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CONDITIONALLY DEFINITE MATRICES
Kh. D. Ikramov and N. V. Savel’eva UDC 512.643.8

1. Introduction

It is well known how important positivity is in various branches of mathematics. For objects that are
positive, one can usually obtain much more complete results than in the general case. For example, in linear
algebra, positive and positive-definite matrices are among the most thoroughly studied matrix classes. It is
equally important that the results of this study have been well documented: one can learn the properties of
the matrix classes above from dozens of textbooks and monographs on matrix theory.

Things are quite different when from the global property of (positive or negative) definiteness one turns to
the same property that holds only conditionally, i.e., as long as the argument does not leave a given subspace,
orthant, polyhedron, or cone. We combine all these options under the term “conditionally definite” matrices.
Matrices of this kind are understood to a lesser extent than the classical positive-definite matrices. Moreover,
to the best of our knowledge, no book exposition yet exists of the problem of conditional definiteness. At
most, there are some survey papers devoted to the particular types of conditional-definite matrices.

This fact, i.e., that a readily accessible exposition of the field is not available, and the importance of
conditional definiteness in a number of applications served as a stimulus for writing this survey. The selection
of material for the paper was to a considerable extent guided by what explains our interest in this subject,
namely, our wish to develop a collection of computer procedures for checking whether a given matrix possesses
a particular type of conditional definiteness. Typically, the matrix has scalar entries, which are then assumed
to be integers or rational numbers. It is also admissible, however, that some or even all entries of the matrix
contain parameters. In this case, the dependence on parameters must also be expressed by rational functions.
Under these assumptions, the procedures must give ezact answers, not answers that hold up to “round-off
error analysis,” which are typical of floating-point computations. This predetermines that the procedures
to be included in the collection must be finite rational algorithms and their computer implementation must
be based on a kind of error-free computation. For matrices with parameters, symbolic computation is used
rather than an error-free one.

Let us clarify what was said above by using the ordinary positive definiteness as an example. According
to one of the many equivalent definitions of this property, a Hermitian matrix A is positive definite if and
only if all its eigenvalues are positive. This statement seems to give a constructive criterion for positive
definiteness if one takes into account that well-polished routines are available for computing the eigenvalues
of a matrix. These routines are especially efficient and accurate in the case where the matrices are Hermitian.
The absolute errors of approximate eigenvalues that are computed by such a routine can be bounded a priori.
Hence, when the routine stops, one has a set of “uncertainty intervals” that enclose the spectrum of the
matrix under investigation. If none of the intervals contains zero, then authentic inferences are possible
concerning the inertia of the matrix. In particular, one can give a certain answer whether the matrix is
positive definite. However, if zero belongs to the left-most interval, a precise inference about the definiteness
becomes impossible. The transition from the real (or complex) arithmetic to error-free computations does not
help here. Indeed, even for an integer matrix, the eigenvalues cannot, in general, be found by a finite (much
less by a rational) procedure.

Fortunately, there exist criteria for positive definiteness, say, the classical determinantal Sylvester crite-
rion, that can be implemented by means of error-free or symbolic computations. It turns out that criteria of
this kind also exist for conditional definiteness. Our main aim in this survey is to describe them.
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The paper is organized as follows. In Sec. 2, we recall the basic criteria for global definiteness. Some facts
from linear algebra are also given, which we shall need in the sequel. Matrices that are definite with respect
to a linear subspace are treated in Sec. 3. Copositive matrices are considered in Sec. 4, and K-copositive
ones in Sec. 5. Our concluding remarks are given in Sec. 6.

Along with the strong definiteness, we discuss the same property in a weak form (in the classical case, these
two species are illustrated by the notions of positive definiteness and positive semidefiniteness, respectively).

Most often, one encounters various kinds of conditional definiteness in mathematical programming where
all data typically are real numbers. For this reason, our discussion is limited to real matrices. As was already
mentioned, our computer procedures even presuppose that the entries of matrices are integers or rational
numbers. At the same time, the procedures can be easily generalized to the case of complex matrices with
Gaussian entries.

2.  Preliminaries
In this survey, the symbols M, and 5, stand for the linear space of real n x n matrices and its subspace
consisting of symmetric matrices, respectively.

Definition. A matrix A € S, is called positive semidefinite if (Az,xz) > 0 for any vector z € R"™. If
(Az,z) > 0 for any nonzero x, then A is a positive-definite matrix.

We denote by A(iy,. .., i) the principal submatrix of A lying in rows and columns with indices iy, . . . , i.

Theorem 2.1 (the Sylvester criterion). A matriz A € S, is positive definite if and only if all its leading
principal minors are positive, i.e.,

det A(1,...,k) >0, k=1,...,n. (2.1)

The property of positive definiteness is invariant under symmetric permutations of rows and columns of
a matrix. Therefore, a more general formulation can be given for the Sylvester criterion [6, Theorem 7.2.5].

Theorem 2.2. All principal minors of a positive-definite matriz are positive. A malriz A € S, is positive
definite if there exists a nested sequence of n principal minors of A (not just the leading principal minors)
that are positive.

The nonnegativity of all principal minors is a necessary and sufficient condition for A to be positive
semidefinite, which is implied by the following assertion.

Theorem 2.3. A matriz A € S,, is positive semidefinite if and only if the mairiz A + =1, is positive definite
for any e > 0.

Here, one cannot check the signs of only leading principal minors, as was the case with the Sylvester
criterion. For example [6, p. 404], both leading principal minors of the matrix

B:(g —01> (2.2)

are zero, 1.e., nonnegative. However, the matrix B is not positive semidefinite; rather it is negative semidefinite.
The matrix

o oo
- O
O = o

for which all the leading principal minors are again zero, is indefinite.



We denote the number of positive eigenvalues and that of negative eigenvalues of the symmetric matrix
A by w(A) and v(A), respectively, and call them the positive inertia and the negative inertia of this matrix.
The symbol 6(A) stands for the defect, or rank deficiency, of A (which is defined as the difference n —rank A).
The ordered triple

InA = (n(A),v(A),6(A)) (2.3)

is called the inertia of A.

The Sylvester criterion is known to be just a particular case of the following signature rule, which is due
to Jacobi. Let

Ap =1,

Ap=detA(1,....k), k=1...,n (2.4)

Theorem 2.4. Assume that all the leading principal minors of a matric A € S, are nonzero. Then the
positive inertia of A is equal to the number of sign coincidences in the sequence

Ao, Ar, oy A, (2.5)

and the negative inertia to the number of sign variations in this sequence.

Below, we prove the Jacobi rule. This gives us a good reason to remind the reader of an important ex-
tremal characterization of the eigenvalues of a symmetric matrix, which is called the Courant-Fisher theorem.

Theorem 2.5. Let Ay > Ay > --- > A\, be eigenvalues of a matriz A € S,. Then

Ap = max  min %,
Loy ods 9
L. X #0 (2.6)
kore Ly
Ay =  min max (Az, T)
(z,2) (2.7)

r#0
Ln—k—H T € Ln—k+1
In formula (2.6), the mazimum is taken over all k-dimensional subspaces Ly of the space R™. Similarly, in
(2.7), Ly_g11 s an arbitrary subspace of dimensionn —Fk + 1.

Theorem 2.5 implies the so-called interlacing inequalities
ML Z A2 a2 2 A 2 b1 2> Ap (2.8)

between the eigenvalues of the symmetric matrix A and the eigenvalues p1 > ps > - -+ > p,,_1 of its (arbitrary)
principal (n — 1) X (n — 1) submatrix.

We prove the Jacobi signature rule by induction on the order n of A. For n = 1, the assertion is trivial.
Suppose it holds for all £ < n(n > 1). The truncated sequence

Ao, AL .. A, (2.9)

can be regarded as the Jacobi sequence for the leading principal (n—1) x (n-—1) submatrix A,,_;. Suppose that
there are m coincidences and [ variations in sign in sequence (2.9), m+Il=n—-1. If uy > ps > -+ > p,_ are
eigenvalues of the submatrix A,_;, then, by the inductive assumption, m largest numbers out of the numbers
p; must be positive, and [ smallest numbers must be negative. The interlacing inequalities (2.8) imply that
A has at least m positive eigenvalues and [ negative ones. Only the sign of the eigenvalue A1 has not yet
been determined. Dividing the relation

An:/\1'''/\m/\m+1)\'rn-+—2'")\n



by
Apy =yt 1 i1y
we conclude that the sign of A, coincides with that of the ratio A, /A, _;. This proves that the Jacobi rule

is valid for the matrix A.
As an illustration, we find the inertia of a quasidefinite matrix [39]. This is the term for a symmetric

[ Au Ap
a- (4 42, "

partitioned matrix

where the square n; x n; submatrix Ay, is positive definite, and the ny x ny submatrix Ass, ng =n —ny, is
negative definite.

Since matrix (2.10) contains the positive-definite submatrix A,;, it must have at least n, positive eigen-
values. Similarly, the presence of the negative-definite submatrix Ase implies that at least no eigenvalues of
A must be negative. Since n; + ny = n, the matrix A is nonsingular, and its inertia is

InA= (’I’Ll,ng,O).

The Jacobi rule and its modifications are very helpful in various root separation problems, i.e., in the
class of problems that deal with the location of roots of a (real) polynomial with respect to a given subset of
the complex plane. We give two examples of these applications.

Assume that the real polynomial

f(z) =apz" +a 2" '+ +a, (2.11)

has no multiple roots (this can be easily achieved if one divides f(z) by the greatest common divisor of f(z)
and its derivative f'(z)). We denote by «, ..., a, the roots of f(x). The sums

sk:a’f+...+afb, k=0,1,2,...,
are known as the Newton sums of the polynomial f(z). Being symmetric functions of the roots ay, ..., an,
the Newton sums can be rationally expressed in terms of the coefficients ag, ay, . .., a, of f(z).

Theorem 2.6 (the Borchardt—Jacobi theorem). The quadratic form

n—1

J = Z Si+m L1 T,

I, m=0

s nondegenerate. If T and v are the positive and the negalive inertia, respectively, of the form J, then the
polynomial f(x) has v pairs of complex-conjugate roots and m — v real roots.

Our second example is the Routh—-Hurwitz-Fujiwara criterion. We set

g(z) = f(-=)

for polynomial (2.11) and form the Bezout matrix of the polynomials f and g. Recall that the Bezout matrix
B(f. g) is the matrix associated with the quadratic form

B, = 1002~ F&0w) s

w—z Pyt

Finally, we transform the matrix B(f, g) = (b;;) into a new matrix F' according to the rule

fiy = (0", ij=1,...,n



Theorem 2.7 (Routh-Hurwitz-Fujiwara criterion). If the matriz F is nonsingular, then its positive (negative)
inertia gives the number of roots of the polynomial f(x) that have negative (positive) real parts.

The application of the Jacobi rule in the situations defined by Theorems 2.6 and 2.7 presupposes that
all the leading principal minors of the corresponding matrices are nonzero. If this assumption is not valid,
it may still be possible to determine the inertia using the extensions of the Jacobi rule by Gundelfinger and
Frobenius (see [4, Sec. 8]).

Theorem 2.8. Assume that in sequence (2.4), the determinant A, # 0, but a minor Ay, k < n, may be
zero. In each such occasion (i.e., when A, = 0), assume that Ap_1App1 # 0. Assign arbitrary signs to the
zero minors Ay. Then the Jacobi rule holds for the modified sequence (2.4).

Theorem 2.9. Assume that in sequence (2.4), the determinant A, # 0, but it may be possible that A, =
Apyr = 0 when k < n—1. In each such occasion, assume that Ap_1A,9 # 0. Assign the same (arbitrary) sign
to Ay and Apiy if Ap_18ky2 < 0 and different signs (in any one of the two possible ways) if Ap_1Ap 2 > 0.
Then the Jacobi rule holds for the modified sequence (2.4).

We reproduce an example from [4], which shows that the further extension of the Jacobi signature rule
for the case where (2.4) contains subsequences of three or more successive zeros is impossible if one speaks
about general symmetric matrices. Assume that the coefficients «, 3, and v in the matrix

0 0 0 «
0 8 00
A= 00 v 0O
a 0 0 0

are nonzero. Then sequence (2.4) for this matrix is

1, 0, 0, 0, —a*@y.

The sign of the determinant A, is determined by that of the product #~. It is not difficult to see that the
inertia of the matrix Ais (3,1,0) if 5 >0, v >0, and (1,3,0) if 3 <0, v < 0, although in both cases A, is
negative.

We return to the discussion of the criteria for definiteness.

Theorem 2.10. A matriz A € S,, is positive semidefinite if and only if
A=8ST (2.12)

for an n x m matriz S (m may be arbitrary). A matriz A is positive definite if and only if the rank of the
matriz S in (2.12) is equal to n.

A positive (semi)definite matrix A can be represented in the form (2.12) in many different ways. The
most useful ones are the following.

(1) S = ST. In this case, (2.12) turns into
SP=A

and the matrix S is a square root of A. There exists a unique positive (semi)definite square root of A. It is
denoted by A'/2.

(2) S is a lower triangular matrix with positive diagonal entries. Usually, this matrix is denoted by L
and called the Cholesky factor of the matrix A. The corresponding decomposition of A is the product

A=LLT (2.13)

of the two triangular matrices, the lower matrix L and the upper one L. It is called the Cholesky decompo-
sition of A.

o



Using relation (2.13) for the entries in position (1,1) yields

lh = V-

Thus, the calculation of the Cholesky factor requires square roots, i.e., the type of operation that we would
like to avoid. Meanwhile, there exists another decomposition of a positive-definite matrix that is similar to
the Cholesky decomposition but that can be found by employing only arithmetical operations. It is called
the LDLT decomposition:

A=LDL" (2.14)
As opposed to the Cholesky factor, the matrix L in (2.14) has the unit main diagonal. The matrix D is
diagonal:

D =diag(dyy, ..., dun).
It is not difficult to see that
di1 = ay = Ay,

dkk:z%%’ k:2,3,...7n.

As above, A, is the leading principal £ x & minor of the matrix A.

(2.15)

Note that the LDLT decomposition exists (and is unique) not only for positive-definite matrices but also
for any symmetric matrix A in which all the leading principal minors are nonzero. Moreover, the last of these
minors, i.e., det A, may be zero. If A is not positive semidefinite, then D contains diagonal entries of different
signs.

The matrix transformation of the form

A — B=PAPT, (2.16)

where P is a nonsingular matrix, is called a congruence, and the matrices A and B in (2.16) are referred to as
congruent matrices. These matrices can be considered to be associated with the same quadratic form but in
different bases of the space R”. As a consequence, congruent matrices have the same inertia. In particular,
the diagonal matrix D in the LDLT decomposition of A indicates the inertia of the latter matrix.
Assume that the ny; x n; submatrix 4y in the partitioned matrix (2.10) is nonsingular. Applying to A
“congruence (2.16) with the matrix

I 0
P= " 2.17
( —AE ‘All1 Inz > ( )
yields the block-diagonal matrix
B— ( AOH BOZZ ) (2.18)

The submatrix
By = Agy — Al AT Ay
is usually denoted by A/A;) and is called the Schur complement of the submatriz Ay, in A.
One important implication of formula (2.18) is the equality
InA=InAn +In(A/An). (2.19)

The inertias here are added entrywise.
Suppose that the inverse matrix C' = A™! is partitioned similar to (2.10):

Cn Chn
C= .
(021 022)

C’QQ - (A/Al]_)‘l.
Hence, the submatrix Cy in the inverse matrix C' has the same inertia as the Schur complement A/A;; in
the original matrix A.

