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CONDITIONALLY DEFINITE MATRICES 
Kh. D. Ikramov and N.  V. SaveFeva UDC 512.643.8 

1. Introduct ion  

It is well known how important  positivity is in various branches of mathematics .  For objects that  are 
positive, one can usually obtain much more complete results than in the general case. For example, in linear 
algebra, positive and positive-definite matrices are among the most thoroughly studied matrix classes. It is 
equally important that  the results of this study have been well docmnented: one can learn the properties of 
the matr ix classes above from dozens of textbooks and monographs on matr ix  theory. 

Things are quite different when from the global property of (positive or negative) definiteness one turns to 

the same property that  holds only conditionally, i.e., as long as the argument does not leave a given subspace, 
orthant,  polyhedron, or cone. We combine all these options under the term "conditionally definite" matrices. 
Matrices of this kind are understood to a lesser extent  than the classical positive-definite matrices. Moreover, 
to the best of our knowledge, no book exposition yet exists of the problem of conditional definiteness. At 
most, there are some survey papers devoted to the particular types of conditional-definite matrices. 

This fact, i.e., that  a readily accessible exposition of the field is not available, and the importance of 
conditional definiteness in a number of applications served as a stimulus for writing this survey. The selection 
of material for the paper was to a considerable extent guided by what explains our interest in this subject, 
namely, our wish to develop a collection of computer  procedures for checking whether  a given matrix possesses 
a particular type of conditional definiteness. Typically, the matrix has scalar entries, which are then assmned 
to be integers or rational nmnbers. It is also admissible, however, that some or even all entries of the matrix 
contain parameters. In this case, the dependence on parameters must also be expressed by rational functions. 
Under these assumptions, the procedures must give exact answers, not answers that  hold up to "round-off 
error analysis," which are typical of floating-point computations. This predetermines that the procedures 
to be included in the collection must be finite rational algorithms and their computer  impleinentation must 
be based on a kind of error-free computation. For matrices with parameters, symbolic computation is used 
rather  than an error-fi'ee one. 

Let us clarify what was said above by using the ordinary positive definiteness as an example. According 
to one of the many equivalent definitions of this property, a Hernfitian matr ix  A is positive definite if and 
only if all its eigenvalues are positive. This s tatement seems to give a constructive criterion for positive 
definiteness if one takes into account that well-polished routines are available for computing the eigenvalues 
of a matrix. These routines are especially efficient and accurate in the case where the matrices are Hermitian. 
The absolute errors of approximate eigenvalues tha t  are computed by such a routine can be bounded a priori. 
Hence, when the routine stops, one has a set of "uncertainty intervals" that  enclose the spectrum of the 
matr ix  under investigation. If none of the intervals contains zero, then authent ic  inferences are possible 
concerning the inertia of the matrix. In particular, one can give a certain answer whether the matr ix  is 
positive definite. However, if zero belongs to the left-most interval, a precise inference about the definiteness 
becomes impossible. The transition fl'om the real (or complex) arithmetic to error-free computations does not 

help here. Indeed, even for an integer matrix, the eigenvalues cannot, in general, be found by a finite (much 

less by a rational) procedure. 
Fortunately, there exist criteria for positive definiteness, say, the classical deterininantal Sylvester crite- 

rion, that  can be implemented by means of error-free or symbolic coinputations. It turns out that  criteria of 
this kind also exist for conditional definiteness. Our main aim in this survey is to describe them. 
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The paper is organized as follows. In Sec. 2, we recall the basic criteria for global definiteness. Some facts 
from linear algebra are also given, which we shall need in the sequel. Matrices that are definite with respect 
to a linear subspace are treated in Sec. 3. Copositive matrices are considered in Sec. 4, and/C-copositive 
ones in Sec. 5. Our concluding remarks are given in Sec. 6. 

Along with the strong definiteness, we discuss the same property in a weak form (in the classical case, these 

two species are illustrated by the notions of positive definiteness and positive semidefiniteness, respectively). 
Most often, one encounters various kinds of conditional definiteness in mathematical programming where 

all data typically are real numbers. For this reason, our discussion is limited to real matrices. As was already 
mentioned, our computer procedures even presuppose that the entries of matrices are integers or rational 
nmnbers. At the same time, the procedures can be easily generalized to the case of complex matrices with 
Gaussian entries. 

