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Abstract: 3-Formyl-2H-chromenes which are readily accessible
through an oxa-Michael reaction of salicylaldehydes and a,b-unsat-
urated aldehydes undergo a smooth decarbonylation reaction upon
treatment with rhodium catalysts. With our method, a great variety
of functionalized chromenes is accessible in a two-step sequence
from salicylaldehydes.
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Chromenes (benzopyrans) form an important class of nat-
ural products widespread in higher plants, many of them
showing biological activity (Figure 1).1 

Chromenes are also intermediates in the synthesis of
many natural products including cannabinoids, anthocya-
nides, and flavones. Simple hydrogenation of the double
bond makes accessible a further substance class, the chro-
manes.

In principle, chromenes are accessible for example via
reaction of propargyl alcohols and ether,2 Claisen and oth-
er rearrangements,3 and ring-closing-metathesis reac-
tions.4 In particular, the condensation of a,b-unsaturated
aldehydes with resorcylates provides a straightforward
access to chromenes.5 However, differently substituted
chromenes cannot be synthesized using this route. We6

and others7 have shown that salicylaldehydes and a,b-
unsaturated aldehydes provide 3-formyl-2H-chromenes
in good to excellent yields. Recently, also asymmetric ap-
proaches were published.8

Herein we report the first synthesis of chromenes from 3-
formyl-2H-chromenes using a rhodium-catalyzed decar-
bonylation reaction (Scheme 1).

Figure 1 Selected natural products containing a chromene motif
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The rhodium-catalyzed decarbonylation reaction has been
extensively studied for aromatic and aliphatic com-
pounds,9 whereas formylalkenes are less frequent being
explored (e.g. cinnamal aldehyde).9d To our knowledge,
this reaction has not been explored for formylchromenes.

As a model system, we synthesized formylchromene 3a
(Table 1, entry 1) by base-catalyzed condensation of sali-
cylaldehyde and citral (54% yield). Catalytic deformyla-
tion of the aldehyde 3a with RhCl3 and dppp in refluxing
diglyme yielded deoxycordiachromene 4a in 59% yield,
which was reported before, albeit via a longer sequence.10

Then we investigated the scope of the reaction sequence,
starting with different substituted salicylaldehydes 1 and
a,b-unsaturated aldehydes 2 (Scheme 2). Decarbonyla-
tion of the formylchromenes 3 under the standard condi-
tions gave the corresponding chromenes 4 in good yields
(Table 1).11,12

Scheme 1 Strategies for the synthesis of chromenes based on a,b-
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Table 1 Rhodium-Catalyzed Decarbonylation of Aldehydesa
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This reaction is compatible with double bonds, hydroxy,
methoxy, and ester groups, but not with halides. In the
case of aldehyde 3i a dehalogenation was observed. Alde-
hyde 3j could not be converted at all. However, the start-
ing material was recovered quantitatively. As a positive
result, we were able to isolate halogenated chromene 4k,
albeit in poor yield.

Due to the moderate yields and the problem of dehaloge-
nation, we investigated alternative reaction conditions.

By using microwave irradiation, we could increase the
yield of the reaction significantly (Table 2). Furthermore
dehalogenation of 4k was avoided (Table 2, entry 8).

The reduction of chromene 4h gave eulatachromene (5), a
natural product isolated from the Italian Eutypa culture
(Scheme 3).13

However, when using enantiopure formylchromene 3g,
synthesized according to reference 8b, the deformylated
product 4g was isolated as a racemate. The racemization
took place upon heating in diglyme, regardless of the pres-
ence of catalyst, and was complete within six hours. The
same racemization occurred under microwave conditions.
We suppose an electrocyclic ring-opening–ring-closing
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a Conditions: RhCl3·xH2O (5 mol%), dppp (10 mol%), diglyme, reflux (oil bath), 16 h.
b Starting material 3i (100%) was recovered.
c Dehalogenated product was isolated in 9% yield.

Table 1 Rhodium-Catalyzed Decarbonylation of Aldehydesa (continued)

Entry Aldehyde 3 Product 4 Yield (%)
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Scheme 2 Rhodium-catalyzed decarbonylation reactions of 3-formyl-2H-chromenes 3
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Scheme 3 Synthesis of eulatachromene (5): rhodium-catalyzed de-
carbonylation as a key step
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mechanism (Scheme 4). Similar racemizations were
reported for a series of 2-aryl-2-methyl-2H-chromenes.14

Attempts to decrease the reaction temperature and/or us-
ing other catalysts15 in order to prevent this racemization
reaction were unfruitful, yet (Table 2, entries 9 and 10).

In summary, we present the first metal-catalyzed decarbo-
nylation reaction of 3-formylchromenes and its applica-
tion in the synthesis of the natural product
eulatachromene. The application towards the synthesis of
more complex chromenes is under investigation.
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Table 2 Optimization of the Reaction Conditions

Entry Product 4 Conditionsa Time Yield (%)

1 4e A 16 h 34
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7 4k A 16 h 12
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C: [IrCl(cod)]2 (2.5 mol%), Ph3P (5 mol%), THF, reflux (oil bath). 
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Scheme 4 Proposed mechanism of the racemization of 3g
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