Then

6



3. DPositive Definiteness on a Subspace

Suppose that we consider a subspace £ C R" described by the system of linear equations
Bz =0. (3.1)
Here B is a p x n matrix. Without loss of generality, one can assume that
rank B = p. (3.2)
This amounts to removing linearly dependent equations from system (3.1).
Definition. A matrix A € S, is called L-semidefinite if
(Az,z) >0 Vzel. (3.3)

If
(Az,z) >0 VzeLl, z#0, (3.4)
then A is called an L-definite matrix.

Not to complicate terminology, we did not mention positivity in the definitions above. The negative
definiteness with respect to a subspace could have been considered with equal reason. However, only positive-
definite matrices are generally discussed in this survey.

We mention that the discussion in this section is, to a large extent, based on the review article [9].

The most straightforward approach to checking the L-definiteness of a matrix is to reduce the test to
that for ordinary positive definiteness. Let P be a nonsingular n X n matrix such that

BPT = (0 1,). (3.5)
We replace z in (3.1), (3.3)—(3.4) by a new variable:
r=PTy. (3.6)
Let y = (y1,---,9n)T . Then condition (3.1) turns into the set of equalities
Yn—p+1 =0,..., 4 = 0.

Now, instead of (3.3) and (3.4), we arrive at the requirement that the leading principal (n — p) x (n —p)
submatrix of the matrix
A=PAPT (3.7)

be positive definite or positive semidefinite, respectively.
The criterion obtained will be restated in an algorithmic form.

Algorithm 1 for checking the £-definiteness of the matrix A

1. Calculate a matrix P satisfying condition (3.5).

2. Form matrix (3.7). In fact, only the leading principal (n — p) x (n —p) submatrix ﬁn,p of matrix (3.7)
can be calculated.

3. Apply to A, a criterion for the ordinary positive (semi)definiteness.

To justify our second algorithm, we shall need the following lemma.

Lemma 3.1. Let n = 2m be an even integer. Assume that o matrix A € S, has the block form

Ay Ap )
A= )
( AT, 0



where all the blocks are of order m, and the submatriz Az is nonsingular. Then the inertia of A is (m, m, 0).

Proof. Obviously, the matrix A is nonsingular, and, hence, 6(A) = 0. Note that A contains a zero principal
submatrix of order m. According to the Courant—Fisher theorem, at least m of the eigenvalues of A are
nonnegative. Actually, these eigenvalues are positive in view of the nonsingularity of A. In just the same way,
A must have no less than m negative eigenvalues. Since n = 2m, the assertion of the lemma follows.

Now we form an auxiliary (n + p) X (n + p) matrix:

A:(é BOT). (3.8)

A=0QAQT

P 0
QZ(O 1,,)

be applied to A, P being a nonsingular matrix from (3.5). The matrix A thus obtained can be partitioned as
follows:

Let the congruence

with the transforming matrix

Anp An;p,p 0

o~

A=| AL A I,
I, 0
By Lemma 3.1, the inertia of the submatrix
(A L
M= ( 76 ) (3.9)
is
InM = (p, p, 0).

Suppose that the matrix M1 is given a partitioned form similar to (3.9). Then it is not difficult to see
that block (1,1) in M ! is zero. This implies that

A/M =4, .
Applying (2.19) to A, one obtains

mA=InA= ImM+In4,,

-~ (3.10)
=(p,p,0)+InA,_,.

When deducing Algorithm 1, we have found out that the L-definiteness of the matrix A amounts to

positive definiteness of the submatrix fln_p. Therefore, the following theorem is valid.

Theorem 3.1. A matriz A € S, is L-definite if and only if, for the corresponding matriz (3.8), the positive
iertia is equal to n.

This assertion is immediate from relations (3.10).
In the same way, relations (3.10) imply

Theorem 3.2. A matrit A € S, is L-semidefinite if and only if, for the corresponding matriz (3.8), the
negative inertia is equal to p.

Thus, Theorems 3.1 and 3.2 indicate a very simple criterion for £-definiteness.



Algorithm 2 for checking the L-definiteness of the matrix A

1. Form matrix (3.8).
2. Find the inertia of A. If the positive inertia is equal to n, the matrix A is £-definite. If this condition
is not fulfilled but the negative inertia of matrix (3.8) is equal to p, then the matrix A is L-semidefinite.

We embed matrix (3.8) into the family of matrices of the form
A BT
A= ( B tl, ) :

for any negative value of ¢ that is sufficiently small in modulus. For such a t, the relation

If 7(A) = n, for A = Ay, then

In(A;) =In(tl,) +In(A - %BTB)
= (0, p, 0) +In(A— 1 BTB)

in conjunction with (3.11) implies
1
In(A— - B'B) = (n, 0, 0).

In this way, an assertion is obtained, which is called the Finsler theorem ([16]; see also [1]).

Theorem 3.3. A matriz A € S,, is L-definite if and only if the matriz
A(k)=A+kB'B (3.12)
15 positive definite for oll sufficiently large positive values of k.
By a similar reasoning one can prove

Theorem 3.4. A matriz A € S,, 15 L-semidefinite if and only if, for matriz (3.12), the negative inertia is
equal to p for all negative values of k that are sufficiently large in modulus.

Now we shall discuss how the criteria for the £-definiteness contained in Theorems 3.3 and 3.4 can be
implemented with the use of computer algebra systems. Assume that the Sylvester criterion is employed
to check the positive definiteness of the matrix A (k). Any leading principal minor A; (k) of A (k) can be
regarded as a polynomial in k. The sign of its values, as £ — 400, is determined by the sign of the leading
coefficient. For modest n, one can obtain explicit expansions for the minors A, (k), using a computer algebra
system; in fact, only the leading coefficients of these expansions are needed. As a result, we arrive at the
following algorithm.

Algorithm 3 for checking the L-definiteness of the matrix A

1. Form matrix (3.12).
2. Determine the signs of the leading coefficients of the polynomials A; (k), which are the leading principal
minors of the matrix A (k). The matrix A is £-definite if and only if all these signs are positive.

The leading coefficients of the polynomials A; (k) also determine the signs of the values of these polyno-
mials as k — —oo. Thus, for verifying the £-semidefiniteness of a matrix, one must apply the Jacobi signature
rule to the modified sequence of the leading coefficients (i.e., for the polynomial A;, its leading coefficient is
multiplied by (—1)?). By virtue of Theorem 3.4, the matrix A is £L-semidefinite if the sequence above contains
exactly p sign alternations.



The criterion for the L£-definiteness given by Theorem 3.1 can be converted into a set of determinantal
inequalities similar to the Sylvester criterion. Assume that a nonzero minor of the maximal order is contained
in the first p columns of B. This can always be achieved by a proper permutation of the columns of B and
a (symmetrical) permutation of the rows and columns of A. Along with matrix (3.8), consider its principal

submatrices of the form

BT
./b:(ér OT ), r=p+1,...,n. (3.13)

Here A, is the leading principal r x r submatrix of A, and the p x r matrix B, has been obtained by deleting
the last n — 7 columns of B. Obviously, rank B, = p. Thus, the arguments used in the proof of Theorem 3.1
are applicable to the matrix A, as well. As a consequence, one has

InA, = (p, p, 0) + Inﬁr_p.

If A is L-definite, the submatrices /Alr_p, r=p+1,...,n, must be positive definite (see Algorithm 1).
Hence, for all matrices (3.13), the determinants have the same sign, namely, (—1)?. In other words,

(=1)’det A, >0, r=p+1,...,n (3.14)

Conversely, assume that inequalities (3.14) hold. We define the matrix A, by analogy with (3.13). Note
that B, corresponds to a nonzero minor of B and, hence, is nonsingular. Applying Lemma 3.1, we have

sign det A, = (—1)7.

According to (3.14), for all matrices A, r = p+1,...,n, the determinants have the same sign, which coincides
with the sign of det A,
Observe that the matrices A,, A, 1, ..., A,—1 become the leading principal submatrices of A = A,, when

the rows and columns of the latter are properly (and symmetrically) reordered. By the Jacobi signature rule
the coincidence of signs of their determinants means that the positive inertia of A is at least

7(Ap) + (n—p)=n

and the negative inertia of A is at least v(.A,) = p. However, the order of A is n + p, and, hence its inertia is
equal to (n, p, 0). By Theorem 3.1, this amounts to the £-definiteness of A.
The determinantal inequalities (3.14) were found in (13, 35]. They lead to one more criterion for £-
definiteness.

Algorithm 4 for checking the L-definiteness of the matrix A

1. Find a nonzero minor of the maximal order in B. By permuting the columns of B, place this minor
into the first p columns. Perform the corresponding permutation of the rows and columns of A.

2. For the sequence of matrices (3.13), check whether all inequalities (3.14) hold. If they do, then the
matrix A is L-definite.

Suppose that the Jacobi rule is employed for computing the inertia of A in Algorithm 2. Then its stage
2 actually differs from stage 2 of Algorithm 4 only by the choice of a different sequence of principal minors.
However, the principal minors in Algorithm 4 are known to be nonzero, which cannot be guaranteed for
Algorithm 2. The price of this guarantee is that one has to carry out additional calculations at stage 1.

The determinantal conditions for the £-semidefiniteness can be established in a similar way, but they are
more intricate. Let R be a subset of the index set {1,2,...,n}. We denote by Ag the principal submatrix of
A which is defined by the choice of B. The symbol By stands for the matrix that is obtained by deleting the
columns of B whose indices do not belong to R. By analogy with (3.13), let

_ [ Ar Bg
AR—<BR i )
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The precondition according to which the leftmost p x p submatrix of B is nonsingular remains valid. Then
the following assertion holds.

Theorem 3.5. A matriz A € S, is L-semidefinite if and only if
(=1)Pdet A >0 (3.15)

for any index subset R such that
RO {1,2,...,p}

One can compare inequalities (3.15) with the determinantal criterion for the ordinary positive semidefi-
niteness. This criterion requires that all principal minors (and not only the leading ones) be nonnegative.

In [9], three other assertions are given that indicate constructive techniques for checking the £-definiteness.
Although obviously impractical, these techniques are described below just for the sake of completeness.

Let
A+tI, BT
Mt:< B 0 ) (3.16)

We will be interested in the roots of the equation
det M; =0. (3.17)

This is an algebraic equation in ¢ of degree less than n. Another option is to consider (3.17) as a generalized
eigenvalue problem with ¢ being the spectral parameter:

det (A+tC) =0. (3.18)

I, 0
e-(5 ).

Both matrices are symmetric; in addition, C' is semidefinite. Therefore, all the roots of Eq. (3.17) are real.

Here A is matrix (3.8) and

Theorem 3.6. A matriz A € S, is L-definite if and only if all the roots of Eq. (3.17) are negative.

Proof. If A is L-definite, then the matrix .4 is nonsingular. Note that the way in which the matrix M,
is obtained from the pair of matrices (A + ¢ I,,, B) is similar to that in which A is generated from the pair
(A, B). Also note that, along with A, the matrix A+t 1, is L-definite for any positive value of . Hence, M,
is nonsingular on the whole half-line ¢ > 0. This proves the necessity part of the theorem.

Conversely, assume that, for given matrices A and B, all the roots of Eq. (3.17) are negative. Consider
the eigenvalues Ay, ..., A, of the matrix M, as functions of the parameter ¢. Then none of these functions
can vanish on the half-line ¢t > 0. Thus, all the matrices M; (¢ > 0) have the same inertia. Since they contain
a zero p X p submatrix, the matrices must have at least p negative eigenvalues (none can be zero since M,
is nonsingular). When ¢ is positive and sufficiently large, the submatrix A 4t I,, is positive definite, which
implies that at least n eigenvalues of M, are positive. Therefore, one must have

aMy)=n, v(M,)=p

for any ¢t > 0. In particular, 7(A) = n. By Theorem 3.1, this ensures the £-definiteness of the matrix A.
The corresponding criterion for £-semidefiniteness is stated as follows.

Theorem 3.7. A matriz A € S, is L-semidefinite if and only if all roots of Eq. (3.17) are nonpositive.

Let f(x) = 0 be a given algebraic equation. It was mentioned in Sec. 2 that, by counting the inertia
of the symmetric matrices appropriately generated from the coefficients of f, one can solve such problems
as determining the number of real roots of the equation or the number of roots in the left half-plane of the
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complex plane. In principle, the criterion contained in Theorem 3.6 amounts to checking that all the roots of
the algebraic equation (3.17) are real and, also, belong to the left half-plane. In the case under consideration,
the additional difficulty encountered in these standard tests is that we do not have an explicit expansion of
the polynomial () = det M,. One can argue that we encountered a similar difficulty in Algorithm 3. Here,
however, the situation is more complicated. When and if the coefficients of ¢(f) have been found, one still
has to generate from them two new matrices and then compute the inertia of these new matrices.

Our next criterion is given by

Theorem 3.8. A matrix A € S, is L-definite if and only if the matriz A in (3.8) is nonsingular and the
leading principal n x n submatriz in the inverse matriz A~ is positive semidefinite.

Proof. For this assertion, it is the sufficiency part that is easier to prove. Being nonsigular and having a
zero p X p block, the matrix A must have at least p negative eigenvalues. The positive semidefiniteness of the
n X n submatrix implies that 7(A™') > n. Hence, n(A) = m(A™!) = n, and the matrix A is L-definite by
Theorem 3.1.

Conversely, let A be L-definite. According to Theorem 3.1, the matrix A is nonsingular. Let A™! be

partitioned:
- K L
L_
AT = ( LT M ) )

where K is an n X n submatrix. We show that any nonzero eigenvalue u of K must be positive. We denote
by x the corresponding eigenvector, Kx = px, and let

1
u=—-L"r.
1

Then the vector

satisfies the equation

or, which is the same, the equation

By Theorem 3.6, the number —% must be negative. This proves the necessity part of the theorem.

If the test for the L-definiteness is to be based on Theorem 3.8, then it should provide for inverting the
matrix A and then counting the inertia of the block K in the inverse matrix A™! (for which, say, the Jacobi
rule can be employed). It is clear that such an approach is necessarily less efficient than Algorithm 2.

Our last assertion modifies Theorems 3.1 and 3.2 for the case where the matrix A is nonsingular. In this
case, the Schur complement A/A is well defined, and the following equality holds:

InA=InA+In(A/A) =InA+In(-BA™'BY).
Theorem 3.9. A nonsingular matriv A € S, is L-definite if and only if
m(A) +v(BAT'BT) = n.
For the L-semidefiniteness, the necessary and sufficient condition is the equality

v(A) +m(BAT'BY) = p.
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The advantage of this formulation is that it involves only matrices of orders n and p and does not involve
matrices of order n + p as in Algorithms 2 and 4. On the other hand, the nonsingularity of A is required as
a precondition, and one must compute the inverse matrix A~! (or the product BA™'BT without explicitly
forming A™1).

In conclusion, we shall show some applications of the notion of £-definiteness.

The extremal problem

min  f(z)
z€R”

under the linear constraint (3.1) gives the most obvious example of a situation where the property of a matrix
to be L-definite is crucial. The matrix A that is important here is the matrix of the second differential of f
at a stationary point xzy € L. For f to have a local minimum at xy, it is necessary that A be L-semidefinite.
The point zy does supply a local minimum to f if A is L£-definite.