2.  P r e l i m i n a r i e s  

In this survey, the symbols M,~ and 3:,~ stand for tim linear space of real n • n matrices and its subspace 
consisting of symmetric matrices, respectively. 

Def ini t ion.  A matrix A r S,~ is called positive semidefinite if (Ax, x) >_ 0 for any vector x r R '~. If 
(Ax, x) > 0 for any nonzero x, then A is a positive-definite matrix. 

We denote by A ( i l , . . . ,  i~) the principal submatrix of A lying in rows and colmnns with indices ix , . . . ,  ik. 

T h e o r e m  2.1 (the Sylvester criterion), A matrix A E S~ is positive definite if and only if all its leading 
principal minors are positive, i.e., 

d e t A ( 1 , . . . , k )  > 0, h = 1 , . . . , n .  (2.1) 

Tile property of positive definiteness is invariant under symmetric permutations of rows and columns of 
a matrix. Therefore, a more general formulation can be given for the Sylvester criterion I6, Theorem 7.2.5]. 

T h e o r e m  2.2. All principal minors of a positive-definite matrix are positive. A matrix A E Sn is positive 
definite if there exists a nested sequence of n principal minors of A (not just the leading principal minors) 
that are positive. 

Tile nonnegativity of all principal minors is a necessary and sufficient condition for A to be positive 
semidefinite, which is implied by the following assertion. 

T h e o r e m  2.3. A matrix A E Sn is positive semidefinite if and only if the matrix A + tin is positive definite 
for any c > O. 

Here, one cannot check the signs of only leading principal minors, as was the case with the Sylvester 
criterion. For example [6, p. 404], both leading principal minors of the matrix 

B =  0 - 1  

are zero, i.e., nonnegative. However, the matrix B is not positive senfidefinite; rather it is negative semidefinite. 
The matrix 

( 0  0 0 )  
0 0 1 , 
0 1 0 

for which all the leading principal minors are again zero, is indefinite. 
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We denote the number  of positive eigenvalues and that  of negative eigenvalues of the symmetric  matr ix  
A by 7r(A) and u(A), respectively, and call them the positive inertia and the negative inertia of this matrix.  

The symbol 6(A) s tands  for the defect, or rank deficiency, of A (which is defined as the difference n -  rankA) .  
The  ordered triple 

I n A  = (r (2.3) 

is called the inertia of A. 
The Sylvester criterion is known to be just a particular case of the following signature rule, which is due 

to Jacobi. Let 
Ao = 1, 

A ~ : d e t A ( 1 , . . . , k ) ,  k = l , . . . , n .  (2.4) 

T h e o r e m  2.4. Assume  that all the leading principal minors of  a matrix A E S,~ are nonzero. Then the 
positive inertia of A is equal to the number of sign coincidences in the sequence 

A0, A1, . . . ,  An (2.5) 

and the negative inertia to the number of sign variations in this sequence. 

Below, we prove the  Jacobi rule. This gives us a good reason to remind the reader of an important  ex- 
t remal  characterization of the eigenvalues of a symmetric matrix,  which is called the Courant Fisher theorem. 

T h e o r e m  2.5. Let A1 > A2 >_ . . .  > A~ be eigenvalues of a matrix  A E S~. Then 

A k = max rain (Ax, x) 
(x ,x )  ' (2.6) 

x r  
Lk x E L~ 

5~ = rain max (Ax, z) 
(x, x) " (2.7) 

:r r 0 
Ln-k+l x E Ln-k+l 

In formula (2.6), the max imum is taken over all k-dimensional subspaces L~ of the space R '~. Similarly, in 

(2.7), L~-k+l is an arbitrary subspace of dimension n - k + 1. 

Theorem 2.5 implies the so-called interlacing inequalities 

(2.8) 

between the eigenvalues of the symmetric  matr ix A and the eigenvalues #1 _> #2 _> "'" _> #~- i  of its (arbitrary) 

principal ( n -  1) • ( n -  1) sublnatrix. 
We prove the Jacobi signature rule by induction on the order  n of A. For n = 1, the assertion is trivial. 

