13

RESULTS

Decomposition of the N-alkylhydroxylamines was almost negligible under the conditions used, but was appreciable above pH 9.5 where the reaction was complicated. Therefore the investigation was carried out below pH 9.3. In strong acid, the rate was too fast to be followed by the present method, so the present investigation covered the range from pH 1.5 to 9.3.

Several examples of the observed rate constants, k_1^{obs} , k_2^{obs} , and k_2 for the reaction of N-cyclohexylhydroxylamine with n- and iso-butyraldehydes and others are shown

D. C. Iffland and G. X. Criner, J. Amer. Chem. Soc., 1953, 75, 4047; W. Weston, J. F. Jeffries, and A. O. Geiszler, U.S.P. 2,850,531 (Chem. Abs., 1959, 53, 5157).
 K. Nakamoto and A. E. Mertell, J. Amer. Chem. Soc., 1959, 53, 5157

81, 5857.

in Tables 2 and 3. The values in these Tables and in Figure 2 are averages of at least three runs. The reaction is second-order, being dependent on the first power of the N-alkylhydroxylamine concentration and on the first power

TABLE 2

Pseudo-first-order rate constants for the reaction of N-cyclohexylhydroxylamine with isobutyraldehyde n-butyraldehyde

	5 5			
	Total	Total		
pН	[Amine] (M)	[Aldehyde] (M)	Temp.	k_1 obs. (sec. ⁻¹)
Isobutyra	aldehyde			
4.60	$2.0 imes 10^{-4}$	4.0×10^{-2}	15°	1.76×10^{-2}
4.60	1.5×10^{-4}	4.0×10^{-2}	15	1.77×10^{-2}
4·6 0	$5.0 imes 10^{-4}$	4.0×10^{-2}	15	1.80×10^{-2}
4.56	1.0×10^{-4}	$1.0 imes 10^{-2}$	35	$1.51 imes 10^{-2}$
4.58	$1.0 imes 10^{-4}$	$1.5 imes 10^{-2}$	35	$2\cdot 30 imes 10^{-2}$
4.58	1.0×10^{-4}	$2{\cdot}0 imes 10^{-2}$	35	$3 \cdot 12 \times 10^{-2}$
n-Butyra	ldehyde			
4 ·10	1.0×10^{-4}	$1.5 imes 10^{-2}$	15	$2\cdot15 imes 10^{-2}$
4 ·10	$1.0 imes 10^{-4}$	$2{\cdot}0 imes 10^{-2}$	15	$2\cdot97 imes 10^{-2}$

of the aldehyde concentration at constant pH. The second-order rate constant, k_2^{obs} , was obtained by dividing k_1^{obs} by the aldehyde concentration, and the pH-rate profiles for the formation of various nitrones are shown in Figure 2. The rate constant k_2^{obs} was not affected at a given pH value by changes of ionic strength between 0.1

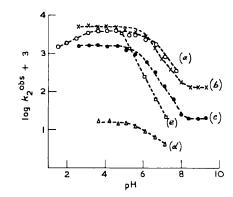


FIGURE 2 Observed second-order rate constants for the formation of nitrone in the reaction of N-cyclohexylhydroxylamine with (a) acetaldehyde at 15° , (b) n-butyraldehyde at 25° , (c) isobutyraldehyde at 25° , (d) pivalaldehyde at 10° , and (e) of α -hydroxyaminovaleronitrile with n-butyraldehyde at 20° $(\mu = 0.1)$

and 1.0 by addition of sodium chloride over the pH range 1.5-9.3 and it was also not affected by the buffer concentration between pH 2.5 and 7.0. However, it did depend on buffer concentration in the pH range 8.0-9.3. Therefore, the values shown in Table 3 and Figure 2 for the latter pH range are those obtained by extrapolation to zero buffer concentration. As no effect of ionic strength was observed, and by analogy with the ordinary carbonyl reaction 14 and with the azoxy-formation reaction,15 the nitrone formation may be considered to involve nucleophilic attack of

¹⁴ W. P. Jencks, Progr. Phys. Org. Chem., 1964, 2, 63. ¹⁵ M. M. Shemyakin, V. I. Maimind, and B. K. Vaichunite, Izvest. Akad. Nauk S.S.S.R., Otdel. Khim. Nauk, 1957, 1260; S. Oae, T. Fukumoto, and H. Yamagami, Bull, Chem. Soc. Japan., 1963, **36**, 728; Y. Ogata, M. Tsuchida, and Y. Takagi, J. Amer. Chem. Soc., 1957, **79**, 3397; Y. Ogata and Y. Takagi, *ibid.*, 1958, 80. 3591.

J. Chem. Soc. (B), 1966

the lone-pair electrons of the nitrogen atom of the N-alkylhydroxylamine on the carbon atom of the carbonyl group. Therefore, the active species of both the hydroxylamine derivative and the aldehyde should be their free types. In aqueous solution, hydration and protonation of aldehydes may occur, but under our experimental conditions the protonation of aldehydes is generally negligible, as shown by a consideration of the pK_a' values of aromatic aldehydes¹⁶ and the ordinary effect of the benzene ring on the difference between the pK' values of the corresponding aromatic and aliphatic compounds. For lower-class aliphatic aldehydes the fraction of the hydrate is believed to be fairly large, but the equilibrium constants for hydration, except that for acetaldehyde, rather favour the free type and are independent of $pH^{.17}$ The pK_{a1} values of the conjugate acid of N-cyclohexylhydroxylamine at various temperatures are shown in Table 4. In the case of α -hydroxyaminovaleronitrile, it was found by the titration method that the amount of its conjugate acid was almost negligible in the pH range studied. The rate of the reaction at a fixed pH followed the rate law,

$$Rate = k_2^{obs}[R \cdot NHOH]_{overall} \cdot [R' \cdot CHO]_{overall}$$
(2)

where [R·NHOH]_{overall} and [R'·CHO]_{overall} represent the total concentration of each compound. Therefore, when we consider that the reaction takes place between the free type of both N-alkylhydroxylamine and aldehyde, and adopt the equilibrium constants K_{a1} and K_h for reactions (3) and (4),

$$R-NH_2OH^+ \xrightarrow{K_{a_1}} R-NHOH + H^+ \qquad (3)$$

$$R'-CHO + H_2O \xrightarrow{K_b} R'-CH \qquad (4)$$

Equation (2) can be written:

Rate =
$$k_2$$
[R-NHOH]_{free} . [R'-CHO] free
= $k_2 \frac{K_{a1}}{K_{a1} + [H^+]} \cdot \frac{1}{1 + K_h}$
[R-NHOH]_{overall} . [R'-CHO]_{overall} (5)

where

$$\begin{split} [\text{R-NHOH}]_{\text{free}} &= [\text{R-NHOH}]_{\text{overall}} - [\text{R-NH}_2\text{OH}^+] \\ [\text{R'-CHO}]_{\text{free}} &= [\text{R'-CHO}]_{\text{overall}} - [\text{R'-CH}(\text{OH})_2] \end{split}$$

Then

$$\begin{split} [\text{R-NHOH}]_{\text{free}} &= \frac{K_{\text{al}}}{K_{\text{al}} + [\text{H}^+]} \cdot [\text{R-NHOH}]_{\text{overall}} \\ [\text{R'-CHO}]_{\text{free}} &= \frac{1}{1 + K_{\text{h}}} \cdot [\text{R'-CHO}]_{\text{overall}} \end{split}$$

From (2) and (5)

Ì

$$k_2^{\text{obs}} = k_2 \frac{K_{a1}}{K_{a1} + [\text{H}^+]} \cdot \frac{1}{1 + K_{\text{h}}}$$
 (6)

Thus, k_2 can be calculated from equation (6) using values for K_{a1} , K_h , H⁺, and k_2^{obs} which are either available or are

¹⁶ G. Culbertson and R. Pettit, J. Amer. Chem. Soc., 1958, 80,

741. ¹⁷ R. P. Bell and W. C. E. Higginson, *Proc. Roy. Soc.*, 1941, *A*, 197, 141; R. P. Bell and J. C. Clunie, *ibid.*, 1952, *A*, 212, 33; Y. Pocker, *Chem. and Ind.*, 1955, 599; R. P. Bell and M. H. *Example* 1955, 115; Y. Fujiwara and S. Rand, Bull. Soc. chim. France, 1955, 115; Y. Fujiwara and S. Fujiwara, Bull. Chem. Soc. Japan., 1963, **36**, 574; L. C. Gruen and P. T. McTigue, J. Chem. Soc., 1963, 5217.