Euclidean distance mafrices give one more example of the conditional definiteness.

Definition. A matrix A € S,, with zero diagonal entries and nonnegative off-diagonal ones is called a distance
matriz. The matrix A is called a Fuclidean distance matriz if there exist points zy, ... z, € R” (r < n) such
that
ay = |l —zill;  (1<4,5 <n). (3.19)
If relations (3.19) hold for a set of points in R” but not in R™, then A is said to be irreducibly embeddable
in R'.
As early as in the thirties, various characterizations were proposed that distinguish the Euclidean distance

matrices in the class of the general distance matrices. The following assertion due to Schoenberg [17, 36] is
of the most interest {o us.

Theorem 3.10. Let
e=(1,1,..., D). (3.20)

Then the distance n X n matriz A is o Euclidean distance matriz if and only if it is negative L-semidefinite
with respect to the subspace

efz =0. (3.21)
If
1 T
P=1I,——ce
11

is the orthoprojector on the subspace L, and
r = rank (PAP),
then A is irreducibly embeddable in R".

Applying Theorem 3.2 to this particular situation, we can restate criterion 3.10 as follows.

Theorem 3.11. The distance n xn matriz A is a Euclidean distance matriz if and only if the bordered matriz

-A e
A= (75

has negative inertia 1. Furthermore, A is irreducibly embeddable in the space R", where

r=n—1-—0(A).

The criterion is given in this form in [20]. We mention that Euclidean distance matrices are used in

conformation calculations to represent the squares of distances between the atoms in a molecular structure
[19].
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4. Copositive Matrices

The nonnegative orthant of the n-dimensional space R™ will be denoted by R’ :
R: — {o] 220},

Inequalities like 2 > y, where x and y are vectors in R", are to be interpreted elementwise.

Definition. A matrix A € S, is called copositive if
(Az,z) >0 VzeR], (4.1)

and strictly copositive if
(Az,z) >0 Yz eR:, z#0. (4.2)

Remark. Sometimes an intermediate class of copositive-plus matrices is also considered (for example, see
[37]). These matrices are defined as copositive matrices with the additional property that

(Az,z) =0, ze€R] = Ar=0.

However, in this survey the discussion is limited to matrix classes (4.1) and (4.2).

Obviously, if A is (strictly) copositive, the same is true of any one of its principal submatrices. In
particular, we have

Lemma 4.1. All the diagonal entries of the copositive matriz A are nonnegative. If A is strictly copositive,
then all its diagonal entries are positive.

Let P be a nonsingular nonnegative matrix.
Lemma 4.2. If a matriz A € S, is (strictly) copositive, then B = PT AP is also (strictly) copositive.

Corollary 4.1. Suppose that B is obtained from a (strictly) copositive matriz A by o symmetrical permutation
of rows and columns. Then B is also (strictly) copositive.

We denote by C, the set of n x n copositive matrices. Obviously, C,, is a cone in the space M, (or S,).
(Here and in what follows, a “cone” always means a “convex cone.”) The two subsets of the cone C, are well
known.

Lemma 4.3. Any nonnegative matriz A € S,, is copositive. If all the diagonal elements ay; in the nonnegative
matriz A are positive, then A is strictly copositive.

Proof. The first assertion of the lemma is obvious. Indeed, for z > 0, the inner product (Ax, z) is the sum of
2

n® nonnegative terms. If the main diagonal of A is positive and the component x; of the nonnegative vector
x 18 positive, then
(Az,z) > aux; > 0.
Thus, the cone N, of symmetric nonnegative n x n matrices is a part of the cone C,,. Positive semidefinite
n X n matrices constitute one more subset of this cone, which we denote by PSD,,. Obviously, PSD,, is also
a cone.
It turns out that, for n = 2, the following relation holds:

Indeed, let the 2 x 2 matrix A be copositive. Then

a1 20, ax>0.
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If we also have a;p > 0, then A € N,. In the case a;s < 0, we consider the inner product (Ar,z) for the
vectors x = (1, 12)T with a nonzero first component x;. Setting t = z, [z yields

2 2
(A.CL', :II) = Q1127 + 2@12.’1315E2 + A2y

= ZB%(CLH + 2(112t —+ (122t2).
For the polynomial
f(@) = an + 2apt + axnt’

to be nonnegative for any ¢ > 0, it is necessary, first of all, that the inequality ass > 0 hold. Also, the value

f(to) that the polynomial assumes at the point of minimum ¢, = —g—g must be nonnegative, i.e.,
2
a
ay; — 12 Z 0. (44)
22

The inequality ass > 0 combined with (4.4) ensures the positive semidefiniteness of the matrix A.

Corollary 4.2. The conditions that are necessary and sufficient for the symmetric 2 x 2 matriz A to be
copositive can be described by the set of inequalities

ajp =0, axp >0,

a1 + /011099 Z 0. (45)

Formally, conditions (4.5) involve radicals. However, using relation (4.3), one can easily avoid computing
radicals when verifying the copositivity of a matrix.

Corollary 4.3. Since any principal 2 X 2 submatriz of the matriz A € C, is also copositive, one must have
Q5 + Qi Qi Z 0 Vv l], /) ?é j (46)
Among other things, this implies that if a; = 0 for the copositive matriz A, then a;; = aj; > 0 for any j.

Remark. In the same way as equality (4.3) was justified, one can prove the following assertion. Any strictly
copositive 2 x 2 matrix is either a nonnegative matrix with positive diagonal entries or a positive-definite

matrix.
Familiarity with the conjugate cone C; allows one to better understand how the cone C,, itself is organized.
Recall that, for the cone K in the Euclidean space E, the conjugate (or dual) cone K* is defined by the formula

Kr={y]|(x,y) >0 Vzek}
If £* = K, then K is a self-conjugate cone.

For the matrix spaces M,, and S,, the most natural inner product is

(A, B) = tr (AB") = Z”: a;;bij. (4.7)

i, j=1
Obviously, tr (ABT) > 0 for any A, B € N,,. Hence,
N, C N (4.8)
We denote by F£;; the n x n matrix whose only nonzero entry is equal to 1 and placed in the position
(4, 7). It is easily seen that (A, Ey;) = tr (AF};) = ayy.
For the time being, we assume M,, to be an underlying Euclidean space. Therefore, N,, will be regarded
as the cone of all nonnegative matrices (i.e., including nonsymmetric ones). Note that the condition (A, B) >

0 V B € N, implies, in particular, that
(A, E;j) >0 Vi,j.
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Hence, any matrix A € A’F must be nonnegative. Comparing this fact to (4.8) shows that A, is a self-conjugate
cone.

This result (i.e., that the cone A, is self-conjugate) also holds in the case where A, is interpreted as a
subset of S,; one must only replace the matrix F;; in the argument above by the symmetric matrix E;; + Ej;.

Using the spectral decomposition of a symmetric matrix, it is easy to prove the following proposition:
the cone PSD,, of positive-semidefinite n x n matrices is self-conjugate as a subset of the space S,.

Let us now find out what the cone C; is, which is conjugate to the cone of copositive matrices with respect
to the inner product (4.7). The definition below will be helpful.

Definition. A quadratic form @ = (Bz, ) is called completely positive if Q can be expressed in the form

N
Q=Y L (4.9)
i=1
Here L;, i = 1,..., N, are linear forms with nonnegative coefficients.

The matrix of a completely positive quadratic form is also called completely positive. If B is such a
matrix, then it can be expressed in the form

N
B=Y LI, L;eR:, i=1,...,N, (4.10)

which corresponds to representation (4.9).

Remark. One can show that the classical definition of a completely positive matrix [2, Chap. XIII, Sec. &]
restricted to the case of square symmetric matrices is equivalent to the definition given above.

Theorem 4.1. For the cone C, of copositive n X n matrices, the conjugate cone (with respect to the inner
product (4.7)) coincides with the cone B, of completely positive n x n matrices:

B,=C:. (4.11)

Proof. The fact that B, is really a cone is quite obvious from (4.10). Suppose that A € B%. Then
tr(AB) >0 V BeB,. (4.12)
In particular, setting here
B=uaz", xeRY,

one has
tr (Ax,z") = 2T Az = (Az,2) > 0.

Since this inequality holds for any z € R}, the matrix A is copositive. Thus, the inclusion
B, cC, (4.13)

is established.
Assume now that A € C, and that B is a completely positive matrix. Using representation (4.10) for B,
one finds

N
Z (AL, 1) = Z(Az,-,,zi)zo.

i=1
Hence, A € B, and
C, C B,

Combining this with (4.13) yields the equality
B, =C,,
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which is equivalent to (4.11).
It is shown in [14] that the relation
C, =PSD, + N, (4.14)

holds for n = 3,4. Recall that, for subsets X and Y of the vector space V', the summ X + Y is defined to be
the set

{z+ylzeX yeY}
M. Hall proved in [5, Chap. 16, Sec. 2] that equality (4.14) is false already for n = 5. Below we reproduce
his arguments.
By conjugating both sides of (4.14), the equivalent relation is obtained, namely,

B, = C: = PSD; NN = PSD, NN, (4.15)

Thus, in order to disprove (4.14), it suffices to produce a matrix that would be nonnegative and positive
semidefinite but, at the same time, not completely positive. For n = 5, all these requirements are satisfied by
the matrix B of the quadratic form

9 3
Q(x1,...,25) = 27 + 23 + 2 + 12 + TF + Ty + T1L5 + Toxs + 5 Ta%4 + T4
11, 11, 1 11 ., 5 )
= (z — — 1 —! -3 — — —I3— = —(z- . 4.16
(g + 521 -+ 21‘3) + (x5 + 521 + 21:4) + 2(3;1 573 21“4) + 8(:1:3—|-x4) (4.16)

It is obvious from the first representation of the form @) that B is nonnegative, and from the second, that B
is positive semidefinite. Suppose that B is completely positive. Then @Q, being completely positive, admits
the representation

Q=L+ -+ L2+ L2+ + L}

All linear forms L;, i = 1, ..., N, have nonnegative coefficients and are numbered so that L, ..., L, are those
in which z3 and x4 have positive coefficients. Since the form () has no terms with the products z,z3, To2y4,
and z3xs, the forms Ly, ..., L, must have zero coefficients for x, 22, and x5, or

Li=l2s+ 1Pz, 1">0 1">0,i=1,...,r

Hence,
5 3
L%+...+L§:aaz§+§x3z4+bxi, a>0,b>0. (4.17)
Let us set
1 :Ql(xl,...,$5) :L2+1++L?\I
Then

5 3 .
Q = az} + 5Tstat bri+ Qi(wn, ..., as). (4.18)

Consider both sides of (4.18) when the unknowns z3 and x4 assume arbitrary values and the other
unknowns are expressed in terms of z3 and z, by the formulas

T3+ Xg 3zs + 4
Ty =—F— I = —————

T3 + 314
, T = ——————.
2

4 4
In this case (see (4.16)),

5 .
Q = —8‘(1'3 + .’If4)z,
and (4.18) assumes the form

5 3
é(g;3 +1,)? = azi + 5%3T4 +bai + Qu.
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Since the quadratic form (); is positive semidefinite, the inequalities

5 5
0<a< -, 0<b< =
_a-8’ - T8
must hold. Now we set 3 =1, 24 = —1 in (4.17) and have
) ‘ 0 3 5 5 3 1
(Zé)—lil))2+"'—|—(l§)~l§1))2:a+b—§Sg“‘é“g:*‘z,

which is impossible. The source of the contradiction is the assumption that the form @ is completely positive.
Therefore, ) and its matrix B cannot be completely positive.

Note now a remarkable spectral property of copositive matrices that makes them similar, to some extent,
to nonnegative and positive-semidefinite matrices.

Definition. A square matrix A is said to have the Perron property if its spectral radius p(A) is an eigenvalue
of A.

Evidently, the Perron property is inherent in any positive-semidefinite matrix. The fact that all non-
negative matrices (including nonsymmetric ones) have the Perron property is the substance of the famous

Perron-Frobenius theorem.
It turns out that the Perron property is also valid for copositive matrices [21].

Theorem 4.2. The spectral radius p(A) of the matriz A € C,, is an eigenvalue of A.

Proof. Suppose that p = p(A) is not an eigenvalue of A. Then A must have —p as an eigenvalue. Let x be
a corresponding unit eigenvector:
Ax = —pz, | z|2=1.

We represent z as
r=y—z y>0,2>0, (y,2)=0,

and set
U =Y+ z.

Obviously, © > 0, || u ||;= 1. Furthermore,
(A,2) + (Au,u) = —p-+ (Au,u) = 2[(Ay,y) + (Az,2)] = 0.
Hence,
(Au,u) > p. (4.19)

However, the values that the quadratic form (Av,v) assumes on unit vectors v cannot exceed the maximal
eigenvalue \; of the matrix A (see (2.6)). Thus, (4.19) implies

(AU, U’) =A= P
which contradicts the original assumption.

Remark. In fact, a more general result than Theorem 4.2 is proved in [21]. Let K be an arbitrary cone in
R"™. A matrix A € S, is said to be copositive with respect to K if (Az,2z) > 0 for any z € K.

Theorem 4.3 [21]. A matriz A € S,, has the Perron property if and only if A is copositive with respect to a
self-conjugate cone K C R".

It was pointed out at the beginning of this section that any principal submatrix of the copositive matrix
A is also copositive. This explains why most criteria for copositivity are based on a sequential analysis of
principal submatrices, arranged in increasing order from 1 to n. Thus, if the inspection of the main diagonal
shows that some of its elements are negative, then A cannot be copositive. If all the diagonal entries are
nonnegative, then A is still not copositive if at least one of inequalities (4.6) is violated, and so on.
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If we use the inductive approach indicated above, then it is of major importance to examine the situation
where, for a certain k, all principal & X k submatrices have already been tested and proved to be copositive,
and one has to pass to the analysis of (k + 1) X (k + 1) submatrices. In this analysis, the terminology given
below will be useful.

Definition. Let m be a positive integer, 1 < m < n. A matrix A € S, is called (strictly) copositive of order
m if any principal m x m submatrix of A is (strictly) copositive. If A is a (strictly) copositive matrix of order
m, but not of order m + 1, then m is said to be the exact order or index of (strict) copositivity of A.

In these terms, we have to verify whether the matrix A € §,, is (strictly) copositive if it is already known
that A is (strictly) copositive of order n — 1. Following [18], we introduce one more auxiliary definition.

Definition. Let A, B € S,,, and B be strictly copositive. The pair (4, B) is called codefinite if
Ax = ABz, x>0, (4.20)

implies that A > 0. If (4.20) implies that A > 0, then the pair (A, B) is said to be strictly codefinite.

Let us consider the reasoning that is used in the proofs of several subsequent assertions. Suppose that
A € S, is a copositive matrix of order n — 1; at the same time, A is not copositive. Then, for some vectors
in the nonnegative orthant R, the values of the Rayleigh ratio

o) — (Az,x)
o) = 22 (a.21)

are negative. Since all the principal (n—1)x (n—1) submatrices are copositive, functional (4.21) is nonnegative
on the boundary of R]. Therefore, for the Rayleigh ratio, the minimum in R is furnished by an interior
vector xp > 0.

It is well known that the gradient of functional (4.21) at the point g is expressed by the formula

2
grad gp(ro) = Hx—OHQ‘(AIO — ’50(1‘0).’170).