Suppose it holds for all k < n (n > 1). The  truncated sequence 

Ao, A t , . . . ,  A,_j_ (2.9) 

can be regmded as the  Jacobi sequence for tile leading principal ( n - 1 )  • ( n - 1 )  submatr ix  An-1. Suppose tha t  

there are m coincidences and 1 variations in sign in sequence (2.9), m + l = n - 1. If #1 _> p2 _> "'" >_ #,.-1 are 
eigenvalues of the submat r ix  A~_I, then,  by the inductive assumption,  m largest numbers out  of the imlnbers 
pj  must  be positive, and l smallest nulnbers r~mst be negative. The  interlacing inequalities (2.8) imply tha t  
A has at least m positive eigenvalues and l negative ones. Only the  sign of the eigenvalue .~,~+~ has not yet 
been determined. Dividing the relation 

Av. = A I - . . A  mArn+l Arnq-2" "" An 



by  

A,~-I = #1 �9 �9 "#~n #m+l " �9 " #~-l ,  

we conclude that  the sign of A,~+~ coincides with that of the ratio A~/An_~. This proves tha t  the Jacobi rule 

is valid for the matr ix  A. 
As an illustration, we find the inertia of a quasidefinite matr ix  [39]. This is the term for a symmetric 

partitioned matr ix  

( A , ~  A 1 2 )  (2.10) 
A = A T  A22 ' 

where the square n~ x nl submatrix A u  is positive definite, and the n2 • n2 subinatrix A22, n2 = n - hi, is 
negative definite. 

Since matr ix  (2.10) contains the positive-definite submatrix AI~, it must have at least nl  positive eigen- 

values. Similarly, the presence of the negative-definite submatrix A22 implies that  at least n2 eigenvalues of 
A must be negative. Since ni + n2 -- n, the matr ix  A is nonsingular, and its inertia is 

In A = (hi, n2, 0). 

The Jacobi rule and its modifications are very helpful in various root separation problems, i.e., in the 
class of problems that  deal with the location of roots of a (real) polynomial with respect to a given subset of 

the complex plane. We give two examples of these applications. 
Assume tha t  the real polynomial 

f ( x )  = ao zn + a l z  ~ - i  + . . .  + a.. (2.11) 

has no multiple roots (this can be easily achieved if one divides f (x )  by tile greatest common divisor of f ( z )  

and its derivative i f (z)) .  We denote by a l , . . . ,  a~ the roots of f ( z ) .  The sums 

k = 0, 1, 2, Sk = O~kl 4:- . . . + Ozn~ . . . ,  

are known as the Newton sums of the polynomial f ( z ) .  Being symmetric  functions of the roots c q , . . . ,  a~, 

the Newton sums can be rationally expressed in terms of the coefficients a0, a~ , . . . ,  a~ of f ( x ) .  

T h e o r e m  2.6 (the Borchardt-Jaeobi theorem). Th, e quadratic form 

n--[ 

J = E Sl+rn Xl Z m  
l, r~z=O 

is nondegenerate. I f  7c and lJ are the positive and the negative inertia, respectively, of the f o rm  J, then the 
polynomial f ( x )  has ~ pairs of complez-conjugate roots and 7c - ~ real roots. 

Our second example is the Routh-Hurwitz-Fuj iwara criterion. We set 

= 

for polynomial (2.11) and fornl the Bezout matr ix  of the polynonfials f and g. Recall that  the Bezout matrix 

B(.f, g) is tile matr ix  associated with tile quadratic form 

B(w,  z) = f ( w ) g ( z )  - f ( z )g(w)  
W - -  Z 

n 

= Z bkt w k - i  z l -1 .  
k,/=l 

Finally, we transform the matrix B ( f ,  9) = (b~j) into a new inatrix F according to the rule 

fij = (-1)i+1 bij, i , j  = 1 , . . . , n .  
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T h e o r e m  2.7  (Routh-Hurwi tz-Fnj iwara  criterion), f f  the matrix F is nonsingular, then its positive (negative) 

inertia gives the number of roots of the polynomial f (x )  that have negative (positive) real parts. 