TABLE 3

Kinetic data ^a for the nitrone formation in ethanol-water (1:9), $(\mu = 0.1)$

pH	k2 ^{obs} (l. mole ⁻¹ sec. ⁻¹)	$\frac{k_2}{(1 \text{ mole}^{-1} \sec ^{-1})}$	pН	k obs	k_2 (l. mole ⁻¹ sec. ⁻¹)	pH	k_2^{obs} (l. mole ⁻¹ sec. ⁻¹)	k_2
	(h. mole see.) Thydroxylamine u		-	(1. 11010 5001)	(in more see,)	P	(11 11010 5001)	(
	$A_{a1} = 5.01 \times 10^{-1}$			$h_1 = 1.00 \times 10^{-6}$	$A_{\rm h}=0.48~^{b}$	35°; A	$h_1 = 1.00 imes 10^{-6};$	$A_{h}=0.33$ ^b
			2.60	4.60	1.60×10^4			
			$3.17 \\ 3.65$	4·73 4·64	$egin{array}{cccc} 4\cdot71 imes10^3\ 1\cdot55 imes10^3 \end{array}$			
4 ·15	1.65	$4 \cdot 14 \times 10^2$	4.12	4.53	5.13×10^{2}	4.12	6-67	6.60×10^2
4.60	1.55	1.39×10^2	4.62	4.58	1.69×10^{3}	4.62	5.88	2.01×10^2
5.10	1.67_{7}	5.00×10	5·10	4.15	5.34×10	5·13	6.16 ₆	6.92×10
5.62	1.414	1.44×10	5·50 6·10	3·60 2·60	$egin{array}{cccc} 2{\cdot}08 imes 10\ 6{\cdot}62 \end{array}$	5.60	5.48	2.53
			6·50	1.60	3.225			
100 77	1.2- 10.2	77 0.00 h	7.10	0.680	1.08			
$10^{\circ}; K_{a1}$ 8.20°	$1 = 4.27 \times 10^{-7};$ 0.0661	$K_{\rm h} = 0.96^{\circ}$ $1.31_4 \times 10^{-1}$	7·50 8·00 °	0·425 0·161	$\begin{array}{r} \textbf{0.649} \\ \textbf{2.39} \hspace{0.1 cm} \times \hspace{0.1 cm} 10^{-1} \end{array}$	8.00 °	0.252	$3\cdot 36 \times 10^{-1}$
8.70 °	0.0660	1.31×10^{-1}	8.50 0	0.136	$2.01_5 \times 10^{-1}$	8.45 0	0.217	2.89×10^{-1}
		1 0 1	8.90	0.1334	1.98×10^{-1}	8·90 °	0.217	2.89×10^{-1}
9·30 °	0.064	1.27×10^{-1}	9·35 °	0.136	$2.01_{5} \times 10^{-1}$	9.30 c	0.217	2.89×10^{-1}
	lhydroxylamine u		yde					
15°; K_{a1}	$t_{\rm t} = 5.01 imes 10^{-7};$	$K_{\rm h}=0.66~^{b}$		$_{1} = 1.00 \times 10^{-6};$		$35^{\circ}; K_{a}$	$_{1} = 1.00 \times 10^{-6};$	$K_{\rm h}=0.31$ b
			2.62	1.56	5.43×10^{3}			
			$3.15 \\ 3.60$	$1 \cdot 60_2$ $1 \cdot 53_8$	$egin{array}{cccc} 1{\cdot}64 imes 10^{3}\ 4{\cdot}75 imes 10^{2} \end{array}$			
4·15	0.456	1.08×10^2	4.10	1.46	1.68×10^2	$4 \cdot 12$	2.03	$1.95_3 imes 10^2$
4.60	0.484	4.14×10	4.63	1.48	4.75×10	4.65	2.19	6.70×10
$5.10 \\ 5.62$	0·447 0·416	$1 \cdot 26 \times 10$ $4 \cdot 03$	$5.10 \\ 5.50$	$1 \cdot 30_4$ $1 \cdot 09_3$	$egin{array}{ccc} 1{\cdot}67 imes 10\ 5{\cdot}90 \end{array}$	5·12 5·60	1·87 1·47₄	$egin{array}{ccc} 2{\cdot}04 imes 10\ 6{\cdot}75 \end{array}$
5.04	0.410	H 00	6.15	0.604_{4}	1.043	000	1 1/4	070
			6.63	0.304_{5}	0.389			
			$7 \cdot 10 \\ 7 \cdot 58$	0.137_{5} 0.057	0.157			
8·25 °	$1.17_{3} \times 10^{-2}$	$1.94_4 \times 10^{-2}$	8.00 °	0.037 0.195×10^{-1}	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	8·00 °	$0.430_{5} \times 10^{-1}$	$5\cdot 63_6 imes 10^{-2}$
0 10		-	8·40 °	0.190×10^{-1}	$0.271, \times 10^{-1}$	8·40 °	0.283×10^{-1}	$3\cdot71~ imes~10^{-2}$
8·80 ° 9·30 °	$rac{1\cdot21 imes ext{ }10^{-2}}{1\cdot21 imes ext{ }10^{-2}}$	$\begin{array}{ccc} 2{\cdot}01_{6} imes \ 10^{-2} \ 2{\cdot}01_{6} imes \ 10^{-2} \end{array}$	8·70 ° 9·20 °	0.190×10^{-1} 0.187×10^{-1}	$\begin{array}{ccc} 0.271_{7} imes \ 10^{-1} \ 0.270 \ imes \ 10^{-1} \end{array}$	8·80 ° 9·20 °	$\begin{array}{r} 0.286 \times 10^{-1} \\ 0.290 \times 10^{-1} \end{array}$	$\begin{array}{ccc} 3\cdot74_5 imes \ 10^{-2} \\ 3\cdot78_2 imes \ 10^{-2} \end{array}$
	lhydroxylamine u	-						
	$X_{Q1} = 4.27 \times 10^{-1}$			$K_{a1} = 7.08 \times 10$	-7 : $K_{\rm h} \simeq 0$	30°: 1	$K_{a1} = 1.00 \times 10^{-6}$	$K_{\rm h} = 0$
$10^{\circ} \cdot K$,	-41	,	·· , -	-41	,
3.70	$1.59_{6} \times 10^{-2}$	7.24_{6}	4 ·15	$3\cdot 38~ imes~10^{-2}$	3.40	4 ·10	$6{\cdot}23 imes 10^{-2}$	5.00
3·70 4·26	$1.59_{6} \times 10^{-2}$ $2.16_{4} \times 10^{-2}$	7·24 ₆ 2·00 ₇						
3·70 4·26 4·70	$\begin{array}{c} 1 \cdot 59_{6} \times 10^{-2} \\ 2 \cdot 16_{4} \times 10^{-2} \\ 1 \cdot 38_{6} \times 10^{-2} \end{array}$	7·24 ₆ 2·00 ₇ 0·633	4.6 0	$3\cdot37~ imes~10^{-2}$	1·22 ₆	4 ·70	6.09×10^{-2}	1·27 ₅
3·70 4·26	$1.59_{6} \times 10^{-2}$ $2.16_{4} \times 10^{-2}$	7·24 ₆ 2·00 ₇						
3·70 4·26 4·70 5·14 5·60 6·22	$\begin{array}{c} 1{\cdot}59_{6}\times 10^{-2}\\ 2{\cdot}16_{4}\times 10^{-2}\\ 1{\cdot}38_{6}\times 10^{-2}\\ 1{\cdot}40_{7}\times 10^{-2}\\ 1{\cdot}25\times 10^{-2}\\ 3{\cdot}97\times 10^{-3}\end{array}$	$\begin{array}{c} 7\cdot 24_{6} \\ \\ 2\cdot 00_{7} \\ 0\cdot 633 \\ 0\cdot 240 \\ 0\cdot 741 \times 10^{-1} \\ 0\cdot 211 \times 10^{-1} \end{array}$	4.60 5.10	3.37×10^{-2} $3.07, \times 10^{-2}$	1·22 0·375	$4.70 \\ 5.15$	$\begin{array}{c} 6{\cdot}09 imes \ 10^{-2}\ 5{\cdot}43 imes \ 10^{-2} \end{array}$	1·27 ₅ 0·439
3·70 4·26 4·70 5·14 5·60	$\begin{array}{c} 1{\cdot}59_{6}\times 10^{-2}\\ 2{\cdot}16_{4}\times 10^{-2}\\ 1{\cdot}38_{6}\times 10^{-2}\\ 1{\cdot}40_{7}\times 10^{-2}\\ 1{\cdot}25\times 10^{-2}\end{array}$	7.24_{6} 2.00_{7} 0.633 0.240 0.741×10^{-1}	4.60 5.10	3.37×10^{-2} $3.07, \times 10^{-2}$	1·22 0·375	$4.70 \\ 5.15$	$\begin{array}{c} 6{\cdot}09 imes \ 10^{-2}\ 5{\cdot}43 imes \ 10^{-2} \end{array}$	1·27 ₅ 0·439