If xg delivers a local minimum to the Rayleigh functional, then xy is an eigenvector of the matrix A, and
@(xo) is the corresponding eigenvalue. In the case under consideration, the matrix A must have a positive
eigenvector associated with a negative eigenvalue.

Instead of the eigenvalues and eigenvectors of the matrix A, one can examine those of the problem
Azr = ABx, where B € S, is a strictly copositive matrix. Assume that A, not being copositive, has the index
of copositivity n — 1. Repeating the argument above with obvious alterations, one arrives at the following
conclusion: there exists a positive eigenvector xy for the pair (A, B) that corresponds to the negative eigenvalue
Ao- In particular, taking as B the rank-1 matrix

B=bb",
where b is a positive vector, we find that
Axg = Nbb g = pb, (4.22)
the scalar factor p = (g, b)A¢ being negative.

Theorem 4.4 [18]. Let A € S, be a (strictly) copositive matriz of order n—1. Then the following statements
are equivalent.

(1) A is (strictly) copositive.

(2) There exists a strictly copositive matriz B € S,, such that the pair (A, B) is (strictly) codefinite.

(3) For any strictly copositive matriz B € S,, the pair (A, B) is strictly copositive.
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Proof. Assume (1), and let B € S, be a strictly copositive matrix. Suppose that the vector z in
Az =ABzx

is positive. Then the number
(Az, z)
(Bz, z)

is nonnegative (positive, respectively) since A is copositive (strictly copositive). Thus, the pair (A, B) is
codefinite (strictly codefinite).

The implication (3) — (2) is obvious. It remains to show that (2) — (1). Suppose that the matrix A is
not copositive. Then the pair (A, B) admits a positive eigenvector o associated with the negative eigenvalue
Ao This contradicts the fact that (A4, B) is a codefinite pair. The case where the pair (4, B) is strictly
codefinite can be analyzed in a similar way.

Theorem 4.5 [18]. Let A € S, be a copositive matriz of order n — 1. Then the following statements are
equivalent.
(1) A is not copositive.

(

2)
(3) The matriz A~ exists and is nonpositive.
(4)

Proof. The implication (1) — (2) is essentially established above (see (4.22)). Conversely, it follows from

For any positive vector b, there exists a vector x > 0 such that Az = ub, p < 0.

det A < 0, and the adjoint matriz A = adj A is nonnegative.

(2) that the pair (4,bb") is not codefinite; hence, A is not copositive. Thus, statements (1) and (2) are
equivalent.

Now assume (2) and suppose that Ay = 0. For any b > 0, the equation Az = b admits a solution z which
implies

yTh=yTAz=0.
Since b is an arbitrary positive vector, the vector y must be zero. Therefore, A is nonsingular. Moreover, it
~follows from (2) that A™'6 < 0 when b > 0. Regarding the coordinate vectors e; as the limits of sequences
of positive vectors, we infer that the vectors A~'e;, i.e., the columns of the inverse matrix A~!, must be
nonpositive. As for the reverse implication (3) — (2), it is obvious.

The implication (4) — (3) is equally obvious. Thus, the theorem will be proved completely if we prove
the implication (1) — (4).

According to the reasoning that precedes Theorem 4.4, the matrix A has a negative eigenvalue \ with
an associated positive eigenvector z. Suppose that another eigenvalue p of A is also negative and that y is
the corresponding eigenvector. One can assume that (x,y) = 0. Clearly, the vector y has positive as well as
negative entries. Hence, we can construct a linear combination

z=z+ay (4.23)

which satisfies the following conditions: (a) the vector z is nonnegative, and (b) at least one of its entries is
7€ero.
Vector (4.23) belongs to the boundary of the orthant RY. Since A is a copositive matrix of order n — 1,

the inequality
(Az,z) >0
holds. On the other hand,
(A(z + ay),z + ay) = Mz, z) + pa(y,y) < 0.
This contradiction proves that the matrix A has only one negative eigenvalue; thus, det A < 0. Since (1) and

(3) are equivalent, the nonnegativity -of the adjoint matrix follows immediately.
The “strictly copositive version” of Theorem 4.5 can be proved in a similar way.
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Theorem 4.6 [18]. Let A € S, be a strictly copositive matriz of order n — 1. Then the following statements
are equivalent:

(1) A is not strictly copositive.

(2) For any positive vector b, there exists a vector x > 0 such that Az = ub, u <0.

(3) det A <0, and the adjoint matriz adj A is positive.

Remark. We use Theorems 4.5 and 4.6 to give a different proof of the criteria for copositivity and strict
copositivity in the case of 2 x 2 matrices. For n = 2, the copositivity of order n — 1 is equivalent to the
relations

a;p 20, axn>0.

According to statement (4) of Theorem 4.5, A is not copositive if and only if

det A = aj a9 — a3, < 0

and
—Q12 = (adJ A)gl > 0.

On the other hand, inequalities (4.5) are equivalent to A being copositive.
In the same way, one can deduce the criterion of strict copositivity,

a1 >0, age >0, app++/a11029 >0
from statement (3) of Theorem 4.6.

Remark. In [18], Theorems 4.5 and 4.6 are used to produce criteria for copositivity and strict copositivity
in the case of 3 x 3 matrices. The copositivity of order n — 1 means here that, first, the main diagonal of A
must be nonnegative and, second, the inequalities

a2 + /011022 2 0, @13 +/aiazz > 0, ags + 1/axazs >0 (4.24)

must be satisfied (see (4.6)). If these requirements are met, A will be copositive if and only if at least one of

the conditions below holds:
det A >0 (4.25)

and
124/Q33 + G13+/A22 + Q23v/A1 + y/a11a2a33 > 0. (4.26)

To obtain a criterion of strict copositivity, one must require that, first, the main diagonal of A be positive,
second, inequalities (4.24) be satisfied, with the sign > replaced by >, and, third, one of the conditions (4.25)
and (4.26) hold; in the third case, the sign > in (4.25) must also be replaced by >.

The bad feature of these criteria is that they involve radicals. Later in this section, rational criteria
for copositivity will be described that are applicable to low-order matrices. For the time being, we continue
discussing the case of an arbitrary n.

In [37], Theorems 4.5 and 4.6 are supplemented by the following assertion.

Theorem 4.7. Let A € S,, be a matriz with the index of copositivity n — 1. Then

(1) InA=(n-1,1,0).

(2) A is positive semidefinite of order n — 1.

(3) If A is strictly copositive of order n — 1, then it is positive definite of order n — 1, and the inverse
matriz A~ is negative.

[We mention that the notions of positive definiteness and positive semidefiniteness of order m are intro-
duced by a complete analogy with the above definitions for the copositivity and strict copositivity of order

Proof. The first statement of this theorem was already proved when the implication (1} — (4) was justified
in Theorem 4.5. Let A,,_; be an arbitrary principal (n—1) x (n — 1) submatrix of the matrix A. Then (1) and
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interlacing inequalities (2.8) imply that all the eigenvalues yu; of A,_;, except, perhaps, for the smallest one,
are positive. However, observe that det A,, ; is nonnegative since its value is a diagonal entry of the adjoint
matrix adj A. Hence, for the smallest eigenvalue p,,_; one obtains

This proves statement (2) of the theorem. By Theorem 4.6, if A is strictly copositive of order n — 1, then the
adjoint matrix is positive; therefore we have p,_; > 0 instead of (4.27). Since det A < 0, the inverse matrix
A1 must be negative.

In [37], one can also find the following extension of Theorem 4.7.

Theorem 4.8. Let A € S,, be a matriz with the index of copositivity n — 1. Then

(1) A is positive definite of order n — 2.

(2) In the inverse matriz A™', all the principal minors, with the possible exception of diagonal entries,
are negative.

(3) A™! is nonpositive, and its off-diagonal entries are negative.

Proof. Assume that A contains a singular principal submatrix A,_». No generality will be lost in considering
A, _» as the leading principal submatrix. We denote by 7 the rank of A,_,. By permuting symmetrically the
first n —2 rows and columns in A, one can always achieve that the leading principal 7 x r submatrix A, will be
nonsingular. In the Schur complement C' = A/A,, the diagonal entry ¢;; is zero; however, some off-diagonal
entries of the first column must be nonzero. Otherwise, det A = det A, det C = 0, which contradicts statement
(4) of Theorem 4.5.

Suppose that the entry cgy, k& > 1, is nonzero. Consider the principal (r + 2) x (r 4 2) submatrix
AL, ..,rr+1,r+k).

Note that its order r 4+ 2 does not exceed n — 1. This submatrix is congruent to the direct sum

Ar@( 0 ) (4.28)

Cr1 Crk

Since the second term in (4.28) has inertia (1, 1, 0), the submatrix under consideration is not positive semidef-
inite, contrary to the second statement of Theorem 4.7.

Statement (2) is immediate from (1) if we bear in mind the classical relationship between the minors of
the matrix A and those of its inverse B = A~! [2, Chap. I, Sec. 4]. Being applied to the principal minors,
this relation has the form

det B(iy', ... 1_4) =

Here i)',...,1,_ is a subset of the index set 1,2,...,n, complementing the subset iy, ..., .

Assume that the off-diagonal entry b;; in B = A~! is zero. Then, for the corresponding principal 2 x 2
minor, one has

in contradiction to statement (2).

Using the results above, one can give a complete description of matrices with the index of copositivity
n— 1L
Theorem 4.9. Any of the two sets of conditions below is necessary and sufficient for a matrix A € S, to
have the index of copositivity n — 1:

(DInA=(n-1,1,0) and A~" is nonpositive,

(2) det A < 0, A~ is nonpositive, and all the principal minors of A up to the order n — 2 are positive.
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Proof. We shall first show that both sets of conditions are equivalent. In the implication (1) — (2), the only
nontrivial assertion is that of the positivity of the principal minors. Assume that the leading principal minor
Ay, k <n —2,is nonpositive. Consider first the case where Ay < 0. Then at least one of the eigenvalues of
the leading principal k£ x k submatrix A is negative. A similar assertion is true for the principal submatrix
A,_1. The conditions det A < 0, A™! < 0 imply specifically that all the principal minors of order n — 1
in A are nonnegative; hence, A,,_; > 0. In such an event, aside from the smallest eigenvalue p,_;, which
is negative, the submatrix A, 1 must have another nonpositive eigenvalue. As a consequence, at least two
eigenvalues of A are negative, which contradicts (1).

Now assume that A; = 0. Let r be the rank of the principal submatrix Ag; obviously, r < n — 2.
Applying the same reasoning as in the proof of the first statement of Theorem 4.8, we can show that a
principal submatrix of order < n — 1 exists that has a negative eigenvalue. Then the leading principal
submatrix A, _; must also have a negative eigenvalue. The rest of the proof is similar to the analysis of the
case Ay < 0.

Next we prove the reverse implication (2) — (1). Denoting by A,,_; the determinant of the leading
principal submatrix A,_;, we again use the inequality A,_; > 0, which follows from the conditions det A <
0, A < 0. In conjunction with the positivity of the leading principal minors of smaller orders, this inequality
shows that the submatrix A4, ; is positive semidefinite. Therefore, the eigenvalue A,_; of the matrix A must
be nonnegative. Since det A < 0, we have, in fact, A, ; >0, A, <0, and

InA=(n-11,0).

The fact that both sets of conditions (1) and (2) are necessary is established by Theorems 4.7 and 4.8.
Now we shall prove that they are sufficient. Since set (1) is invariant under symmetric reorderings of rows and
columns in A, the same must be true for set (2). In the preceding paragraph, the positive semidefiniteness
of the leading principal submatrix A,,_; was derived from set (2). The invariance pointed out above implies
that in reality all the principal (n — 1) X (n — 1) submatrices are positive semidefinite and, hence, copositive.
Thus, the matrix A is copositive of order n — 1.

To prove that A is not copositive, one can use the “anti-Perron” property of the inverse matrix B = A™L.
By the hypothesis, B < 0; hence, the negative number —p(B) is an eigenvalue of B. It is associated with

the “Perron” eigenvector z all of whose nonzero components are positive. Recall that B and A have identical
eigenvectors. Thus, A has a nonnegative eigenvector x with the associated negative eigenvalue

1 (Az, x)

p(B)  (z,2)°

However, the inequalities © > 0, (Az,z) < 0 are incompatible with copositivity. We infer that A has the
index of copositivity n — 1, which completes the proof of the theorem.

The next two assertions describe a special subset of copositive matrices. They are proved in the same
way as the theorems above [37].

Theorem 4.10. Let A € S, be a copositive matriz with index of strict copositivity n — 1. Then
(1) In A= (n—1,0,1), and the zero eigenvalue of A is associated with a positive eigenvector,
(2) A is positive semidefinite of rank n — 1;
(3) A is positive definite of order n — 1.

Theorem 4.11. The set of conditions below is necessary and sufficient for the matriz A € S,, to be copositive
with index of strict copositivity n — 1: (a) det A = 0, (b) the leading principal minors of A up to the order
n — 1 are positive, and (¢) A has a positive eigenvector associated with the zero eigenvalue.

Now that the special cases of copositivity have been described, one can obtain a complete characterization
of it. The two auxiliary assertions below will be helpful.

Lemma 4.4. Let A € S, be a copositive matriz. Then the relations xg > 0 and xf Axzy = 0 imply the
inequality Axy > 0.

23



Proof. One can deduce from the hypothesis of the lemma that the vector zy supplies a minimumn in the
nonnegative orthant to the quadratic form

¥(z) = (Az, z). (4.29)

Therefore, for any coordinate vector e;, we have

o — lim Y(xo + avey) — (o) — m (A(xg + ae;), o + ae;) > 0.

B.rl- 20 a—s+0 o oe—40 o
Thus,

o ov\"
adyy = [ —, ..., > (.
grad (0:1?1 8%) -
Now the assertion of the lemma is immediate from the well-known formula
grady = 2A .

Lemma 4.5. Let A € S, be a nonsingular copositive matriz. Then no column of the inverse matriz B = A~
can be nonpositive.

Proof. Assume the contrary, i.e., that the i th column b; of B is nonpositive. Let x = —b;. Then 2 > 0, and
y=Ar=—-Ab = —e; <0. (4.30)

This yields
bi = (€5, 0;) = (y,7) = (Az,z) <0.

Since A is copositive, we must, in fact, have the equality (Az,z) = 0. This equality, combined with (4.30)
and the assumption z > 0, contradicts the previous lemma.

Now we can state a criterion for copositivity. To be more exact, this is a criterion for the opposite
property, i.e., the lack of copositivity.

Theorem 4.12 [37]. A matric A € S, is not copositive if and only if it contains a nonsingular principal
submatriz D such that a certain column of the inverse matriz D™ is nonpositive.

Proof. The sufficiency part of the theorem is almost obvious. According to Lemma 4.5, the submatrix D
cannot be copositive, but then the whole matrix A is not copositive either.

To prove the necessity part, assume that the index of copositivity of A is k, £ < n—1 (including the case
k =0). Then A contains a principal (k+ 1) x (k+ 1) submatrix, say, D which is not copositive. By Theorem
4.5, the inverse matrix D! exists and is nonpositive.

Theorem 4.12 essentially coincides with the determinantal criterion of copositivity due do E. Keller.

Theorem 4.13 [23]. A matriz A € S, is not copositive if and only if it contains a principal submatriz D
with det D < O for which oll the cofactors of the last column are nonnegative.