The  application of the Jacobi rule in the si tuations defined by Theorems 2.6 and 2.7 presupposes tha t  
all the leading principal minors of the corresponding matr ices  are nonzero. If this assumption is not valid, 
it may  still be possible to determine the inertia using the extensions of the Jacobi rule by Gundeffinger and 
Frobenius (see [4, Sec. 8]). 

T h e o r e m  2.8. Assume that in sequence (2.4), the determinant A,~ # O, but a minor A~, k < n, may be 

zero. In each such occasion (i.e., when A~ = 0), assume that A~_IA~+I # 0. Assign arbit'rnry signs to the 

zero minors Ak. Then the Jacobi rule holds for the modified sequence (2.4). 

T h e o r e m  2.9. Assume that in sequence (2.4), the determinant A~ ~ O, but it may be possible that Ak = 

A~+I = 0 when k < n - 1 .  In each such occasion, assume that Ak-IA~+2 # 0. Assign the same (arbitrary) sign 

to Ak and A~+ 1 if A~_IA~+2 < 0 and different signs (in any one of the two possible ways) if Ak-IA~+2 > 0. 
Then the Jacobi rule holds for the modified sequence (2.4). 

We reproduce an example from [4], which shows tha t  the  fllrther extension of the Jacobi signature rule 

for the case where (2.4) contains subsequences of three or more  successive zeros is impossible if one speaks 
about, general symmetric  matrices. Assume that  the coefficients a, ~, and 7 in the matr ix 

0 0 0 a 
0 00 

A -  
0 0 7 0  
~ 0 0 0 

are nonzero. Then  sequence (2.4) for this matr ix  is 

1, O, O, O , - a 2 3 7 .  

) 
The sign of the determinant  A4 is determined by tha t  of the product  .3 7. It is not difficult to see tha t  the 
inertia of the matr ix  A is (3, 1, 0) if/3 > 0, 7 > 0, and (1, 3, 0) if/3 < 0, 7 < 0, a l though in both  cases A4 is 
negative. 

We re turn  to the discussion of the criteria for definiteness. 

T h e o r e m  2.10.  A matrix A E S,, is positive semidefinite 4[ and only if 

A = S S T (2.12) 

.for an n x m matrix S (m may be arbitrary), fl matri.~: A is positive definite if and only if the rank of the 
matrix S in (2.12) is equal to n. 

A positive (semi)definite mat r ix  A can be represented in the form (2.12) in many different ways. The  
most  useful ones are the following. 

(1) S = S T. In this case, (2.12) turns into 

S 2 = A 

and the matr ix  S is a square root  of A. There exists a mfique positive (semi)definite square root of A. It is 

denoted by AV2. 
(2) S is a lower triangular matr ix  with positive diagonal  entries. Usually, this matr ix is denoted by L 

and called the Cholesky factor of the matr ix  A. The  corresponding decomposi t ion of A is the product  

A = L L T (2.13) 

of the two tr iangular  matrices, the lower matr ix L and the upper  one L T. It is called the Cholesky decompo- 
sition of A. 



Using relation (2.13) for the entries in position (1,1) yields 

I .  = 

Thus, the calculation of the Cholesky factor requires square roots, i.e., the type of operation that we would 
like to avoid. Meanwhile, there exists another decomposition of a positive-definite matrix that is similar to 
the Cholesky decomposition but that  can be found by employing only arithmetical operations. It is called 

the L D L  v decomposition: 

A = L D L  T. (2.14) 

As opposed to the Cholesky factor, the matrix L in (2.14) has the unit main diagonal. The matrix D is 
diagonal: 

D = diag (dn, �9 �9 �9 dn~). 

It is not difficult to see that 
d t l  = all = /kl, 

dk~ = , k = 2, 3 , . . . , n .  

As above, A~ is the leading principal k x k minor of the matrix A. 

Note that the LDL T decomposition exists (and is unique) not only for positive-definite matrices but also 
for any symmetric matrix A in which all the leading principal minors are nonzero. Moreover, the last of these 
minors, i.e., det A, may be zero. If A is not positive semidefinite, then D contains diagonal entries of different 
signs. 