3.70 4.26 4.70 5.14 5.60 6.22 6.72 7.22	$\begin{array}{c} 1\cdot 59_{6}\times 10^{-2}\\ 2\cdot 16_{4}\times 10^{-2}\\ 1\cdot 38_{6}\times 10^{-2}\\ 1\cdot 40_{7}\times 10^{-2}\\ 1\cdot 25\times 10^{-2}\\ 8\cdot 97\times 10^{-3}\\ 6\cdot 59\times 10^{-3}\\ 4\cdot 19\times 10^{-3}\\ \end{array}$	$\begin{array}{c} 7\cdot 24_6\\ 2\cdot 00_7\\ 0\cdot 633\\ 0\cdot 240\\ 0\cdot 741\times 10^{-1}\\ 0\cdot 211\times 10^{-1}\\ 0\cdot 101\times 10^{-1}\\ 0\cdot 516\times 10^{-2} \end{array}$	4.60 5.10	3.37×10^{-2} $3.07, \times 10^{-2}$	1·22 0·375	$4.70 \\ 5.15$	$\begin{array}{c} 6{\cdot}09 imes \ 10^{-2}\ 5{\cdot}43 imes \ 10^{-2} \end{array}$	1·27 ₅ 0·439
3.70 4.26 4.70 5.14 5.60 6.22 6.72 7.22 N-Cyclohexy	$\begin{array}{c} 1\cdot 59_{6}\times 10^{-2}\\ 2\cdot 16_{4}\times 10^{-2}\\ 1\cdot 38_{6}\times 10^{-2}\\ 1\cdot 40_{7}\times 10^{-2}\\ 1\cdot 25\times 10^{-2}\\ 8\cdot 97\times 10^{-3}\\ 6\cdot 59\times 10^{-3}\\ 4\cdot 19\times 10^{-3}\\ 4\cdot 19\times 10^{-3}\\ \end{array}$	7.24_{6} 2.00_{7} 0.633 0.240 0.741×10^{-1} 0.211×10^{-1} 0.101×10^{-1} 0.516×10^{-2} with acetaldehyde	4.60 5.10	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.22 ₆ 0.375 0.119	4·70 5·15 5·60	$\begin{array}{c} 6\cdot09\times 10^{-2} \\ 5\cdot43\times 10^{-2} \\ 4\cdot44\times 10^{-2} \end{array}$	1.27 ₅ 0.439
3.70 4.26 4.70 5.14 5.60 6.22 6.72 7.22 N-Cyclohexy $6^{\circ}; K_{a1}$	$\begin{array}{c} 1\cdot 59_{6}\times 10^{-2}\\ 2\cdot 16_{4}\times 10^{-2}\\ 1\cdot 38_{6}\times 10^{-2}\\ 1\cdot 40_{7}\times 10^{-2}\\ 1\cdot 25\times 10^{-2}\\ 8\cdot 97\times 10^{-3}\\ 6\cdot 59\times 10^{-3}\\ 4\cdot 19\times 10^{-3}\\ 4\cdot 19\times 10^{-3}\\ \end{array}$	$\begin{array}{c} 7\cdot 24_6 \\ 2\cdot 00_7 \\ 0\cdot 633 \\ 0\cdot 240 \\ 0\cdot 741 \times 10^{-1} \\ 0\cdot 211 \times 10^{-1} \\ 0\cdot 101 \times 10^{-1} \\ 0\cdot 516 \times 10^{-2} \end{array}$ with acetaldehyde $K_h = 1\cdot 85^{\ b}$	4.60 5.10 5.60	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 1 \cdot 22_{6} \\ 0 \cdot 375 \\ 0 \cdot 119 \end{array}$ °; $K_{a1} = 5 \cdot 01 \times $	4.70 5.15 5.60 $10^{-6}; K_{\rm h}$	$6 \cdot 09 \times 10^{-2} \\ 5 \cdot 43 \times 10^{-2} \\ 4 \cdot 44 \times 10^{-2} \\ = 1 \cdot 65^{b}$	1.275 0.439 0.156
3.70 4.26 4.70 5.14 5.60 6.22 6.72 7.22 N-Cyclohexy	$\begin{array}{c} 1\cdot 59_{6}\times 10^{-2}\\ 2\cdot 16_{4}\times 10^{-2}\\ 1\cdot 38_{6}\times 10^{-2}\\ 1\cdot 40_{7}\times 10^{-2}\\ 1\cdot 25\times 10^{-2}\\ 8\cdot 97\times 10^{-3}\\ 6\cdot 59\times 10^{-3}\\ 4\cdot 19\times 10^{-3}\\ 4\cdot 19\times 10^{-3}\\ \end{array}$	$\begin{array}{c} 7\cdot 24_6 \\ 2\cdot 00_7 \\ 0\cdot 633 \\ 0\cdot 240 \\ 0\cdot 741 \times 10^{-1} \\ 0\cdot 211 \times 10^{-1} \\ 0\cdot 101 \times 10^{-1} \\ 0\cdot 516 \times 10^{-2} \end{array}$ with acetaldehyde $K_h = 1\cdot 85^{-b} \\ 1\cdot 02 \times 10^3 \\ 0\cdot 328 \times 10^3 \end{array}$	4.60 5.10 5.60 (1.00 1.50	$\begin{array}{c} 3.37 \times 10^{-2} \\ 3.07_7 \times 10^{-2} \\ 2.62 \times 10^{-2} \end{array}$	$\begin{array}{c} 1 \cdot 22_{6} \\ 0 \cdot 375 \\ 0 \cdot 119 \end{array}$ °; $K_{a1} = 5 \cdot 01 \times 5 \cdot 01 \times 10^{5} \\ 2 \cdot 44 \times 10^{5} \end{array}$	$\begin{array}{c} 4.70 \\ 5.15 \\ 5.60 \end{array}$ $10^{-6}; K_{\rm h} \\ 4.65 \\ 5.20 \end{array}$	$ \begin{array}{r} 6 \cdot 09 \times 10^{-2} \\ 5 \cdot 43 \times 10^{-2} \\ 4 \cdot 44 \times 10^{-2} \\ = 1 \cdot 65^{b} \\ $	$\begin{array}{c} 1\cdot 27_{5} \\ 0\cdot 439 \\ 0\cdot 156 \end{array}$ $\begin{array}{c} 4\cdot 92 \times \ 10^{2} \\ 1\cdot 47 \times \ 10^{2} \end{array}$
3.70 4.26 4.70 5.14 5.60 6.22 6.72 7.22 N-Cyclohexy 6° ; K_{a1} 4.20 4.65 5.20	$ \begin{array}{r} 1 \cdot 59_{6} \times 10^{-2} \\ 2 \cdot 16_{4} \times 10^{-2} \\ 1 \cdot 38_{6} \times 10^{-2} \\ 1 \cdot 40_{7} \times 10^{-2} \\ 1 \cdot 25 \times 10^{-2} \\ 8 \cdot 97 \times 10^{-3} \\ 6 \cdot 59 \times 10^{-3} \\ 4 \cdot 19 \times 10^{-3} \\ 4 \cdot 19 \times 10^{-3} \\ \end{array} $	$\begin{array}{c} 7\cdot 24_{6} \\ 2\cdot 00_{7} \\ 0\cdot 633 \\ 0\cdot 240 \\ 0\cdot 741 \times 10^{-1} \\ 0\cdot 211 \times 10^{-1} \\ 0\cdot 101 \times 10^{-1} \\ 0\cdot 516 \times 10^{-2} \end{array}$ with acetaldehyde $K_{h} = 1\cdot 85^{b} \\ 1\cdot 02 \times 10^{3} \\ 0\cdot 328 \times 10^{3} \\ 0\cdot 103 \times 10^{3} \end{array}$	4.60 5.10 5.60 (1.00 1.50 2.00	$\begin{array}{c} 3.37 \times 10^{-2} \\ 3.07_7 \times 10^{-2} \\ 2.62 \times 10^{-2} \end{array}$	$\begin{array}{c} 1 \cdot 22_{6} \\ 0 \cdot 375 \\ 0 \cdot 119 \end{array}$ $\begin{array}{c} 0 \cdot 1 \\ 5 \cdot 01 \times 10^{5} \\ 2 \cdot 44 \times 10^{5} \\ 9 \cdot 59 \times 10^{4} \end{array}$	$\begin{array}{c} 4.70 \\ 5.15 \\ 5.60 \end{array}$ $10^{-6}; K_{\rm h} \\ 4.65 \\ 5.20 \\ 5.70 \end{array}$	$ \begin{array}{r} 6 \cdot 09 \times 10^{-2} \\ 5 \cdot 43 \times 10^{-2} \\ 4 \cdot 44 \times 10^{-2} \\ = 1 \cdot 65^{\flat} \\ $	$\begin{array}{c} 1\cdot 27_{5} \\ 0\cdot 439 \\ 0\cdot 156 \end{array}$ $\begin{array}{c} 4\cdot 92 \times 10^{2} \\ 1\cdot 47 \times 10^{2} \\ 3\cdot 77 \times 10 \end{array}$