Proof. If we replace the word “last” in this formulation by the word “certain,” then the identity of both
statements, the present one and that of Theorem 4.12, will be obvious. However, the mention of the last
column does not have any real significance. Indeed, it was found in the proof of necessity that the whole
matrix D~! is nonpositive, i.e., any column of the adjoint matrix is nonnegative.

The criteria of strict copositivity below are justified in a similar way.

Theorem 4.14 [37]. A matriz A € S, is not strictly copositive if and only if at least one of the following
conditions is satisfied:
(a) A contains a nonsingular principal submatriz D such that a certain column of D™ is nonpositive;
(b) A contains a singular positive semidefinite principal submatriz with a nonnegative eigenvector attached
to the zero eigenvalue.
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Theorem 4.15. A matriz A € S, is not strictly copositive if and only if it contains a principal submatriz D
with det D < 0 for which all the cofactors of the last column are positive.

This determinantal criterion for strict copositivity was found by Motzkin in 1967 [31]. It is expedient
to clarify the relationship between condition (b) of Theorem 4.14 and the Motzkin condition for the case
where det D = 0. Suppose that A has the index of strict copositivity k. Then D is a singular principal
(k 4+ 1) x (k + 1) submatrix that is not strictly copositive. According to statement (3) of Theorem 4.6, the
adjoint matrix D= adj D is positive. If, for a singular D, the matrix D is not zero, then rank D = k. In this
case, rank D = 1, and any column of D is a solution to the homogeneous linear system Dz = 0. In other
words, any column of the adjoint matrix is a positive eigenvector of D associated with the zero eigenvalue.

Recall that the use of criteria of this kind presupposes a sequential analysis of the principal submatrices
arranged in increasing order. The procedure terminates as soon as a noncopositive submatrix is found. Indeed,
in this case the matrix A itself cannot be copositive. The positive answer for copositivity can only be obtained
when all the principal submatrices are inspected. Therefore, in general, the amount of computational work
in these criteria grows exponentially with the order n of a matrix.

This rapid growth is, to a certain extent, unavoidable. It was proved in [32] that the problem of verifying
whether a given square integer matrix is copositive or not is NP-complete. This explains why the situations
that make it possible to significantly reduce the inspection of principal submatrices are so important. Two
situations of this kind are discussed in [37].

Theorem 4.16. Suppose that a matric A € S, has p posilive eigenvalues, p < n. Then A is (strictly)
copositive if and only if it is (strictly) copositive of order p + 1.
Proof. For definiteness, we shall consider only the statement relating to copositive matrices. The strictly
copositive case can be proved similarly.

The necessity part of the theorem is obvious. To prove the sufficiency part, assume that A is not
copositive and has index of copositivity /. Then A contains a principal (I + 1) x (I + 1) submatrix A that is
not copositive. According to Theorem 4.7, the submatrix A must have [ positive eigenvalues. Then A has at

least [ positive eigenvalues, which implies that [ < p. However, this means that A contains a noncopositive
principal submatrix of order < p + 1, contrary to the hypothesis of the theorem.

Theorem 4.17. Suppose that a matriz A € S, is singular of rank r. Then A is copositive if and only if it is
copositive of order r.

Proof. Only the sufficiency part needs proving. If r = w(A), then A is positive semidefinite and, hence,
copositive. For r > 7(A), the preceding theorem can be applied. Indeed, the copositivity of A follows from
the fact that it is copositive of order 7(A) +1 < r.

The strictly copositive version of Theorem 4.17 is stated as follows.

Theorem 4.18. Suppose that a matriz A € S, is singular of rank r. Then A is strictly copositive if and only
if it is strictly copositive of order v + 1.

Thus, if the rank or the positive inertia of a matrix A € S, is considerably smaller than n, then, in order
to get a positive answer to the question concerning its copositivity or strict copositivity, one can terminate
the inspection of the principal submatrices much earlier than in the general case.

Criteria of the Motzkin or Keller type are called inner criteria in [37], because when analyzing a principal
submatrix D, they do not use information concerning the part of the matrix A that is exterior to D. There
exist criteria of a different type, which are called outer criteria; the first of them were constructed in [37]. We
give one of these criteria without proof. However, some preliminary nomenclature must, be introduced simply
for formulating it.

Assume that a leading principal submatix A;; in a matrix A € S, is nonsingular. We partition A as in

(2.10) and form the n x n matrix
_ [ Cu Cri
C= ( Oy Con ) ; (4.31)
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where

Ci = 1_11, Ci = "AﬁlAm, Co = AngAﬁl, v (4.32)
and Cyy = A/A;; is the Schur complement of the submatrix A;; in A. In contrast to A, the matrix C is
generally not symmetric since Co; = —C%,. The transition from A to C is called the principal block pivotal

operation with piwot Ay,.
The principal block pivoting motivates a remarkable representation of the quadratic form (4.29). Let

y= Az (4.33)

and partition the vectors z and y in accordance with the partitioning of A:

T
~(2) ()
Since the block Aj; is nonsingular, the subvector z; can be expressed in terms of y; and z; (see (4.33)),
r = Ajlyr — At Ajas. (4.34)
Substituting this relation into the second block equality (4.33) yields
yo = ALAT + (Agy — AL AT Ay (4.35)

Hence, the matrix of Eqs. (4.34)-(4.35) is precisely matrix the (4.31)—(4.32).
If, in the quadratic form ¢(z) = (Az,z), the original vector of the unknowns z is replaced by the new

vector
f)

¥(z) = (Cuyr, y1) + (Caaza, T2).

Thus, the block elimination in the matrix A is associated with the block decomposition of the corresponding
quadratic form.

In outer criteria for copositivity, the inspection of a current principal submatrix D is connected with an
analysis of the corresponding block pivotal operation. By a symmetric permutation of rows and columns of
A, one can place D in the position of the block A;; in (2.10). Then the principal block pivotal operation is
described by matrix (4.31). If the submatrix Aj; is of order £, then let [ = n — & be the order of the block
022.

Definition. Let A;; be a given principal submatrix. We say that situation I occurs if, for a certain ¢, i =
1,..., 1, the diagonal entry ¢; of the block (5 and row ¢ of the block Cy; are nonpositive. If, for the index i
above, there exists a negative entry in row 7 of the block Cs;, then we say that situation II occurs.

then one gets

Theorem 4.19 [37]. A matriz A € S, is not (strictly) copositive if and only if situation 11 (situation I) occurs
for a positive-definite principal submatriz D of A.

Remark. A case is possible where the submatrix D in Theorem 4.19 is vacuous. The vacuous square matrix
is considered to be positive definite, and, in this case, the matrix A itself must be interpreted as the Schur
complement C5,.

It is claimed in [37] that, from the computational standpoint, the outer criteria are much more efficient
than the inner ones because the former require only the inspection of positive-definite principal submatrices.
However, no numerical experiments are reported that would support this claim. As for the argument pre-
sented above, one must say that, being purely speculative, it is rather weak since something akin to it can be
said of criteria of the Motzkin—Keller type, namely, they involve only principal submatrices with nonpositive
determinants. It is not clear a priori what principal submatrices are larger in number in the given matrix
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A: those that are important for an outer criterion or those that are accounted for by an inner criterion. For
example, a positive-definite matrix A does not contain any principal submatrices with nonpositive determi-
nants; on the contrary, all the principal submatrices are positive definite. It should be added that a step of
the outer criterion that amounts to a principal block pivotal operation is considerably more labor-consuming
than one of the inner criterion.

Both inner and outer criteria organize the inspection of principal submatrices in the “bottom-up” direc-
tion, i.e., from the smallest order to the largest one. However, the opposite direction should not be neglected.
In some situations, the testing of an n x n matrix A for copositivity can easily be reduced to a similar test
for one or several matrices of a smaller order. This approach was recently pursued in [7, 24].

The simplest situation of this kind is described by the lemma below.

Lemma 4.6. Let the matriz A € S,, be partitioned:

Ay A .. A,
A,{é A22 RN A2m

A=
AT AT A
where all off-diagonal submatrices A;;, i # j, are nonnegative. Then the (strict) copositivity of A amounts to
the (strict) copositivity of all its principal submatrices Ay, ..., Amm-
Corollary 4.4. Assume that the matriz A € S,, is partitioned.
T

. an a
A= ( A ) , (4.36)

where the eniry an and the vector a are nonnegative. Then the copositivity of A amounts to the copositivity
of the principal submatriz A,_1.

Remark. For convenience, here and in later formulations we consider only partitioning (4.36) of A, with the
first row and the first column singled out. However, similar assertions clearly hold for other rows and columns
of A.

The situation where the vector a in (4.36) is nonpositive is the next in order of complexity. To analyze
it, we need two assertions from [24].

Lemma 4.7. Assume that in the partitioned matriz (2.10) the block Ay, is of order 2. For a real parameter
t, we define the (n — 1) X (n — 1) matriz

s - () ") (a31)

by the formulas
bi(t) = (Anw,u),  bia(t) = u” Ay,
where
u=(t,1 —t)L.

Then the matriz A is (strictly) copositive if and only if the matriz B(t) is (strictly) copositive for any t € [0, 1].

Proof. Any vector x € R} with the first or second entry nonzero can be written as
r=al| 1=t |, a>0, yeRY? te]0,1]. (4.38)
Y

It follows that the (strict) copositivity of the matrix A is equivalent to the following two requirements: first,
the submatrix Ay must be (strictly) copositive, and, second, the inner product (Az, z) must be nonnegative
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(positive) for any vector z of type (4.38). The last requirement amounts to that the scalar product (Bv,v),

v 6 R ]
y + ’

be nonnegative or positive respectively. Combining this with the (strict) copositivity of the submatrix Ay,
we conclude that B(¢) must be (strictly) copositive for any ¢ € [0, 1].

Lemma 4.8. Assume that a matriz A € S,, is partitioned as in (4.36). Then A is (strictly) copositive if and
only if the three conditions below are met:
(1) a Z 0 (CLH > 0)
(2) the submatriz Ags is (strictly) copositive;
(3) for any vector y such that
yeRYY  (ay) <0,
the inequality
(@11 Az — aaT)y, y) >0 (>0, respectively) (4.39)
holds.
Proof. For definiteness, we shall prove the assertion relating to copositive matrices. The original definition
of copositivity
(Az,z) >0 VzeRY (4.40)

can be recast as the requirement that the 2 x 2 submatrix

( (371;/) (éizj/,)y) ) (4.41)

be copositive for any vector y € R?™". This becomes clear if one writes the vector z in (4.40) as
- ty (10 t
Tlsy ) L0y s )7

with (¢,s)7 € R%.

If (a,y) > 0, then the copositivity of matrix (4.41) is immediate from conditions (1) and (2). For the
case where (a,y) < 0, all three conditions (4.5) are needed to ensure copositivity. The last of them assumes
the form of inequality (4.39).

Theorem 4.20. Assume that the vector a in matriz (4.36) is nonpositive. Then A is (strictly) copositive if
and only if the two conditions below are fulfilled:

(1) ayy Z 0 (> O),

(2) the (n — 1) x (n — 1) matrices Az and ayy Asy — aa” are (strictly) copositive.

Proof. Here we also restrict ourselves to considering only the copositive case. Since a < 0, the vector y
in condition (3) of Lemma 4.8 is an arbitrary vector from R’™'. But then inequality (4.39) turns into the
requirement that the matrix a,; 4,5 — aa’ be copositive.

Corollary 4.5. Assume that the vector a in matriz (4.36) is nonpositive and ay; > 0. Then A is (strictly)
copositive if and only if the (only) (n — 1) x (n — 1) matriz a; A» — aa® is (strictly) copositive.

Proof. If the matrix B = a;; Ay — aa® is (strictly) copositive, the same must be true for the matrix
B + aa” = a;;Ayp. Since ay; > 0, the submatrix Ay, is also (strictly) copositive. Thus, the hypothesis of

Theorem 4.20 relating to Ags is fulfilled automatically.

Remark. Under the hypothesis of the corollary above, the matrix B differs from the Schur complement
A/ay; only by a positive scalar factor ai;.
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Another remarkable consequence of Theorem 4.20 is

Theorem 4.21. Assume that all the off-diagonal entries of a matriz A € S,, are nonpositive. Then A is
(strictly) copositive if and only if it is positive semidefinite (definite).

Proof. The sufficiency part of the theorem is obvious. To prove the necessity, we use induction. Suppose
that the assertion of the theorem is valid for any (n — 1) x (n — 1) matrix. If a;; = 0, then the vector a must
be zero (see the remark after inequalities (4.6)). By the inductive hypothesis, the copositive submatrix A, is
positive semidefinite. Hence, the whole matrix A is positive semidefinite.

Now assume that a;; > 0. According to Theorem 4.20, the matrix B = a1, A — aa” is copositive and,
hence, positive semidefinite. Writing a vector z € R" as

x:<3), aeR, yec R,

one deduces the positive semidefiniteness of A from the identity

ai1(Az,z) = (By,y) + [ana + (a,9)]*.
The strictly copositive case can be proved similarly.

In [24], Theorem 4.20 is used for constructing a rational criterion for copositivity of the 3 x 3 matrix

a1 a4y a3
A= a2 Q9o 93 . (442)
a3 Qg3 Usz

Theorem 4.22. Assume that all the diagonal entries in matriz (4.42) are nonnegative (positive). Then
(1) If all the off-diagonal entries are nonnegative, then A is (strictly) copositive.
(2) If exactly one off-diagonal entry, say, a;;, is negative, then A is (strictly) copositive if and only if the

submatriz
( i i > (4.43)
Qij  Qjj
is (strictly) copositive.
(3) If the entries a;; and a;, are negative, then A is (strictly) copositive if and only if the 2 x 2 matrices

2
ajj Gk ’ Qplj5 — Q3 QiQge — aij;lz'lc (4.44)
Qi Ok Qii Qi — QijQie Qi Ok — Q)
are (strictly) copositive.

Proof. The first assertion of the theorem follows from Lemma 4.6, the second follows from Corollary 4.5,
and the third from Theorem 4.20. '

Remark. For 2 x 2 matrices (4.43) and (4.44), the copositivity is tested by means of inequality (4.5). It was
already noted that this inequality can be given a rational form.
The main result of [24] is a rational criterion for copositivity of the 4 x 4 matrix

ayy Q2 413 Qa1g
Q2 Qo2 Aoz Aog
A f—

(4.45)
13 A23 (33 A34

Qg Qgq G34 Qg4

Suppose that the main diagonal of matrix (4.45) has already been inspected and all the diagonal entries a;
proved to be nonnegative (positive). In the criterion below, eight cases are distinguished that correspond to
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distinct sign distributions for the off-diagonal entries a;;. In each case, we either state that A is (strictly)
copositive or claim that the (strict) copositivity problem for A is equivalent to the same problem for matrices
of a smaller order, their number being one, two, or three. Note that, in the descriptions of the cases, the
numbers i, j, k, and [ are indices of distinct rows (or columns) of the matrix A.

Case 1. All the off-diagonal entries a;; are nonnegative.

In this case, A is (strictly) copositive by Lemma 4.6.

Case 2. There is only one negative off-diagonal entry, say, a;;.