$\begin{array}{c} 3.70 \\ 4.26 \\ 4.70 \\ 5.14 \\ 5.60 \\ 6.22 \\ 6.72 \\ 7.22 \\ N-Cyclohexy \\ 6^\circ; K_{a1} \\ 4.20 \\ 4.65 \end{array}$	$ \begin{array}{l} 1\cdot 59_{6} \times 10^{-2} \\ 2\cdot 16_{4} \times 10^{-2} \\ 1\cdot 38_{6} \times 10^{-2} \\ 1\cdot 40_{7} \times 10^{-2} \\ 1\cdot 25 \times 10^{-2} \\ 8\cdot 97 \times 10^{-3} \\ 6\cdot 59 \times 10^{-3} \\ 4\cdot 19 \times 10^{-3} \\ 4\cdot 19 \times 10^{-3} \\ \end{array} $	$\begin{array}{c} 7\cdot 24_6 \\ 2\cdot 00_7 \\ 0\cdot 633 \\ 0\cdot 240 \\ 0\cdot 741 \times 10^{-1} \\ 0\cdot 211 \times 10^{-1} \\ 0\cdot 101 \times 10^{-1} \\ 0\cdot 516 \times 10^{-2} \end{array}$ with acetaldehyde $K_h = 1\cdot 85^{-b} \\ 1\cdot 02 \times 10^3 \\ 0\cdot 328 \times 10^3 \end{array}$	$\begin{array}{c} 4 \cdot 60 \\ 5 \cdot 10 \\ 5 \cdot 60 \end{array}$ $(1 \cdot 00 \\ 1 \cdot 50 \\ 2 \cdot 00 \\ 2 \cdot 50 \end{array}$	$\begin{array}{c} 3.37 \times 10^{-2} \\ 3.07_7 \times 10^{-2} \\ 2.62 \times 10^{-2} \end{array}$	$\begin{array}{c} 1\cdot 22_{6} \\ 0\cdot 375 \\ 0\cdot 119 \end{array}$	$\begin{array}{c} 4\cdot70\\ 5\cdot15\\ 5\cdot60\\ \end{array}$ $10^{-6};\ K_{\rm h}\\ 4\cdot65\\ 5\cdot20\\ 5\cdot70\\ 6\cdot20\\ \end{array}$	6.09×10^{-2} 5.43×10^{-2} 4.44×10^{-2} $= 1.65^{b}$ 4.09 4.09 2.94 2.78	$1 \cdot 27_{5}$ $0 \cdot 439$ $0 \cdot 156$ $4 \cdot 92 \times 10^{2}$ $1 \cdot 47 \times 10^{2}$ $3 \cdot 77 \times 10$ $1 \cdot 64 \times 10$
$\begin{array}{c} 3.70 \\ 4.26 \\ 4.70 \\ 5.14 \\ 5.60 \\ 6.22 \\ 6.72 \\ 7.22 \\ \end{array}$ N-Cyclohexy $6^{\circ}; K_{a1} \\ 4.20 \\ 4.65 \\ 5.20 \end{array}$	$ \begin{array}{r} 1 \cdot 59_{6} \times 10^{-2} \\ 2 \cdot 16_{4} \times 10^{-2} \\ 1 \cdot 38_{6} \times 10^{-2} \\ 1 \cdot 40_{7} \times 10^{-2} \\ 1 \cdot 25 \times 10^{-2} \\ 8 \cdot 97 \times 10^{-3} \\ 6 \cdot 59 \times 10^{-3} \\ 4 \cdot 19 \times 10^{-3} \\ 4 \cdot 19 \times 10^{-3} \\ \end{array} $	$\begin{array}{c} 7\cdot 24_{6} \\ 2\cdot 00_{7} \\ 0\cdot 633 \\ 0\cdot 240 \\ 0\cdot 741 \times 10^{-1} \\ 0\cdot 211 \times 10^{-1} \\ 0\cdot 101 \times 10^{-1} \\ 0\cdot 516 \times 10^{-2} \end{array}$ with acetaldehyde $K_{h} = 1\cdot 85^{b} \\ 1\cdot 02 \times 10^{3} \\ 0\cdot 328 \times 10^{3} \\ 0\cdot 103 \times 10^{3} \end{array}$	4.60 5.10 5.60 (1.00 1.50 2.00	$\begin{array}{c} 3.37 \times 10^{-2} \\ 3.07_7 \times 10^{-2} \\ 2.62 \times 10^{-2} \end{array}$	$\begin{array}{c} 1 \cdot 22_{6} \\ 0 \cdot 375 \\ 0 \cdot 119 \end{array}$ $\begin{array}{c} 0 \cdot 1 \\ 5 \cdot 01 \times 10^{5} \\ 2 \cdot 44 \times 10^{5} \\ 9 \cdot 59 \times 10^{4} \end{array}$	$\begin{array}{c} 4.70 \\ 5.15 \\ 5.60 \end{array}$ $10^{-6}; K_{\rm h} \\ 4.65 \\ 5.20 \\ 5.70 \end{array}$	$ \begin{array}{r} 6 \cdot 09 \times 10^{-2} \\ 5 \cdot 43 \times 10^{-2} \\ 4 \cdot 44 \times 10^{-2} \\ = 1 \cdot 65^{\flat} \\ $	$egin{array}{c} 1\cdot 27_5 & \ 0\cdot 439 & \ 0\cdot 156 & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
3.70 4.26 4.70 5.14 5.60 6.22 6.72 7.22 N-Cyclohexy 6° ; K_{a1} 4.20 4.65 5.20	$ \begin{array}{r} 1 \cdot 59_{6} \times 10^{-2} \\ 2 \cdot 16_{4} \times 10^{-2} \\ 1 \cdot 38_{6} \times 10^{-2} \\ 1 \cdot 40_{7} \times 10^{-2} \\ 1 \cdot 25 \times 10^{-2} \\ 8 \cdot 97 \times 10^{-3} \\ 6 \cdot 59 \times 10^{-3} \\ 4 \cdot 19 \times 10^{-3} \\ 4 \cdot 19 \times 10^{-3} \\ \end{array} $	$\begin{array}{c} 7\cdot 24_{6} \\ 2\cdot 00_{7} \\ 0\cdot 633 \\ 0\cdot 240 \\ 0\cdot 741 \times 10^{-1} \\ 0\cdot 211 \times 10^{-1} \\ 0\cdot 101 \times 10^{-1} \\ 0\cdot 516 \times 10^{-2} \end{array}$ with acetaldehyde $K_{h} = 1\cdot 85^{b} \\ 1\cdot 02 \times 10^{3} \\ 0\cdot 328 \times 10^{3} \\ 0\cdot 103 \times 10^{3} \end{array}$	$\begin{array}{c} 4 \cdot 60 \\ 5 \cdot 10 \\ 5 \cdot 60 \end{array}$ $(1 \cdot 00 \\ 1 \cdot 50 \\ 2 \cdot 00 \\ 2 \cdot 50 \\ 3 \cdot 10 \end{array}$	$\begin{array}{c} 3\cdot37 \times 10^{-2} \\ 3\cdot07, \times 10^{-2} \\ 2\cdot62 \times 10^{-2} \end{array}$	$1 \cdot 22_{6}$ $0 \cdot 375$ $0 \cdot 119$ $5 \cdot 01 \times 10^{5}$ $2 \cdot 44 \times 10^{5}$ $9 \cdot 59 \times 10^{4}$ $4 \cdot 05 \times 10^{4}$ $1 \cdot 42 \times 10^{4}$	$\begin{array}{c} 4\cdot70\\ 5\cdot15\\ 5\cdot60\end{array}\\ 10^{-6};\ K_{\rm h}\\ 4\cdot65\\ 5\cdot20\\ 5\cdot70\\ 6\cdot20\\ 6\cdot70\end{array}$	$6 \cdot 09 \times 10^{-2}$ $5 \cdot 43 \times 10^{-2}$ $4 \cdot 44 \times 10^{-2}$ $= 1 \cdot 65^{b}$ $4 \cdot 09$ $4 \cdot 09$ $2 \cdot 94$ $2 \cdot 78$ $1 \cdot 67$	$\begin{array}{c} 1\cdot 27_{5}\\ 0\cdot 439\\ 0\cdot 156\end{array}$ $\begin{array}{c} 4\cdot 92\times 10^{2}\\ 1\cdot 47\times 10^{2}\\ 3\cdot 77\times 10\\ 1\cdot 64\times 10\\ 6\cdot 28\end{array}$
3.70 4.26 4.70 5.14 5.60 6.22 6.72 7.22 N-Cyclohexy $6^{\circ}; K_{a1}$ 4.20 4.65 5.65 5.65	$\begin{split} 1\cdot 59_{6} \times 10^{-2} \\ 2\cdot 16_{4} \times 10^{-2} \\ 1\cdot 38_{6} \times 10^{-2} \\ 1\cdot 40_{7} \times 10^{-2} \\ 1\cdot 25 \times 10^{-2} \\ 8\cdot 97 \times 10^{-3} \\ 6\cdot 59 \times 10^{-3} \\ 4\cdot 19 \times 10^{-7}; \\ 1\cdot 56 \\ 1\cdot 42 \\ 1\cdot 54 \\ 1\cdot 40 \\ \end{split}$	7.24_{6} 2.00_{7} 0.633 0.240 0.741×10^{-1} 0.211×10^{-1} 0.516×10^{-2} with acetaldehyde $K_{h} = 1.85^{b}$ 1.02×10^{3} 0.328×10^{3} 0.364×10^{2} with n-butyraldeh	$\begin{array}{c} 4.60\\ 5.10\\ 5.60\end{array}$ $(1.00\\ 1.50\\ 2.00\\ 2.50\\ 3.10\\ 3.60\\ 4.15\end{array}$ wyde	$\begin{array}{c} 3.37 \times 10^{-2} \\ 3.07_7 \times 10^{-2} \\ 2.62 \times 10^{-2} \end{array}$	$\begin{array}{c} 1\cdot22_{6}\\ 0\cdot375\\ 0\cdot119\end{array}$	$\begin{array}{c} 4\cdot70\\ 5\cdot15\\ 5\cdot60\\ \end{array}\\ 10^{-6};\ K_{\rm h}\\ 4\cdot65\\ 5\cdot20\\ 5\cdot70\\ 6\cdot20\\ 6\cdot70\\ 7\cdot20\\ 7\cdot70\\ \end{array}$	$ \begin{array}{r} 6 \cdot 09 \times 10^{-2} \\ 5 \cdot 43 \times 10^{-2} \\ 4 \cdot 44 \times 10^{-2} \\ = 1 \cdot 65^{b} \\ \begin{array}{r} 4 \cdot 09 \\ 4 \cdot 09 \\ 2 \cdot 94 \\ 2 \cdot 78 \\ 1 \cdot 67 \\ 0 \cdot 805 \\ 0 \cdot 355 \\ \end{array} $	$\begin{array}{c} 1\cdot 27_{5}\\ 0\cdot 439\\ 0\cdot 156\end{array}$ $\begin{array}{c} 4\cdot 92\times 10^{2}\\ 1\cdot 47\times 10^{2}\\ 3\cdot 77\times 10\\ 1\cdot 64\times 10\\ 6\cdot 28\\ 2\cdot 38\\ 0\cdot 937\end{array}$
3.70 4.26 4.70 5.14 5.60 6.22 6.72 7.22 N-Cyclohexy 6° ; K_{a1} 4.20 4.65 5.20 5.65 4.20 4.65 5.20 5.65	$\begin{split} &1\cdot 59_{6}\times 10^{-2}\\ &2\cdot 16_{4}\times 10^{-2}\\ &1\cdot 38_{6}\times 10^{-2}\\ &1\cdot 40_{7}\times 10^{-2}\\ &1\cdot 25\times 10^{-2}\\ &1\cdot 25\times 10^{-2}\\ &8\cdot 97\times 10^{-3}\\ &6\cdot 59\times 10^{-3}\\ &4\cdot 19\times 10^{-3}\\ &4\cdot 10\times 10^{-3}\\ &4\cdot$	$\begin{array}{c} 7\cdot 24_6 \\ 2\cdot 00_7 \\ 0\cdot 633 \\ 0\cdot 240 \\ 0\cdot 741 \times 10^{-1} \\ 0\cdot 211 \times 10^{-1} \\ 0\cdot 101 \times 10^{-1} \\ 0\cdot 516 \times 10^{-2} \end{array}$ with acetaldehyde $K_h = 1\cdot 85^b \\ 1\cdot 02 \times 10^3 \\ 0\cdot 328 \times 10^3 \\ 0\cdot 364 \times 10^2 \end{array}$ with n-butyraldeh h = 0\cdot 612	$\begin{array}{c} 4.60\\ 5.10\\ 5.60\end{array}$ $(1.00\\ 1.50\\ 2.00\\ 2.50\\ 3.10\\ 3.60\\ 4.15\end{array}$ wyde	$\begin{array}{c} 3.37 \times 10^{-2} \\ 3.07_7 \times 10^{-2} \\ 2.62 \times 10^{-2} \end{array}$	$\begin{array}{c} 1\cdot22_{6}\\ 0\cdot375\\ 0\cdot119\end{array}$	$\begin{array}{c} 4\cdot70\\ 5\cdot15\\ 5\cdot60\\ \end{array}\\ 10^{-6};\ K_{\rm h}\\ 4\cdot65\\ 5\cdot20\\ 5\cdot70\\ 6\cdot20\\ 6\cdot70\\ 7\cdot20\\ 7\cdot70\\ \end{array}$	$ \begin{array}{r} 6 \cdot 09 \times 10^{-2} \\ 5 \cdot 43 \times 10^{-2} \\ 4 \cdot 44 \times 10^{-2} \\ \end{array} $ $= 1 \cdot 65^{b} \\ \begin{array}{r} 4 \cdot 09 \\ 4 \cdot 09 \\ 2 \cdot 94 \\ 2 \cdot 78 \\ 1 \cdot 67 \\ 0 \cdot 805 \\ \end{array} $	$\begin{array}{c} 1\cdot 27_{5}\\ 0\cdot 439\\ 0\cdot 156\end{array}$ $\begin{array}{c} 4\cdot 92\times 10^{2}\\ 1\cdot 47\times 10^{2}\\ 3\cdot 77\times 10\\ 1\cdot 64\times 10\\ 6\cdot 28\\ 2\cdot 38\\ 0\cdot 937\end{array}$
3.70 4.26 4.70 5.14 5.60 6.22 6.72 7.22 N-Cyclohexy $6^{\circ}; K_{a1}$ 4.20 4.65 5.20 5.65 x-Hydroxyar $20^{\circ};$ 4.90	$\begin{split} &1\cdot 59_{6}\times 10^{-2}\\ &2\cdot 16_{4}\times 10^{-2}\\ &1\cdot 38_{6}\times 10^{-2}\\ &1\cdot 40_{7}\times 10^{-2}\\ &1\cdot 25\times 10^{-2}\\ &8\cdot 97\times 10^{-3}\\ &6\cdot 59\times 10^{-3}\\ &4\cdot 19\times 10^{-3}\\ &1\cdot 59\times 10^{-3}\\ &1\cdot 42\times 10^{-3}\\ &1\cdot 40\\ &1\cdot 40\\ \end{split}$	$\begin{array}{c} 7\cdot 24_6 \\ 2\cdot 00_7 \\ 0\cdot 633 \\ 0\cdot 240 \\ 0\cdot 741 \times 10^{-1} \\ 0\cdot 211 \times 10^{-1} \\ 0\cdot 101 \times 10^{-1} \\ 0\cdot 516 \times 10^{-2} \end{array}$ with acetaldehyde $K_h = 1\cdot 85^b \\ 1\cdot 02 \times 10^3 \\ 0\cdot 328 \times 10^3 \\ 0\cdot 328 \times 10^3 \\ 0\cdot 364 \times 10^2 \end{array}$ with n-butyraldeh h = 0.612 5\cdot84	$\begin{array}{c} 4.60\\ 5.10\\ 5.60\\ \end{array}$ (1.00 1.50 2.00 2.50 3.10 3.60 4.15 syde 30°;	$\begin{array}{c} 3.37 \times 10^{-2} \\ 3.07_{7} \times 10^{-2} \\ 2.62 \times 10^{-2} \end{array}$	$1 \cdot 22_{6}$ $0 \cdot 375$ $0 \cdot 119$ $5 \cdot 01 \times 10^{5}$ $2 \cdot 44 \times 10^{5}$ $9 \cdot 59 \times 10^{4}$ $4 \cdot 05 \times 10^{4}$ $1 \cdot 42 \times 10^{4}$ $5 \cdot 40 \times 10^{3}$ $1 \cdot 75 \times 10^{3}$ $K_{h} = 0 \cdot 413$	$\begin{array}{c} 4.70 \\ 5.15 \\ 5.60 \end{array}$ $\begin{array}{c} 10^{-6}; K_{\rm h} \\ 4.65 \\ 5.20 \\ 5.70 \\ 6.20 \\ 6.70 \\ 7.20 \\ 7.70 \end{array}$ $\begin{array}{c} 40^{\circ}; \end{array}$	$ \begin{array}{l} 6 \cdot 09 \times 10^{-2} \\ 5 \cdot 43 \times 10^{-2} \\ 4 \cdot 44 \times 10^{-2} \\ \end{array} $ $= 1 \cdot 65^{b} \\ \begin{array}{l} 4 \cdot 09 \\ 4 \cdot 09 \\ 2 \cdot 94 \\ 2 \cdot 78 \\ 1 \cdot 67 \\ 0 \cdot 805 \\ 0 \cdot 355 \\ \end{array} $ $K_{a_1} > 0 \cdot 01^{d}; K$	$\begin{array}{c} 1\cdot 27_5 \\ 0\cdot 439 \\ 0\cdot 156 \end{array}$ $\begin{array}{c} 4\cdot 92 \times 10^2 \\ 1\cdot 47 \times 10^2 \\ 3\cdot 77 \times 10 \\ 1\cdot 64 \times 10 \\ 6\cdot 28 \\ 2\cdot 38 \\ 0\cdot 937 \end{array}$ $\begin{array}{c} h = 0\cdot 280 \end{array}$