The matrix A is (strictly) copositive if and only if

aia;; —aj; >0 (> 0). (4.46)

Indeed, inequality (4.46) ensures the (strict) copositivity of submatrix (4.43). Consider the transition
from this submatrix to A as a twofold augmentation by nonnegative rows and columns. Then it is clear that
A must preserve the (strict) copositivity property.

Case 3. There are exactly two negative off-diagonal entries a;; and ay; belonging to distinct rows and
columns of A.

The matrix A is (strictly) copositive if and only if the following inequalities hold:

asaz; — a3 >0 (>0), agean —ag >0 (>0). (4.47)

Assume, for simplicity, that i = 1,5 = 2,k = 3, and [ = 4. Then inequalities (4.47) ensure the (strict)
copositivity of the block diagonal matrix

a1 G2 @ az3 34
Q12 Qa2 a34  (Gyq

One can obtain A from this matrix by adjoining nonnegative elements in the off-diagonal blocks. By Lemma
4.6, A preserves the (strict) copositivity property.

Case 4. There are exactly two negative off-diagonal entries a;; and a;;, belonging to the same row ¢ of A.

The matrix A is (strictly) copositive if and only if its principal submatrix corresponding to the indices
i, 7, and k is (strictly) copositive.

If we again set i = 1,7 = 2, and k = 3, then, to obtain A, the leading principal 3 X 3 submatrix must be
augmented by the fourth row and column, which are nonnegative. This augmentation preserves the (strict)
copositivity property.

Case 5. There are exactly three negative off-diagonal entries a;;, a;;, and a;, belonging to the same
principal 3 x 3 submatrix of A.

The matrix A is (strictly) copositive if and only if the matrix

Qi Q5 Qg
Uij Qg5 ik (4.48)
Qik ik Okk

is positive semidefinite (definite).

By Theorem 4.21, matrix (4.48) is (strictly) copositive if and only if it is positive semidefinite (definite).
The transition from (4.48) to A can again be carried out by adjoining nonnegative numbers to the former
matrix.

Case 6. There are exactly three negative off-diagonal entries a;;, a;;, and a; belonging to the same row
i of A.

The matrix A is (strictly) copositive if and only if the 3 x 3 matrix below is (strictly) copositive:

Ay Q55 — a;jzj QiiGjk — QijQik Q@i — QijQy
Qii Qi — Qi Qip GOkl — a?k Q3 Qkp — AikQyg
Qii Qg1 ~—~ Qi5Q51  AggQpl — Qg4 Ay Ay — a?l
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This claim is based on Corollary 4.5. Note that since the off-diagonal entries of the row i are negative,
one must have a; > 0 (otherwise, A cannot be copositive; see inequality (4.6)).
For the two remaining cases, the analysis is much more complicated. Therefore, the claimms below are not
supported by explanations. We only point out that their justification in [24] uses Lemma 4.7.
Case 7. There are exactly three negative off-diagonal entries a;;, a;;, and ay; (they are not contained in
the same row or in the same principal submatrix of A).
The matrix A is (strictly) copositive if and only if inequality (4.46) holds and the 3 x 3 matrix B below
is (strictly) copositive. The entries of the matrix B are given by the formulas
bii = ape(ay503, — 204050055 + aia3,),
by = ajjak; — sy,
bsz = akkau — aj, (4.49)
big = ark(ai0k — ai505%),
biz = ape(@ina; — ap0a),
bas = arraj — Qjk0k-

We give an illustration of Case 7 taken from [24]. For the matrix

2 -2 -1 2
-2 3 2 =3

e (4.50)
2 -3 1 4

the conditions above are met with ¢ = 3,7 = 1, k = 2. Calculating matrix (4.49), one finds

12 6 18
B=]16 2 0
18 0 3

Being a nonnegative matrix with a positive main diagonal, B is strictly copositive. Since
2
azz011 — a3 = 1,
the matrix A is strictly copositive as well.
Case 8. There are exactly four negative off-diagonal entries a;;, a1, ax, and ay.

The matrix A is (strictly) copositive if and only if inequality (4.46) holds and the two 3 x 3 matrices are
(strictly) copositive, namely, matrix (4.49) and the matrix C' with the entries

cn = aglaxad; — 2a5040:5 + a;;a3),

Co2 = QgQy — a?z-/

C33 = Qpray — Giz: (4 "1)
Ci2 = all(aiiafjl - Clqtjail), 2
C13 = all(aq‘,kajl - ailajlc>7

Ca3 = Qi — Qg Q-

This case is also illustrated by an example in [24]. For the matrix
3 2 =2 =2
2 8 -3 =3

-2 -3 2 25|’
-2 =3 25 2

A:

the conditions defining the case hold with ¢ = 1,j = 3,k = 2,1 = 4. Inequality (4.46) is valid and matrices
(4.49) and (4.51) are as follows:

88 -—16 -8 135 7 -2
B=|-16 7 11|, c=| 7 2 =2
-8 11 7 —2 -2 7
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We use Theorem 4.22 to show that both matrices are strictly copositive. In the matrix B, the off-diagonal
entries of the first row are negative. The matrix

888, — ( N ) (16 8)

has positive entries and, hence, is strictly copositive. It follows that the submatrix

7 11
Bz‘(n 7)

is also strictly copositive. This proves that B is strictly copositive.

For the matrix C, the strict copositivity can be verified in much the same way. One only has to consider
the third row instead of the first one. As a consequence, the whole matrix A is strictly copositive.

Rational algorithins for testing copositivity, similar in the approach to the criteria above, are given in
[7]. They are also meant for matrices of low orders (up to order five inclusive). These algorithms take into
account the sign distribution in a single fixed row rather than in the whole matrix; therefore, the number of
distinet cases here is smaller than in [24]. No generality will be lost if one fixes the first row for the analysis
below.

To describe the algorithms, the following notation will be needed:

Vi is a row vector of length n — 1, with the entries
o arj+1, L=1,
VW =9 —anip, 1=,
0, otherwise
mat (by,...,bg) is a square matrix with the rows by,...,b; € R”
e, t1=1,..., are coordinate row vectors in the arithmetic space

under consideration.

(4
a Axp |-
Let B = a;1 43 — aa®. Suppose that a;; > 0 (otherwise, A is obviously not copositive). The values of the
indices 4, 7,k (¢, 7, k,1} in the descriptions below constitute a permutation of {1, 2,3} ({1,2,3,4}).
For the 4 x 4 matrix A, the following distinct cases are possible.
Case 1. All the off-diagonal entries of the first row are nonnegative.
The matrix A is copositive if and only if its submatrix A, is copositive.
Case 2. All the off-diagonal entries of the first row are nonpositive.
The matrix A is copositive if and only if the two 3 x 3 matrices A,y and B are copositive.
Case 3. There is exactly one negative off-diagonal entry a; ;11 in the first row.

The matrix A is copositive if and only if the two 3 X 3 matrices Ay, and W (i)BW (i)T are copositve. Here

Assume that A is partitioned as

W (i) = mat (e;, V¥, V).

Case 4. There are exactly two negative off-diagonal entries a4, and @, ;4 in the first row.
The matrix A is copositive if and only if the three 3 x 3 matrices Agy, W BWT, and W,BW{ are
copositive. Here
W, = mat (e;, e;, V'), W, = mat (e;, V¥ V7F).
We illustrate this algorithm by an example borrowed from [7]. Suppose that we again check whether
matrix (4.50) is copositive. For this matrix, the first row and the second satisfy the conditions of case 4 and
the two remaining rows satisfy those of case 3. Technically, case 3 is simpler (one must form and analyze two
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3 x 3 matrices rather than three). Therefore, we choose, say, the fourth row as a pivotal one. For convenience,
we interchange rows and columns 1 and 4. The new inatrix A is

4 -3 1 2
-3 3 2 =2
A= 12 1 -1
2 -2 -1 2

Both off-diagonal entries of the third row in the submatrix A,y are negative. Hence, the copositivity of Asy
depends on whether the 2 x 2 matrix

()-(3)en-(21)

is copositive. This matrix is even positive; thus, A, is copositive.
Calculating the matrix B yields

3 11 -2
B=|1 3 -6
-2 -6 4

Taking the vector x = (0,1,1)%, one has
(Bz,z) = -5 <0,

i.e., B is not copositive. However, the description of case 3 says that it is not the matrix B that is important.
Rather one needs that the matrix C = W (1)BW(1)T be copositive, where

1 0 0 100
Wl)=]| a3 —az 0 =130
14 0 —ay2 2 0 3

The matrix C' turns out to be nonnegative:

3 36 0
C=1] 36 96 12
0 12 24

Hence, A is copositive.

Now consider a 5 x 5 matrix A. Here, five cases will be distinguished. Cases 1 and 2 are defined and
analyzed just as for n = 4. The description of case 3 is also preserved, with the only alteration that W(i) is
now the following 4 x 4 matrix:

W (i) = mat (e;, V¥, Vi Vi),
Case 4. There are exactly two negative off-diagonal entries a; ;1 and a; j; in the first row.

The matrix A is copositive if and only if the four 4 x 4 matrices Ayy, PLBPT, P,BP}, and PgBPT are
copositive. Here

P, = mat (e;, e, Vik Vi,l)7
Py = mat (7, ¢, VA%, 774),
Py = mat (V3 e, Vb iRy,

Case 5. There are exactly three negative off-diagonal entries ay ;41,01 11, and aq 441 in the first row.

The matrix A4 is copositive if and only if the four 4 x 4 matrices Az, Q1 BQT, Q:BQI, and Q3BQY are
copositive. Here

Q = mat (e;, e;, ey, V""l),
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Q2 = mat (e;, ey, V¥, V),
Qs = mat (e;, V¥, VH Vi),
It is indicated in [7] that when applying the algorithm, one can always do without case 5. Indeed, the
overall number of negative off-diagonal entries in a (symmetric) matrix is even. Therefore, in a 5 x 5 matrix,
there must be at least one row with an even number of negative off-diagonal entries.

In conclusion, we discuss some applications of the concept of copositivity. First of all, we mention the
quadratic Bernstein—Bezier patches. These are functions of the form

f=(Au,u), A€S,, (4.52)

considered over the (n — 1)-dimensional simplex

Up={ueR"u=(up,...,u,)", Yy =1, 4; >0 Vi}. (4.53)

1
Surfaces of this kind (and more general ones that correspond to homogeneous polynomials of arbitrary
degree k in variables u,, ..., u,) are widely used in computer-aided geometric design [10, 33]. The requirement,
that function (4.52) be nonnegative at all points of simplex (4.53) is exactly equivalent to the copositivity of

the matrix A.
A remarkable application of copositivity is given in [18]. Counsider a quadratic differential equation, i.e.,

an autonomous system of ordinary differential equations

y=/fly), f:R"—=>R" (4.54)
whose right-hand sides are quadratic polynomials with nonnegative coefficients in the variables yy, ..., ¥y,
Jok=1

Systems of this kind occur, for example, in population genetics.
Setting e = (1,...,1)T, we introduce the new variables,
Y
(y. )

T =

When we rescale the time variable, Eq. (4.54) assumes the form

&= f(x) = (f(x),e)r. (4.56)
Since b;;; > 0 Vi, j, k in (4.55), the nonnegative orthant R} is positively invariant with respect to system
(4.54), and hence, positively invariant with respect to system (4.56). Taking the inner product of (4.56) and
the vector e yields
(jj7 6) = (f(ll% 6)[1 - ($,€)],
which implies that the simplex
T ={xecR}|(z,e) =1} (4.57)
is also positively invariant with respect to (4.56).
The Jacobian of system (4.56) is

J(x) = f'(z) = we’ ['(x) = (f(), €) L.

Consider the right-hand side of (4.56) to be a vector field on the simplex 7. Then the divergence of this field

is
Do = trJ(z)+ (f(z),e)
= trf'(z) = (f'(z)z,e) — (n~ 1)(f(z),e).
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On the set T, the divergence Dy(x) coincides with the quadratic function

D(z) = tr f'(z)(z,e) ~ (f'(z)z,€) = (n — 1)(f (), €).
In coordinate notation,

D(z) = Z ( bigi + bk — (n+1) Zbijk> Tk (4.58)
1 =1 |

k=1 \i= ', i=
For n = 3, simplex (4.57) is just a triangle in the plane
Ty + 29 +x3 = 1.
By the criterion of Dulac, an autonomous system of ODE in the plane does not have periodic solutions (except
for constants) in a given simply connected domain if the divergence does not change sign in this domain. Since
Dy(z) = D(z), z€T,

the inequality D(z) > 0 on T (or D(z) < 0 on T') excludes the existence of periodic orbits for system (4.56).
Such an inequality amounts to the requirement that the matrix of the quadratic form (4.58) be strictly
copositive (or strictly copositive up to a negative scalar factor). There are vector fields to which this criterion
applies, for example, b;;, = 1 Vi, j, k, because then D(z) = -6 Vz € T

5. K-Copositive Matrices

Let K be a nonempty polyhedral cone in R™:
K ={z|Bz > 0}, (5.1)
B being an m x n matrix.

Definition. A matrix A € S, is called K-copositive if
(Az,z) >0 Vzek, (5.2)

and strictly K-copositive if
(Az,z) >0 Vz ek, z#0. (5.3)

In particular, when K = R (ie., when B in (5.1) is the identity matrix I,) (5.2) and (5.3) make us
return to the definitions of copositive and strictly copositive matrices. Moreover, system (5.1), defining the
cone K, may contain hyperplanes in an explicit or implicit way. By an explicit way we mean the situation
where the system Bz > 0 contains a pair of inequalities which, up to positive scalar factors, have the form

bl.’L’l +b2.’£2 4 '+bn$n Z 0

and
—blllfl — bg.]fz -t bn:pvz > 0.

Theoretically, the system Bz > 0 can be equivalent to a system of linear equations. Hence, the case of
matrices that are definite or semidefinite with respect to a linear subspace is also covered by definitions (5.2),
(5.3).

Thus, polyhedral cones may be highly different. Accordingly, the characterizations of the corresponding
copositive matrices differ substantially in complexity. We already had a chance to see this in the previous
two sections of this survey. In the subsequent discussion, we shall also distinguish between different kinds of
cones. In this respect, the definitions below will be helpful.
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Definition. The dimension of a cone K is the dimension of its affine hull, i.e., of the linear space of smallest
dimension containing K. A cone K C R” is termed solid if dim K = n.

Definition. A cone K is pointed if
Kn(=K)={0}. (5.4)

Lemma 5.1. Cone (5.1) is pointed if and only if
rank B = n. (5.5)

Proof. Definition (5.4) is equivalent to the requirement that no line
Y =T Iy, —-00 <t < 00,

belong to the cone K. In other words, the system of linear homogeneous equations Bx = 0 should not admit
a nontrivial solution zy. This yields (5.5).
Another important special case of the general definition is where the rows of the matrix B in (5.1) are
linearly independent:
rank B = m. (5.6)

It is easy to see that the cone K satisfying (5.6) must be solid.
In [22], it was pointed out that a simple sufficient condition for the matrix A to be KC-copositive is that
A be decomposable in the form

A=BTCB+S5, (5.7)
where
the m x m matriz C is copositive (5.8)
and
the n X n matriz S is positive semidefinite. (5.9)

Clearly, this assertion holds for any polyhedral cone K. A matrix A with decomposition (5.7) is strictly
K-copositive if (5.8) is valid and the matrix S in (5.7) is positive definite.

In [27], the question is addressed whether decomposition (5.7)-(5.9) is necessary for the matrix A € 5,
to be K-copositive. A similar question related to strict K-copositivity is also treated. Many results of this
paper are quite constructive, and therefore we discuss its contents in greater detail.

The case of a cone satisfying (5.6) is the simplest one. Let B be partitioned as

B = (B, By). (5.10)

Without loss of generality, one can assume that the square m x m submatrix B; is nonsingular. We make the
following change of variables in (5.1)-(5.3):

x = Qy, (5.11)

Bi' —Bi'B,
Q= < A ) : (5.12)

Since BQ = (1,,0), the cone K is now described by the inequality

where

w>0, (5.13)

where u € R™ is a subvector in the partition of y:

y:(g)_
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In the new variables, the quadratic form ¥ (x) = (Az, r) has the matrix

i-amao- (3 7). 515)

where the block 2111 is of order m. Vectors y of the form

y=<8) Yue RV ™

obviously belong to K (see (5.13)). Using the K-copositivity of A for these vectors, we infer that

the submatric Agy in (5.15) must be positive semidefinite. (5.16)

Let us now consider vectors (5.14), where a subvector u is nonzero (and nonnegative). For these vectors
Y

¥ = (Ay,y) = (Anu,u) + 2(u, Aiz0) + (Ayv,0), (5.17)
Suppose that v € ker Ass. Then
Y =1v(u) = (Alluam + Q(U,lezv) >0
for all w > 0, and, hence Apv =0. Thus, the inclusion

ker 1122 C kersz (518)

holds. This implies, in particular, that the rank of the matrix

= AlQA;ZAT Alg )
g = 122442 2 5.19
( ACIFZ A22 ( )
coincides with the rank of the submatrix Ayy. Therefore (see (5.16)),
the matriz S is positive semidefinite. (5.20)
Next, for the fixed vector u € R™, the minimum in v of function (5.17) is attained on the vector
v=—AH AT u
and is equal to
(Cu,u), (5.21)
where
C = All - A12A;_2A{2. (522)
For any u > 0, the quadratic form (5.21) must be nonnegative, and, hence
matriz (5.22) is copositive. (5.23)
The equality
~ C 0 ~
i-(§5)s
is obvious from (5.19) and (5.22). Returning to the original variable z, one obtains a decomposition of A:
A:Q4ﬂQ*:QT<gg>Q4+S (5.24)
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Here (see (5.20))
the matriz S = Q TSQ™" is positive semidefinite. (5.25)

(B B
Q N < O In—m > ’

Q (g )Q- Q (%)0(1,”0)@*

0
0
( ) (B,By) = BTCB.

Since

one has

Bearing in mind (5.23) and (5.25), we infer that (5.24) is the required decomposition (5.7)-(5.9) of the K-
copositive matrix A. Thus, this decomposition is a necessary condition for the K-copositivity at least for
cones K satisfying (5.6). At the same time, for cones of this type, a quite constructive way was found to check
the K-copositivity. We summarize it as the algorithm below.

Algorithm for checking K-copositivity of the matrix A

1. Reorder the variables to ensure the nonsingularity of the block B; in matrix (5.10), which defines the
cone K. Reorder (symmetrically) the rows and columns of A in the corresponding way.

2. Calculate the matrix 4 (see (5.15)).

3. Check whether the submatrix Ay, is positive semidefinite. If not, then A is not a K-copositive matrix.
In this case, the execution of the algorithm comes to an end.

4. Calculate the matrix C (see (5.22)).

5. Using the algorithms of the preceding section, check whether C' is copositive. If it is, and only in this
case, then the matrix A is K-copositive.

Note that the pseudoinversion of the (real) matrix Asy, which is required by formula (5.22), can be
accomplished over R by a finite rational procedure [3].

For a strictly K-copositive matrix A, one can repeat the argument above almost word for word. However,
some conclusions will be sharper. First, the submatrix Ay in (5.15) must now be positive definite. This fact
makes the proof of inclusion (5.18) unnecessary. The equality rank S = rank As, is obvious, as is the positive
semidefiniteness of the matrix S. Second, the quadratic form (5.21) is positive for all nonnegative and nonzero
vectors u; hence, matrix (5.22) is strictly copositive. Thus, we arrive at decomposition (5.7)-(5.9) of a strictly
K-copositive matrix A, in which the matrix C is, in fact, strictly copositive. The corresponding alterations
should be made in the formulation of the algorithm.

Observe that the algorithm becomes considerably simpler in the important special case where the cone
K not only satisfies (5.6) but is also pointed, i.e., where

rank B =m = n. (5.26)

Indeed, in this case the (strict) KC-copositivity of the matrix A is equivalent to the (strict) copositivity of the
matrix

A=DBTAB™". (5.27)
In other words, if the matrix A is (strictly) copositive with respect to a cone of type (5.26), then, the positive
semidefinite (definite) term in its decomposition (5.7) is redundant:

A=BTAB, A s (strictly) copositive. (5.28)

This is consistent with the analysis of the case £ = R in the preceding section.
¥y 1 g
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It turns out that a decomposition of type (5.28) is valid for matrices that are strictly copositive with
respect to any pointed cone K. To put it differently, one can waive the first requirement rank B = m in (5.26).
This is implied by the following result from [27].

Theorem 5.1. Let K C R” be a pointed cone. A matrix A € S,, is strictly K-copositive if and only if the
matrix

C,/ = I/Cl + 027 (529)

where
Cy=1,—B(B"B) BT, (5.30)
Cy=B(B"B)*A(BTB)'BT, (5.31)

is strictly copositive for a positive value v = vy. If such a vy exists, then C, is strictly copositive for all
sufficiently large positive v. Moreover, for all v, the matrixz C, satisfies the equality

A=BTC,B. (5.32)

Remark. Under the conditions of Theorem 5.1, rank B = n. Hence, the matrix
B+ — (BTB>—1BT

is the Moore—Penrose pseudoinverse of B and C) is the orthoprojector on the orthogonal complement of the
subspace im B, the image of B. The matrix Cy = (BT)T AB™ is the closest possible analog of matrix (5.27),
and equality (5.32) is an extension of (5.28).

We will not prove Theorem 5.1, but will only note that its proof in [27] is based on the following
noteworthy generalization of the Finsler theorem (see Theorem 3.3).

Theorem 5.2. Let I be a closed cone in R", and Ay, As € S,,, where Ay is copositive with respect to I'. Let
M={z]zel, (Aiz,z) =0, = #0}.

The relation
(Agz,z) >0 VYreM
holds if and only if the matriz
A,, = l/Al =+ Ag
is strictly I'-copositive for all sufficiently large positive v.

If ' = R™, then A, is a positive semidefinite matrix. Suppose that the system of linear equations Bx = 0

defines the null space ker A. Then one can replace A; in Theorem 5.2 by the matrix BT B without altering
the conclusion of the theorem. In this case, Theorem 5.2 turns into the original Finsler theorem.

This generalized Finsler theorem makes it possible for Martin and Jacobson [27] to get a complete answer

to the question whether decomposition (5.7)-(5.9) is necessary for the case where K is an arbitrary polyhedral
cone and A is strictly K-copositive.

Theorem 5.3. Let K be cone (5.1). Then the following properties of the matriz A € S, are equivalent:

(1) A is strictly K-copositive.

(2) There exist a strictly copositive matriz C and a positive-definite matriz S such that decomposition
(5.7) holds.

(3) For a positive value v = vy,

the matriz A+ vB B is positive definite (5.33)

and
the matriz D, = I, — vB(A +vBY B)™ BT is strictly copositive. (5.34)
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If such a vy exists, then conditions (5.33) and (5.34) are fulfilled for all sufficiently large positive v.

Remark. We can see that Theorem 5.3 ensures decomposition (5.7)-(5.9) with an excess: one can choose C'
to be even strictly copositive.

For small m and n, conditions (5.33) and (5.34) can be verified with the use of symbolic computations (or
even on paper). Hence, they can be considered to be a criterion for strict K-copositivity. As an illustration,
we reproduce below two examples from [27].

Suppose that a cone K C R? is defined by the inequalities

dr+y—82 >0,

—x—3y+8z2>0.
One must determine whether the quadratic form

w — :EZ 4 y2 _ 22

is strictly XC-copositive.
For this example,

o (3 1 -8
A =diag(1, 1, 1), B_<—1 3 g )

The matrix in (5.33) is

10v +1 7% —-32v
E, = 6 10vr+1 —32v
—32v —-32v 128v -1

The leading principal minors of F, are the polynomials

10v+1, 640%+20v+1

and
d(v) = det E, = 4481% + 108y — 1.

The leading coefficients of these three polynomials are positive. Thus, the matrix F, is positive definite for
all sufficiently large positive v, and condition (5.33) is fulfilled.
If d(v) > 0, then one can examine the matrix

F,=d(v)D(v) = d(v)I,, — vBadj(A+vBYB)BT

instead of D, when checking condition (5.34). For our example, F), is
54v —1 58y
58 v —1 |-
1

form 1) is strictly K-copositive.
Now we preserve the form 9, but change sign in the second inequality defining K. The new cone K is
given by
3r+y—8z 20,
r+3y—8z > 0.
Neither the matrix BY B nor the matrix in (5.33) will change. Thus, condition (5.33) is again satisfied for all
sufficiently large positive v. As for F,,, this matrix assumes the form

Fo— 54y —1 —5H&y
v —58 H4v—1 |-
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It will not be positive as v — oo; therefore, we check inequality (4.5). It is obvious that
{FV}%Q = (581/)2 > {E}}ll{E/}Q‘Z = (54V — 1)2

for all sufficiently large v, i.e., for these v the matrix F, is not copositive. Hence, the form « is not copositive
with respect to the new cone K.

It has already been observed that the system of linear inequalities that defines the cone K may contain,
explicitly or implicitly, linear equations. Suppose that one can single out these equations in an explicit way.
Then the original definition (5.1) of K is replaced by

K ={x|Biz >0, Byx =0}. (5.35)

In this case, it is possible to obtain a decomposition of A that is more economical than that of (5.7)-(5.9).
Here we cite one more result from [27].

Theorem 5.4. Let K be cone (5.35). Then a matriz A € S, is strictly K-copositive if and only if A can be
decomposed as

A=BIC\B, + 8, (5.36)
Tr =

where Cy is a strictly copositive matriz and Sy is positive definite with respect to the linear subspace B 0.

The economy of decomposition (5.36) consists in the order of the copositive matrix C| being equal to the
number of “genuine” inequalities in system (5.1), and not to the overall number of inequalities in this system.

As we will shortly see, the question whether decomposition (5.7)-(5.9) is necessary for K-copositive
matrices proves to be much more delicate. However, for this case as well, one can get a number of useful
implications from the results already stated above. One need only make use of the following simple observation:
a matrix A is K-copositive if and only if the matrix As = A+J1L, is strictly KC-copositive for any 4 > 0. Applying
Theorem 5.3 to As, we obtain

Theorem 5.5. Let K be cone (5.1). Then the following properties of a matriz A € S,, are equivalent.
(1) A is copositive with respect to the cone K.
(2) For each § > 0, there exist a strictly copositive matriz Cs and a positive-definite matriz S5 such that

As= A+ 61, = BTCsB + S;. (5.37)
(3) For each ¢ > 0, there exists a positive value v = vy (which may depend upon &) such that

the matriz As + vBT B is positive definite (5.38)

and
the matriz D, s = I,,, — v B(As + vBTYB)"'BT is strictly copositive. (5.39)

As was the case with Theorems 5.1 and 5.3, statements (2) and (3) become considerably simpler when
the cone K is pointed. Indeed, for such a cone, already the matrix BB is positive definite, and (5.38) is
fulfilled automatically.

Theorem 5.6. Let K in (5.1) be a pointed cone. Then the following properties of a matriz A € S, are
equivalent.

(1) A is copositive with respect to the cone K.

(2) For each & > 0, there exists a strictly copositive matriz Cs such that

As = A+ 61, = BTCsB. (5.40)

(3) For each § > 0, the matrix
Cl/,é = VCl + 0257 (541)
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where Cy is given by formula (5.30) and
Cy 5= B(BTB) 'As(B"B)™' BT, (5.42)
is strictly copositive for all sufficiently large v.
(4) For each ¢ > 0, the matriz (see (5.30) and (5.31))
C,+dl =vC) +Cy+4d1 (5.43)
is strictly copositive for all sufficiently large v.

Theorems 5.5 and 5.6 indicate one more way of checking K-copositivity. This method, involving two
parameters v and J, is even less convenient than the criterion of strict K-copositivity of Theorems 5.1 and
5.3. However, for small m and n, the new criterion can also be implemented by means of computer algebra.
Again we illustrate this by an example from [27].

The matrix

A=diag(-1,-1,1) (5.44)

is obviously copositive with respect to the circular (or ice cream) cone

Ve +y? <z (5.45)

We inscribe in (5.45) the polyhedral cone X for which the vectors

5 3 -3 -3 3
o, 4], | 4 |, ] -4].] 4 (5.46)
5 5 5 5 5

indicate the direction of the edges. Then A is also copositive with respect to I but not strictly copositive
since the quadratic form ¢¥(u) = (Au, u) vanishes on each vector (5.46). Thus, all assertions of Theorems 5.5

and 5.6 must hold for A.
The cone K can be defined by a system of linear inequalities of type (5.1), where

-2 -1 2
0 -5 4
B = 5 0 3
0 5 4
-2 1 2

The rank of this matrix is 3. We verify that, for each § > 0, matrix (5.43) corresponding to the pair (A, B) is
strictly copositive for all sufficiently large v. To this end, the Motzkin criterion (see Theorem 4.15) is applied
in [27]. For matrix (5.43), we have

1875 =765 520 275 =575
-765 465 —416 367 —275
520 —416 416 —416 -520
275 367 —416 465 765
—=575 =275 520 765 1875

1

Cp=——
1™ 9548

The diagonal entries of this matrix are positive, which ensures that the diagonal entries of C, 4+ 01 will be
positive as v — -0o. Now one has to examine in consecutive order all 26 principal submatrices of order > 2.
If a submatrix with a nonpositive determinant is detected, then one has to verify that, among the cofactors
of its last column, there are nonpositive cofactors. This verification is based on the signs of the leading
coefficients of the corresponding polynomials. In our example, we come to the conclusion that matrix (5.43)
is strictly copositive for each 6 > 0 as v — +o0. For an illustration, consider the leading principal submatrix
of order 3. Its determinant is

5226457651 — (25500 + 94689600 — 4494264326%)v
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+(225 — 336000 — 100089605% + 4155074565%)

and is positive for all sufficiently large v if 6 > 0 is fixed. No further analysis of this submatrix is required,
and we can begin examining the next one.

Now we return to the discussion of decomposition (5.7)-(5.9) for the KC-copositive matrix A. Recall that
for the cone K satisfying (5.6) the necessity of this decomposition was proved at the beginning of this section.
Also recall that for strictly K-copositive matrices we managed to remove eventually all limitations on the type
of cone (see Theorem 5.3). The following simple example from [27] shows that the situation is different for

the K-copositive case.
01
A= ( 10 ) (5.47)

In R? we take
and let the cone K be defined by system (5.1) with the matrix

B:(_ll 8)_ (5.48)

This system defines, in reality, the line x = 0. The quadratic form
¥ = (Au,u) = 2zy

vanishes identically along this line. Thus, matrix (5.47) is K-copositive. We shall prove that this matrix does
not admit decomposition (5.7)-(5.9). Indeed, for any symmetric matrix

_(a B
C_(ﬂ 7)’

S:A—BTC’B:<_Q+1%_7 (1)>

the matrix

cannot be positive semidefinite because det S = —1 < 0.