3.70 4.26 4.70 5.14 5.60 6.22 6.72 7.22 N-Cyclohexy 6° ; K_{a1} 4.20 4.65 5.20 5.65 a-Hydroxyan 20° ;	$\begin{split} &1\cdot 59_{6}\times 10^{-2}\\ &2\cdot 16_{4}\times 10^{-2}\\ &1\cdot 38_{6}\times 10^{-2}\\ &1\cdot 40_{7}\times 10^{-2}\\ &1\cdot 25\times 10^{-2}\\ &1\cdot 25\times 10^{-2}\\ &8\cdot 97\times 10^{-3}\\ &6\cdot 59\times 10^{-3}\\ &4\cdot 19\times 10^{-3}\\ &4\cdot 10\times 10^{-3}\\ &4\cdot$	$\begin{array}{c} 7\cdot 24_6 \\ 2\cdot 00_7 \\ 0\cdot 633 \\ 0\cdot 240 \\ 0\cdot 741 \times 10^{-1} \\ 0\cdot 211 \times 10^{-1} \\ 0\cdot 101 \times 10^{-1} \\ 0\cdot 516 \times 10^{-2} \end{array}$ with acetaldehyde $K_h = 1\cdot 85^b \\ 1\cdot 02 \times 10^3 \\ 0\cdot 328 \times 10^3 \\ 0\cdot 364 \times 10^2 \end{array}$ with n-butyraldeh h = 0\cdot 612	$\begin{array}{c} 4.60\\ 5.10\\ 5.60\end{array}$ $(1.00\\ 1.50\\ 2.00\\ 2.50\\ 3.10\\ 3.60\\ 4.15\end{array}$ wyde	$\begin{array}{c} 3.37 \times 10^{-2} \\ 3.07_7 \times 10^{-2} \\ 2.62 \times 10^{-2} \end{array}$	$\begin{array}{c} 1\cdot22_{6}\\ 0\cdot375\\ 0\cdot119\end{array}$	$\begin{array}{c} 4\cdot70\\ 5\cdot15\\ 5\cdot60\\ \end{array}\\ 10^{-6};\ K_{\rm h}\\ 4\cdot65\\ 5\cdot20\\ 5\cdot70\\ 6\cdot20\\ 6\cdot70\\ 7\cdot20\\ 7\cdot70\\ \end{array}$	$ \begin{array}{r} 6 \cdot 09 \times 10^{-2} \\ 5 \cdot 43 \times 10^{-2} \\ 4 \cdot 44 \times 10^{-2} \\ = 1 \cdot 65^{b} \\ \begin{array}{r} 4 \cdot 09 \\ 4 \cdot 09 \\ 2 \cdot 94 \\ 2 \cdot 78 \\ 1 \cdot 67 \\ 0 \cdot 805 \\ 0 \cdot 355 \\ \end{array} $	$\begin{array}{c} 1\cdot 27_{5}\\ 0\cdot 439\\ 0\cdot 156\end{array}$ $\begin{array}{c} 4\cdot 92\times 10^{2}\\ 1\cdot 47\times 10^{2}\\ 3\cdot 77\times 10\\ 1\cdot 64\times 10\\ 6\cdot 28\\ 2\cdot 38\\ 0\cdot 937\end{array}$
3.70 4.26 4.70 5.14 5.60 6.22 6.72 7.22 N-Cyclohexy 6° ; K_{a1} 4.20 4.65 5.20 5.65 $x-Hydroxyan$ 20° ; 4.90 5.32 6.10	$\begin{split} &1\cdot 59_{6}\times 10^{-2}\\ &2\cdot 16_{4}\times 10^{-2}\\ &1\cdot 38_{6}\times 10^{-2}\\ &1\cdot 40_{7}\times 10^{-2}\\ &1\cdot 25\times 10^{-2}\\ &1\cdot 25\times 10^{-2}\\ &8\cdot 97\times 10^{-3}\\ &4\cdot 19\times 10^{-3}\\ &4\cdot 10\times 10^{-3}\\ &4\cdot$	$\begin{array}{c} 7\cdot 24_6 \\ 2\cdot 00_7 \\ 0\cdot 633 \\ 0\cdot 240 \\ 0\cdot 741 \times 10^{-1} \\ 0\cdot 211 \times 10^{-1} \\ 0\cdot 516 \times 10^{-2} \\ 0\cdot 516 \times 10^{-2} \\ \text{with acetaldehyde} \\ K_h = 1\cdot 85^{-b} \\ 1\cdot 02 \times 10^3 \\ 0\cdot 328 \times 10^3 \\ 0\cdot 364 \times 10^2 \\ 0\cdot 364 \times 10^2 \\ \text{with n-butyraldeh} \\ h = 0\cdot 612 \\ 5\cdot 84 \\ 2\cdot 24 \\ 0\cdot 395 \end{array}$	$\begin{array}{c} 4.60\\ 5.10\\ 5.60\\ \end{array}$ $\begin{array}{c} (1.00\\ 1.50\\ 2.00\\ 2.50\\ 3.10\\ 3.60\\ 4.15\\ \end{array}$ syde $\begin{array}{c} 30^{\circ};\\ 5.17\\ 5.70\\ 6.10\\ \end{array}$	$\begin{array}{c} 3.37 \times 10^{-2} \\ 3.07_7 \times 10^{-2} \\ 2.62 \times 10^{-2} \end{array}$	$1 \cdot 22_{6}$ $0 \cdot 375^{\circ}$ $0 \cdot 119$ $1 \cdot 5 \cdot 01 \times 10^{5}$ $2 \cdot 44 \times 10^{5}$ $9 \cdot 59 \times 10^{4}$ $4 \cdot 05 \times 10^{4}$ $1 \cdot 42 \times 10^{4}$ $5 \cdot 40 \times 10^{3}$ $1 \cdot 75 \times 10^{3}$ $K_{h} = 0 \cdot 413$ $3 \cdot 60$ $1 \cdot 01$ $0 \cdot 405$	$\begin{array}{c} 4.70\\ 5.15\\ 5.60\\ \end{array}$ $10^{-6}; K_{h}\\ 4.65\\ 5.20\\ 5.70\\ 6.20\\ 6.70\\ 7.20\\ 7.70\\ \end{array}$ $\begin{array}{c} 40^{\circ};\\ 5.24\\ 5.76\\ 6.14\\ \end{array}$	$6 \cdot 09 \times 10^{-2}$ $5 \cdot 43 \times 10^{-2}$ $4 \cdot 44 \times 10^{-2}$ $4 \cdot 44 \times 10^{-2}$ $4 \cdot 09$ $4 \cdot 09$ $2 \cdot 94$ $2 \cdot 78$ $1 \cdot 67$ $0 \cdot 805$ $0 \cdot 355$ $K_{a_1} > 0 \cdot 01^{-d}; K$ $2 \cdot 34$ $0 \cdot 741$ $0 \cdot 306$	$\begin{array}{c} 1\cdot27_{5}\\ 0\cdot439\\ 0\cdot156\\\\\\ 4\cdot92\times10^{2}\\ 1\cdot47\times10^{2}\\ 3\cdot77\times10\\ 1\cdot64\times10\\ 6\cdot28\\ 2\cdot38\\ 0\cdot937\\\\\\ h=0\cdot280\\\\ 3\cdot00\\ 0\cdot940\\ 0\cdot394\\\\\end{array}$
3.70 4.26 4.70 5.14 5.60 6.22 6.72 7.22 N-Cyclohexy 6° ; K_{a1} 4.20 4.65 5.20 5.65 x-Hydroxyan 20° ; 4.90 5.32	$\begin{split} &1\cdot 59_{6}\times 10^{-2}\\ &2\cdot 16_{4}\times 10^{-2}\\ &1\cdot 38_{6}\times 10^{-2}\\ &1\cdot 40_{7}\times 10^{-2}\\ &1\cdot 40_{7}\times 10^{-2}\\ &1\cdot 25\times 10^{-2}\\ &8\cdot 97\times 10^{-3}\\ &6\cdot 59\times 10^{-3}\\ &4\cdot 19\times 10^{-3}\\ &1\cdot 54\\ &1\cdot 54\\ &1\cdot 40\\ &\\ &\\ &\\ &\\ &\\ &\\ &\\ &\\ &\\ &\\ &\\ &\\ &\\$	$\begin{array}{c} 7\cdot 24_6 \\ 2\cdot 00_7 \\ 0\cdot 633 \\ 0\cdot 240 \\ 0\cdot 741 \times 10^{-1} \\ 0\cdot 211 \times 10^{-1} \\ 0\cdot 101 \times 10^{-1} \\ 0\cdot 516 \times 10^{-2} \end{array}$ with acetaldehyde $\begin{array}{c} K_h = 1\cdot 85^{-b} \\ 1\cdot 02 \times 10^3 \\ 0\cdot 328 \times 10^3 \\ 0\cdot 328 \times 10^3 \\ 0\cdot 364 \times 10^2 \end{array}$ with n-butyraldeh $\begin{array}{c} h_h = 0\cdot 612 \\ 5\cdot 84 \\ 2\cdot 24 \end{array}$	$\begin{array}{c} 4.60\\ 5.10\\ 5.60\\ \end{array}$ $(1.00\\ 1.50\\ 2.00\\ 2.50\\ 3.10\\ 3.60\\ 4.15\\ \end{array}$ syde $\begin{array}{c} 30^{\circ};\\ 5.17\\ 5.70\\ \end{array}$	$\begin{array}{c} 3.37 \times 10^{-2} \\ 3.07_7 \times 10^{-2} \\ 2.62 \times 10^{-2} \end{array}$	$\begin{array}{c} 1\cdot22_{6}\\ 0\cdot375\\ 0\cdot119\end{array}$	$\begin{array}{c} 4.70\\ 5.15\\ 5.60\\ \end{array}$ $10^{-6}; K_{h}\\ 4.65\\ 5.20\\ 5.70\\ 6.20\\ 6.70\\ 7.20\\ 7.70\\ \end{array}$ $\begin{array}{c} 40^{\circ};\\ 5.24\\ 5.76\\ \end{array}$	6.09×10^{-2} 5.43×10^{-2} 4.44×10^{-2} 4.44×10^{-2} 4.09 4.09 2.94 2.78 1.67 0.805 0.355 $K_{a1} > 0.01^{a}; K$ 2.34 0.741	$\begin{array}{c} 1\cdot27_{5}\\ 0\cdot439\\ 0\cdot156\\\\\\ 4\cdot92\times10^{2}\\ 1\cdot47\times10^{2}\\ 3\cdot77\times10\\ 1\cdot64\times10\\ 6\cdot28\\ 2\cdot38\\ 0\cdot937\\\\\\ h=0\cdot280\\\\ 3\cdot00\\ 0\cdot940\\\end{array}$

J. Chem. Soc. (B), 1966

TABLE 4

 pK_a' Values of the conjugate acid of N-cyclohexylhydroxylamine in water-ethanol (9:1 v/v)

Temp. $pK_{a'}$	6 ∙0°	10·0°	15·0°	20·0°	25.0°	30∙0°	35∙0°	
p <i>K</i> ₄′	6 ∙50	6.37	6.30	6.12	6.00	6.00	6.00	

found experimentally. The dependence of the second-order rate constant k_2 on pH is shown in Figure 3. Below about

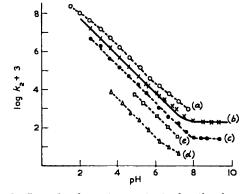


FIGURE 3 Second-order rate constants for the formation of nitrone, plotted against pH (conditions and symbols as for Figure 2). The solid curve is that calculated from equation (19)

pH 7 the slope of log k_2 vs. pH is unity, and hence k_2 varies linearly with the hydrogen-ion concentration, but above pH 8 it is independent of pH. The rate constants $k_{\rm H^+}$

TABLE 5

Second- and third-order rate constants, and energies and entropies of activation for nitrone formation from N-cyclohexylhydroxylamine and α -hydroxyaminovaleronitrile with aldehyde R·CHO

N-Cyclohexy	lhvdrox	vlamine
11-Oyuuuny	in yur ox	yourround

,	5 5		• .	-	
			$k_{\mathbf{H}}^{+}$	E_{a}	ΔS^{\ddagger}
\mathbf{R}	$_{\rm pH}$	Temp.	$(1.2 \text{ mole}^{-2} \text{ sec.}^{-1})$ 2.13×107	(kcal. mole ⁻¹)	(e.u.) ª
Мо	3.1-5.5	15·0°	$2\cdot13 imes 10^7$	3.16	-16.1
ME	9.1-0-0 J	. 6∙0	1.77×10^{7}		
	ĺ	35.0	$8\cdot46 imes10^{6}$		
Pr ⁿ	2.6-5.5	25.0	$6.99 imes 10^6$	3.21	-18.5
	l	15.0	$5.86 imes 10^6$		
	(35∙0	2.77×10^{6}		
Pri	2.6-5.6 ₹	$25 \cdot 0$	$2\cdot 12 imes 10^6$	4.58	-16.3
	l	15.0	$1.63 imes 10^{6}$		
	(30·0	6.24×10^4		
$\mathbf{Bu^t}$	3.76.0 ₹	20.0	4.79×10^{4}	5.08	-21.7
	l	10.0	$\begin{array}{c} 1.4 \times 10^{6} \\ 8.46 \times 10^{6} \\ 6.99 \times 10^{6} \\ 5.86 \times 10^{6} \\ 2.77 \times 10^{6} \\ 2.12 \times 10^{6} \\ 1.63 \times 10^{6} \\ 6.24 \times 10^{4} \\ 4.79 \times 10^{4} \\ 3.46 \times 10^{4} \end{array}$		
			(l. ² mole ⁻¹ sec. ⁻¹)		
			0 (1. more see.)		
	[35.0	$2.88_{6} \times 10^{-1}$		
Pr ⁿ	8.09.3 ረ	25.0	2.10×10^{-1}	5·39	-45.7
	l	10.0	$1.29_{5} \times 10^{-1}$		
	(35.0	$3.74_{5} \times 10^{-2}$		
Pri	8.0-9.3 {	25.0	2.73×10^{-2}	5.41	- 49 ·6
	l	15.0	$\begin{array}{c} 2 \cdot 88_6 \times 10^{-1} \\ 2 \cdot 10 \times 10^{-1} \\ 1 \cdot 29_5 \times 10^{-1} \\ 3 \cdot 74_5 \times 10^{-2} \\ 2 \cdot 73 \times 10^{-2} \\ 2 \cdot 01 \times 10^{-2} \end{array}$		
		-			

 α -Hydroxyaminovaleronitrile

$$\Pr^{\mathbf{k}_{\mathbf{H}}} (1.^{2} \text{ mole}^{-2} \text{ sec.}^{-1})$$

$$\Pr^{\mathbf{n}} 5 \cdot 0 - 7 \cdot 1 \begin{cases} 40 \cdot 0 & 5 \cdot 45 \times 10^{5} \\ 30 \cdot 0 & 5 \cdot 14 \times 10^{5} \\ 20 \cdot 0 & 4 \cdot 85 \times 10^{5} \end{cases}$$

$$\stackrel{a}{\leftarrow} \text{Calc. from } k = A \exp(-E_{\mathbf{k}}/\mathbf{R}T), \exp\left[(\mathbf{R} + \Delta S^{\dagger}_{+})/\mathbf{R}\right] = A k/kT.$$

and k_0 , for the hydrogen-ion catalysed and uncatalysed reactions, respectively, and the values of the Arrhenius

activation energy $E_{\rm a}$ and activation entropy ΔS^{\ddagger} are shown in Table 5.

To compare the rate of nitrone formation followed by the decrease of aldehyde absorption with that followed by the increase of nitrone absorption, benzaldehyde and m-nitrobenzaldehyde were tested under the above conditions. Both aldehydes gave nitrones under preparative conditions, 18 but in aqueous solution at pH 2.0-8.0 there was no spectrophotometric indication of nitrone formation within 24 hr., even at elevated temperature (80°) or when N-alkylhydroxylamine was present in large excess. Hence, we could not confirm the existence of an intermediate such as that observed in Schiff-base formation.¹⁹ The a-phenyl-N-cyclohexylnitrone prepared was also very stable at pH 4.0-8.0 and at 20-80°, and no intermediate in the hydrolysis of the nitrone could be confirmed in this case either. In more acidic solution, n-hydrochloric acid, hydrolysis of the aromatic nitrone was completed in several minutes at 20° and N-cyclohexylhydroxylamine and benzaldehyde were obtained quantitatively. Therefore, no information on the assumed intermediate was obtained.

DISCUSSION

Except for the deviation observed in the reaction of acetaldehyde below pH 3 and above pH 6.5 (Figure 3), all the reactions had a similar pH-rate profile within the pH range which could be tested experimentally, and hence the reaction mechanism is believed to be the same for all the compounds studied. The apparently different pH-rate profile for a-hydroxyaminovaleronitrole (Figure 2) is due to the fact that the pK_{a}' value of this compound is lower than that of N-cyclohexylhydroxylamine. Though no intermediate could be shown experimentally, the results strongly suggest that the nucleophilic attack of hydroxylamine nitrogen on the carbonyl carbon, and hence the addition step, must be followed by dehydration to the final product nitrone. A two-step process is generally regarded as satisfying the kinetic observations encountered in semicarbazone, oxime, and Schiff-base formation.¹⁴ A similar two-step process is also found in the azoxy-formation reaction.¹⁵

From the above considerations, the following reaction scheme is proposed for the nitrone formation:

$$R-NHOH + R'-CHO \xrightarrow{k_7} R-N-CH-R'$$
(7)
| |
OH OH

$$R - N - CH - R' \overset{k_{\bullet}}{\longrightarrow} R - N^{+} = CH - R' + HO^{-} (8)$$

OH OH OH OH
$$R - N^{+} = CH - R' \overset{k_{\bullet}}{\longrightarrow} R - N^{+} = CH - R' + H^{+} (9)$$

OH OH O-

Reaction (9) is an acid-base equilibrium of a nitrone. The equilibrium constant K_{a2} is shown in Table 1 as pK_{a} '. If reaction (7) is the rate-determining step, the equation for the rate is:

 J. Thesting and W. Sirrenberg, Chem. Ber., 1958, 91, 1978.
 B. M. Anderson and W. P. Jencks, J. Amer. Chem. Soc., 1960, 82, 1773.

61

 $Rate = k_{7}[R-NHOH]_{free} \cdot [R'-CHO]_{free}$

$$= k_7 \frac{K_{a1}}{K_{a1} + H^+} \cdot \frac{1}{1 + K_h}$$
[R-NHOH]_{overall} . [R'-CHO]_{overall} (10)

If (7) is a pre-equilibrium (equilibrium constant is K_7) and (8) is the rate-determining step, then:

$$Rate = k_8[R-N(OH)-CH(OH)-R']$$

$$=k_{8}K_{7}\frac{K_{a1}}{K_{a1}+H^{+}}\cdot\frac{1}{1+K_{h}}$$
[R-NHOH]_{overall} . [R'-CHO]_{overall} (11)

Therefore the rate-determining step is not distinguishable experimentally.