Consider the set of matrices C; in decompositions (5.37) of matrix (5.47). The example above shows
that this set does not have a limit point as § — 0. Indeed, if such a limit point Cy existed, then it would
necessarily be a copositive matrix. The matrix

Sp = lim S5 = lim(As; — B'C;B) = A — BTCyB
§—0 6—0
is obviously positive semidefinite, which yields a decomposition of type (5.7)—(5.9) of A:

A= BTCyB + S,.

However, it has been proved that this decomposition is impossible.

The cone defined by matrix (5.48) is not solid, and one could attribute the counterexample above to this
fact. However, a more detailed analysis of matrix (5.44) and the solid cone K given by the system of edges
(5.46) shows that this K-copositive matrix does not admit decomposition (5.7)-(5.9) either.

In [28], a complete description is given of polyhedral cones K such that any K-copositive matrix can be
represented in the form (5.7)-(5.9). Let us consider a cone in the matrix space S, generated by cone (5.1)

with the use of the formula
Cp ={BTCB|C copositive}. (5.49)

Definition. Cone (5.1) is said to have the closure property if the matrix cone (5.49) is closed.
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Theorem 5.7. Let K be cone (5.1). Any K-copositive matriz A admits decomposition (5.7)~(5.9) if and only
if the cone K has the closure property and is either solid or pointed.

Unfortunately, it is not clear how the presence or absence of the closure property for a particular cone X
can be constructively verified. Thus, equality (5.6) is still the most general sufficient condition ensuring that
the K-copositive matrix A can be decomposed as in (5.7)—(5.9). However, two more partial results of this
kind can be found in [27].

Theorem 5.8. Let K in (5.1) be a solid cone. Suppose that the matriz B in (5.1) has no more than four
rows. Then any K-copositive matriz A can be decomposed as in (5.7)~5.9). Moreover, the copositive mairic
C' can be chosen to be nonnegative.

This assertion differs from condition (5.6) in that the rows of the matrix B need not be linearly indepen-
dent.

Theorem 5.9. Suppose that n =2 and cone (5.1) is solid. Then any KC-copositive matriz A either is positive
semidefinite or can be represented as

A= BTNB,
where N is a nonnegalive matriz.

Now we shall describe another type of criteria for K-copositivity, which can be called enumerative type.
One can think of criteria based on a sequential analysis of principal submatrices as their prototype in the
case where K = R. For cone (5.1), the enumeration is governed by the set of submatrices that are formed
from the full rows of B. Such a submatrix will be called a row submatriz of B (this includes the vacuous row
submatrix of size 0 x n).

Suppose that o C {1,2,...,m} is an index set defining the row submatrix B,. Then @ will denote the
complementary index set and Bz will denote the complementary row submatrix. In the procedures under
consideration, each step consists of certain tests for a matrix of the form

D, — ( A BI )
« being an index set chosen for the current step.
The description of tests will be given after some preliminary observations. If a matrix A is strictly
copositive with respect to cone (5.1), then it must also be £-definite, £ being the null space of the matrix B.
In other words,

(5.50)

(Az,z) > 0if Bxr =0and z # 0. (5.51)

Thus, property (5.51) is a necessary condition for the matrix A to be strictly XC-copositive. As such, it will
be called the strong kernel condition.
By the weak kernel condition we shall mean the property

(Az,z) > 0 if Bx =0 and Az # 0. (5.52)

It is shown in [26] that for a solid cone K, property (5.52) holds for any K-copositive matrix A.
As in the preceding sections, the symbol e stands for the vector (1,1,...,1)%, its dimension being defined
by the context. For a chosen nonvacuous row submatrix B,, consider the system

o(2)- ()

which cousists of n + m — |a| linear equations. We say that B, fails Test 1 if system (5.53) defines z in a
unique way and this unique vector x satisfies the inequality

(5.53)

B,z > 0. (5.54)
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We say that B, fails Test 2 if the homogeneous system

D ( Z > =0 (5.55)

has a one-dimensional solution space for z and one ray of it satisfies condition (5.54). Otherwise, B, is said
to pass the corresponding test.
Suppose, for example, that ker By = {0}. Of course, this is only possible when m > n. Both systems
(5.53) and (5.54) define the unique z; namely, x = 0. Thus, both tests are trivially passed by B, in this case.
The procedures verifying whether a given matrix A is (strictly) copositive with respect to a given cone
of type (5.1) are based on the following two assertions, which are the main results of [26).

Theorem 5.10. Let K in (5.1) be a solid cone. Then a matriz A € S, is K-copositive if and only if the weak
kernel condition holds and every nonvacuous row submatrix B, of the matriz B passes Test 1.

Theorem 5.11. Let K be cone (5.1). Then a matriz A € S, is strictly K-copositive if and only if the strong
kernel condition holds and every nonvacuous row submatriz B, of the matriz B passes Test 1 and Test 2.

Both procedures are simpler in the so-called reqular case, i.e., when the matrix A is nonsingular and
every set of n or fewer rows of B is linearly independent. The tests that are carried out in the regular case
can be conveniently stated in terms of the Schur complements in the matrix

M = BA'BT, (5.56)

For an index set a C {1,2,...,m}, we associate with the row submatrices B, and By the principal
submatrices of matrix (5.56) that are defined by the formulas

R=BzA'BL,

R=B,A'BT.
Also, let

Sp=B,A™'BL.

If one reorders (symmetrically) the rows and columns in M so that R becomes the leading principal submatrix,
then R, R, and Sk will be the blocks of the reordered matrix M,:

. _( R Sk
M, = < Sw R ) X
We say that the principal submatrix R of M fails Test 3 if R is nonsingular and the inequality
(M/R)e <0 (5.57)

holds for the corresponding Schur complement A//R. We say that R fails Test 4 if R is singular, its null space
is of dimension one, and one ray [ of it satisfies

Spu>0 VYuel (5.58)

Theorem 5.12 [26|. Let (A, B) be a regular pair. Then a row submatriz B, of the matriz B fails Test 1
(Test 2) if and only if the corresponding principal submatriz R of M fails Test 3 (Test 4).

Thus, for the regular case, Test 1 and Test 2 can be replaced by Test 3 and Test 4, respectively.
One can verify the kernel conditions by means of computations much similar to those that were used at
the beginning of this section for analyzing case (5.6). Let @ be a nonsingular n x n matrix such that

BQ = (B0), kerB=1{0}. (5.59)
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We change the variables:

zz@y:@(jj),

the size of u being equal to the number ¢ of columns of the block B in (5.59). In the new variables, the
subspace Bz = 0 is defined by the condition u = 0 and the quadratic form ¢(z) = (Az, z) is associated with

the matrix
~ A, A
A= 0TAO = A A ) .
Q Q < AE A22 H

where A;; is a block of order ¢. Now the strong kernel condition amounts to the requirement that the submatrix
Ay be positive definite, and the weak kernel condition amounts to the combination of two requirements,

namely, that /122 be positive semidefinite and the inclusion ker /122 C ker Alg hold. It is obvious that both
conditions can be verified via finite rational procedures.

Let us see how Tests 1 and 2 look in the case where L = R7, i.e., when the matrix B in (5.1) is the
identity matrix I,. Suppose that an index set o = {1,2,...,s}, s < n, has been chosen (we can reduce the
general case to this special case by reordering variables). Then

B, = (Is O): B = (O In—s) (560)

for the zero submatrices of appropriate sizes. We partition z in accordance with (5.60):

T = ( 1 > , 21 € R (5.61)
)
The substitution of (5.60) and (5.61) into (5.53) yields
Ay A 0 T —e
A’{“Z A22 In—s T = 0 . (562)
0 L. O U 0

Here Ay, is a submatrix of order s. Now the third block row of system (5.62) implies
L9 = 0.

Then the first block row gives
Auxl = —€. (563)

Thus, the submatrix B, fails Test 1 if system (5.63) admits a unique solution, i.e., the principal submatrix
Ay, is nonsingular, and this unique solution x; = B,z is positive.

A similar analysis of Test 2 leads to the following conclusion: the submatrix B, fails Test 2 if the principal
submatrix A,; is singular, its rank deficiency is one, and, for any vector belonging to the null space of Ay,
all nonzero entries are of the same sign.

The criteria thus obtained are very close to the statements of Theorems 4.12-4.15 and are precisely the
criteria of Theorems 3.1 and 3.2 in [12].

There exist situations that allow one to reduce substantially the amount of enumeration in the procedures
indicated by Theorems 5.10 and 5.11. They are described in [38] and may be regarded as an extension of the
situations discussed in Theorems 4.16—4.18.

Definition. Let IC be a given cone (5.1) and let k& be a fixed positive integer, 0 < k < n. A matrix A € S,
is said to be (strictly) K-copositive of order k if A is (strictly) copositive with respect to every cone

K' = K Nker B,.

46



Here B, is any row submatrix of the matrix B such that the null space ker B, is of dimension k. If A is a
(strictly) IC-copositive matrix of order k, but not of order k + 1, then k is said to be its exact order or index
of (strict) K-copositivity.

Theorem 5.13. Let K in (5.1) be a pointed cone. Suppose that a matriz A € S, has p positive eigenvalues,
p <mn. Then A is (strictly) KC-copositive if and only if it is (strictly) K-copositive of order p + 1.

Theorem 5.14. Let K in (5.1) be a pointed cone. Suppose that a matric A € S, is singular of rank r. Then
A is K-copositive if and only if it is K-copositive of order r.

Theorem 5.15. Let K in (5.1) be a pointed cone. Suppose that a maltriz A € S,, is singular of rank r. Then
A s strictly K-copositive if and only if it is strictly K-copositive of order r + 1.

One more result of this kind can be found in [38]. For obvious reasons, it has no correspondence in the
case K = R.

Theorem 5.16. Suppose that cone (5.1) is of dimension k < n. Then a matric A € S, is (strictly) K-
copositive if and only if it is (strictly) K-copositive of order k.

The criteria of Theorems 5.10 and 5.11 can be thought of as extensions of the inner criteria from Sec.
4. The extensions of the outer criteria are discussed in [38]. Since the descriptions of these extended criteria -
are rather bulky, they are not given here. We only want to point out that the principal pivoting scheme for
quadratic programming is used as the main tool in outer criteria, by analogy with the case K = R"}.

We conclude this section by indicating two applications related to the notion of K-copositivity.
Let

t=F{t)x+Gt)u, z€R" wuweR”,

E(to) = Xy
be a linear system with the control function u(¢). The problem is to minimize the quadratic cost functional

J(z0,u) = / T (O R(Eu(t) + 2T ()Q) ()] dt + 27 () Hal(t)

to

subject to controller constraints of the form
B(t)u(t) >0 a.e. on [ty, 1],

where B(t) is a given [ X m matrix function.

An analysis of this problem with the use of the analog of the classical condition of Legendre in the calculus
of variations leads to the following inference: a necessary condition for J to be bounded below is that for
almost all ¢ € [tg, %] the matrix R(t) be copositive with respect to the cone defined by the matrix B(t) via
formula (5.1). Note that this example is taken from [28].

An interesting application of Theorem 5.3 is given in [27]. Consider, along with the matrix A € S,, and
cone (5.1), the hyperellipsoid

(Pr,z)=1, P €S, P is positive definite. (5.64)

One needs to evaluate the minimum m of the quadratic form ¥(z) = (Az, ) on hyperellipsoid (5.64) subject
to constraints Bx > 0.

The following approach to this problem can be proposed. The number m is the supremum of positive &
such that the matrix A — 0P is copositive with respect to cone (5.1). Applying Theorem 5.3, we infer that
the supremum should be found of those ¢ > 0 for which the matrix A — 6P + vBT B is positive definite and
the matrix I, — vB(A — 6P + vBTB)! BT is strictly copositive for all sufficiently large v.
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We illustrate this approach by an example from [27]. Assume that n = 3, P = I3 (thus, hyperellipsoid
(5.64) is, in this case, a two-dimensional sphere), A = diag(1,1,—1), and

3 1 -8
(5 57)
The leading principal minors of the symmetric matrix A — 613 + vBTB are

10v +1 -9,

6417 + (20 — 208)v + (1 — 6)?,
and
d(v, 6) = (448 — 576 0)v* + (108 — 256 6 + 1486*)v — 1 + &5 + 6% — &°.

The first and second minors are clearly positive as v — +00. The determinant d will only be positive for
sufficiently large v if § < 448/576 =7/9.
For the symmetric 2 x 2 matrix

Fy,é - d(V, 5)[2 —vB ad} (A - 6[3 + VBTB)BT
the entries are
(F s}y ={F,s}o2= (54— 1286 + 948w — 1+ 6 + 6> — &
and
{F, s}12 = (58 — 1284 + 706°)v.
If § =7/9, the leading coefficients of both polynomials are positive. Thus, the matrix F,, /9 is positive (hence,

strictly copositive) as v — +oo0.
This analysis shows that the required supremum is equal to

In other words,

7
(Az,z) > 5(:2:3)

if Bz > 0, and the minimum of the form (z) on the intersection of the unit sphere and the cone Bz > 0 is
7/9.

6. Concluding Remarks

In [15, 34], finite procedures are described for deciding whether or not a given inhomogeneous quadratic
function () is bounded below on a polyhedron M defined by a system of linear inhomogeneous inequalities.
In the homogeneous case, the boundedness of a quadratic form below is equivalent to its nonnegativity on M.
Indeed, assuming that i(zq) < 0 for some point o, € M, one finds that

Y(t o) = 12 (o) = —00

as t — +oo (recall that the polyhedron M is a cone for the homogeneous case). Hence, the procedures in
15, 34] can also be used for checking K-copositivity. However, their descriptions were not included in Sec. 5,
the reason being that, since these procedures are meant for a more general situation, they will be less efficient
for the homogeneous problem than algorithms specially constructed for this case.

In the main body of this survey, the matrix property of copositivity was discussed with respect to the
three types of subsets of the n-dimensional space R™, namely, linear subspaces, the nonnegative orthant R7,
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and, finally, arbitrary convex polyhedral cones. However, the copositivity can be defined and may be of
interest for other types of subsets as well. By way of example, consider the ice cream cone

K,={zxeR"|(z}+ - +22 )/ <.} (6.1)

Definition. A matrix A € S,, is called K,,-copositive if (Az,z) >0V € K,.

Using the matrix J, = diag (-1, —1,...,—1,1), one can rewrite (6.1) as

Kp={rcR"|(Jnz,2) 20 A 1, > 0}.

Theorem 6.1 [25]. A matriz A € S, is K,-copositive if and only if the matriz A—uJ, is positive semidefinite
for some p > 0.

Unfortunately, the criterion of K,-copositivity indicated in Theorem 6.1 cannot be regarded as a con-

structive one because it does not show how to find the required scalar p (or show its absence). Unlike the
criteria of the type of Theorem 3.3, here one cannot reduce the analysis to the investigation of the behavior of
the principal minors as p — oo. Indeed, the matrix A — uJ,, has a negative diagonal entry (n,n) as p — +oo

and, hence, it cannot be positive semidefinite. As yu — —oo, all diagonal entries, excluding the last one, are
negative.
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