The effect of an alkyl group attached to the carbonyl carbon was examined. In the nucleophilic attack of a hydroxylamino-nitrogen on a carbonyl carbon a large electron density on the carbon atom would decrease the reaction rate. This effect is observed in the plot of $k_{\rm H^+}$ vs. σ^* (Figure 4), where σ^* represents Taft's polar substituent constant,²⁰ but a pronounced curvature is noticed. However, when the steric substituent constant of an alkyl group, as well as the polar substituent constant to determine the best fit of the data to equation (12):

$$\log k_{\rm H} + {\rm R}'/k_{\rm H} + {\rm CH}_{\rm s} = \rho^* \sigma^* + \delta E_{\rm s}$$
(12)

substituent constant, respectively. The plot of $\log k_{\rm H^+}R/k_{\rm H^+}CH_{\bullet} - 1.25E_{\rm s} vs. \sigma^*$ is shown in Figure 4. It is apparent that there are not only large steric effects but also large polar effects. These will be used later to

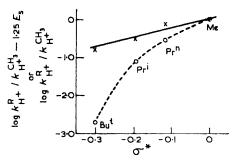
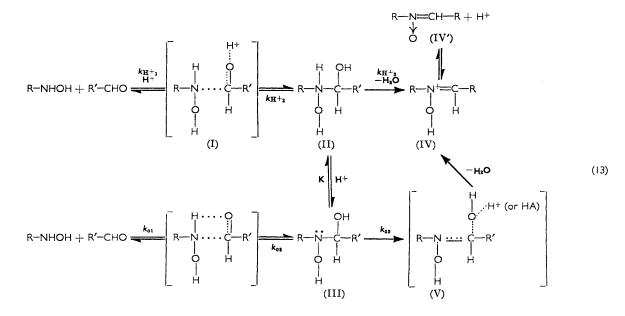



FIGURE 4 Correlation of rates of acid-catalysed nitrone formation (N-cyclohexylhydroxylamine + aldehyde) in waterethanol (9:1, v/v) at 15° , pH 3—6, according to the equations:

$$\log k_{\mathbf{H}} + \mathbf{B} / k_{\mathbf{H}} + \mathbf{CH}_{\mathbf{s}} = \sigma^{*} \rho^{*} (----)$$
$$\log k_{\mathbf{H}} + \mathbf{B} / k_{\mathbf{H}} + \mathbf{CH}_{\mathbf{s}} - 1 \cdot 25E_{\mathbf{s}} = \sigma^{*} \rho^{*} (----)$$

 ρ^* being taken as 2.39

deduce the rate-determining step. As noticed from Table 5, although E_a is nearly the same for both the acidcatalysed and uncatalysed reactions, ΔS^{\ddagger} is quite different in the two reactions and ΔS^{\ddagger} for the uncatalysed reaction has a markedly negative value. This cannot be interpreted in terms of a single rate-determining step,²¹

by the least-squares method, values of $\rho^* = 2.39$ and $\delta = 1.25$ are obtained. The correlation coefficient is 0.995. In equation (12), $k_{\rm H+}{}^{\rm B'}$ and $k_{\rm H+}{}^{\rm CH_3}$ represent the rate constants for the acid-catalysed reactions including R-CHO and CH₃-CHO, respectively, and δ and $E_{\rm s}$ are the steric reaction constant and steric

²⁰ R. W. Taft, jun., "Steric Effects in Organic Chemistry," ed. M. S. Newman, John Wiley and Sons, Inc., New York, 1956, p. 619. and hence reaction scheme (13) must be considered. Reaction (13) can be written as:

$$N + A \xrightarrow{k^1} M \xrightarrow{k^3} P \qquad (14)$$

Where $N = [R-NHOH]_{free}$, $A = [R'-CHO]_{free}$, M = [II] + [III], P = [IV] + [IV'], and $K = [II]/[III] [H^+]$. ²¹ E. H. Cordes and W. P. Jencks, *J. Amer. Chem. Soc.*, 1962, **84**, 4319; T. C. Bruice and S. J. Benkovic, *ibid.*, 1964, **86**, 418.

J. Chem. Soc. (B), 1966

From (13) and (14) the following relationships are derived:

$$k^{1} = k_{H+1}[H^{+}] + k_{01}$$

$$k^{2} = \frac{K[H^{+}]k_{H+2} + k_{02}}{1 + K[H^{+}]}$$

$$k^{3} = \frac{K[H^{+}]k_{H+3} + k_{03}}{1 + K[H^{+}]}$$

$$\frac{d[N]}{dt} = \frac{d[A]}{dt} = -k^{1}[N][A] + k^{2}[M]$$

$$d[M]$$
(15)

 $\frac{d[M]}{dt} = k^{1}[N][A] - (k^{2} + k^{3})[M]$ (16) $\frac{d[P]}{dt} = k^{3}[M]$

Assuming steady-state conditions with respect to the intermediate M, the following equation can be obtained:

$$\frac{\mathrm{d}[\mathbf{P}]}{\mathrm{d}t} = \frac{k^1 \cdot k^3}{k^2 + k^3} [\mathbf{N}] [\mathbf{A}] \tag{17}$$

Therefore, from (5) and (17)

$$k_{2} = \frac{k^{1}k^{3}}{k^{2} + k^{3}} = \frac{C_{2}[H^{+}]^{2} + C_{1}[H^{+}] + C_{0}}{[H^{+}] + C_{3}}$$
(18)

where
$$C_0 = \frac{k_{01} \cdot k_{03}}{K(k_{H+2} + k_{H+3})}$$
, $C_1 = \frac{Kk_{H+3}k_{01} + k_{H+1}k_{03}}{K(k_{H+2} + k_{H+3})}$
 $C_2 = \frac{k_{H+1} \cdot k_{H+3}}{k_{H+2} + k_{H+3}}$, and $C_3 = \frac{k_{02} + k_{03}}{K(k_{H+2} + k_{H+3})}$.

None of the constants included in C_0 , C_1 , C_2 , and C_3 are measurable, and hence the values of C_0 — C_3 cannot be obtained. However, it is possible to choose one set of parameters that tests the fit of equation (18) to the data. For the reaction between n-butyraldehyde and N-cyclohexylhydroxylamine, this leads to equation (19):

$$k_{2} = \frac{6 \cdot 99 \times 10^{6} [\mathrm{H^{+}}]^{2} + 2 \times 10^{-1} [\mathrm{H^{+}}] + 5 \cdot 72 \times 10^{-9}}{2 \cdot 86 \times 10^{-8} + [\mathrm{H^{+}}]} \tag{19}$$

The line calculated for the reaction is shown as a thick solid line in Figure 3.

Proton-catalysed reaction. Between about pH 2 and 6 the following relation is derived from (18) and (19)

$$k_2 \simeq C_2[H^+] = \frac{k_{H^+1} \cdot k_{H^+3}}{k_{H^+2} + k_{H^+3}}[H^+] = k_{H^+} \cdot [H^+]$$

Thus, k_2 varies linearly with the proton concentration, and the main nitrone formation reaction in acid solution is considered to be (I) \longrightarrow (II) \longrightarrow (IV + IV') in scheme (13). Though the value of the reaction constant, $\rho^* = 2.39$, by itself has little meaning in this case, it is rather larger than the value of 0.07 observed in semicarbazone formation in neutral and alkaline regions,²²

²² B. M. Anderson and W. P. Jencks, J. Amer. Chem. Soc., 1960, **82**, 1773.

where the dehydration step is believed to be rate-determining, and this suggests that another step is ratedetermining, namely the formation of the diol-type intermediate. The activation parameters for semicarbazone formation at pH 7, where dehydration is rate-determining, are reported to be $\Delta S^{\ddagger} = -40$ to -60 e.u. and $E_a = 1.4 - 4.6$ kcal./mole.²³ Thus, the value for ΔS^{\ddagger} is very different from that for the $k_{\rm H^+}$ region, but rather close to that for the k_0 region. This also suggests that the rate-determining step is formation of the diol intermediate.

Uncatalysed reaction. It is hard to understand the results obtained above pH 8 on the basis of the above process with a modification only of the hydrogen-ion catalysis term. Above pH 8, $[H^+]$ becomes smaller than 10⁻⁸, and it follows from equations (18) and (19) that k_2 is independent of the hydrogen-ion concentration.

$$k_2 \simeq C_0 / C_3 = \frac{k_{01} \cdot k_{03}}{k_{02} + k_{03}} = k_0$$

Therefore the main process is $N + A \longrightarrow (III) \longrightarrow (V)$ \rightarrow (IV + IV'). Since only specific hydrogen-ion catalysis was observed for $k_{\rm H^+}$, the general-acid catalysis observed for k_0 cannot be included in the formation of (III). Moreover, the values of the activation parameters are in good agreement with those of semicarbazone formation obtained ²³ at pH 7. Hence, it is reasonable to consider the rate-determining step to be the dehydration of the diol intermediate (III) through (V). In this case the reaction constant ρ^* for the reaction with various aldehydes should be small or nearly zero, as in the case of semicarbazone formation. However, attempts to obtain a p* value failed because, in the case of acetaldehyde, aldol condensation complicates the kinetics, and in the case of low-reactivity aldehydes the prolonged reaction time causes serious decomposition of the hydroxylamines.

When a nitrone is protonated its ultraviolet absorption disappears. Therefore a limit to the present study is reached at about pH 1.5 for the nitrone (a) in Table 1 and at higher pH values for other nitrones, the limit being defined by the pK_a' value of the nitrone (Table 1). Hence it was not possible to test whether the deviation from the straight line observed in curve (a) in Figure 3 was general. However, no such deviation is apparent in curve (b), so this deviation seems to be peculiar to nitrone (a). The reason for this deviation is unknown at present, but it may be due to incorrect values used for the total aldehyde concentration or for the equilbrium constant K_h in equation (4).

FACULTY OF PHARMACEUTICAL SCIENCES, OSAKA UNIVERSITY, TONEYAMA, TOYONAKA, OSAKA-FU, JAPAN. [5/556 Received, May 31st, 1965]

²³ F. P. Price, jun. and L. P. Hammett, J. Amer. Chem. Soc., 1941, **63**, 2387; J. B. Conant and P. D. Bartlett, *ibid.*, 1932, **54**, 2881.