The matrix transformation of the form 

A -+ B = P A P  T, (2.16) 

where P is a nonsingular matrix, is called a congruence , and the matrices A and B in (2.16) are referred to as 
congrv, ent matrices. These matrices can be considered to be associated with the same quadratic form but in 
different bases of the space R '~. As a consequence, congruent matrices have the same inertia. In particular, 

the diagonal matrix D in the L D L  T decomposition of A indicates the inertia of the latter matrix. 
Assume that the nl x nl submatrix All in the partitioned matrix (2.10) is nonsingular. Applying to A 

congruence (2.16) with the matrix 

( I ~  0 ) (2.17) 
P = --ATe A~-~ I,~ 2 

yields the block-diagonal inatrix 

The submatrix 

B =  ( All0 B2')0 ) .  (2.18) 

B22 = A22 - AT AS! A12 

is usually denoted by A/Axl and is called tile Schur complement of the submatrix All in A. 
One important implication of formula (2.18) is the equality 

InA = InAl l  + In (A/An).  

The inertias here are added entrywise. 
Suppose that the inverse matrix C = A -z is partitioned sinfilar to (2.10): 

( Cu C12 ) 
C =  Czl C22 " 

Then 

(2.19) 

C22 = (A/Al i )  -~. 

Hence, the submatrix C22 in the inverse matrix C has the same inertia as the Schur complement A/Al l  in 
the original matrix A. 



3. Pos i t ive  Def in i teness  on a Subspace  

Suppose that we consider a subspace 12 C R ~ described by the system of linear equations 

B x  = O. 

Here B is a p x n matrix. Without loss of generality, one can assume that 

rank B = p. 

This amounts to removing linearly dependent equations from system (3.1). 

Def in i t ion .  A matrix A E S~ is called 12-semidefinite if 

If 

then A is called an 12-definite matrix. 

(3.1) 

(3.2) 

Not to complicate terminology, we did not mention positivity in the definitions above. The negative 
definiteness with respect to a subspace could have been considered with equal reason. However, only positive- 
definite matrices are generally discussed in this survey. 

We mention that the discussion in this section is, to a large extent, based on the review article [91. 
The most straightforward approach to checking the/:-definiteness of a matrix is to reduce the test to 

that for ordinary positive definiteness. Let P be a nonsingular n • n matrix such that 

B P  = (0 zp .  (3.5) 

We replace x in (3.1), (3.3)-(3.4) by a new variable: 

= (3.6) 

Let y = ( y ~ , . . . ,  y n )  T . Then condition (3.1) turns into the set of equalities 

Yn-p+l =O,... ,Yn =0. 

Now, instead of (3.3) and (3.4), we arrive at the requirement that the leading principal (n - p )  • (n - p )  
submatrix of the matrix 

J = P A P  T (3.7) 

be positive definite or positive semidefinite, respectively. 
The criterion obtained will be restated in an algorithmic form. 

Algor i thm 1 for checking the 12-definiteness o f  the  matr ix  A 

1. Calculate a matrix P satisfying condition (3.5). 

2. Form matrix (3.7). Ill fact, only the leading principal ( n - p )  • ( n - p )  submatrix J,~_p of matrix (3.7) 
can be calculated. 

3. Apply to A,_p a criterion for the ordinary positive (semi)definiteness. 

To justify our second algorithm, we shall need the following lemma. 

L e m m a  3.1. Let n = 2m be an even integer. As sume  that a matr ix  A E S,. has the block form 

An A12 ) 
A =  AT. 0 ' 

(Ax, x ) > 0  VxE12, x ~ 0 ,  (3.4) 

(Ax, x ) > 0  VxE12. (3.3) 



wh, ere all the blocks are of order m, and the subrnatriz A12 is nonsingular. Then the inertia of A is (m., m, 0). 

Proof .  Obviously, the matrix A is nonsingular, and, hence, d(A) = 0. Note that A contains a zero principal 
submatrix of order rn. According to the Courant Fisher theorem, at least m of the eigenvalues of A are 
nonnegative. Actually, these eigenvalues are positive in view of the nonsingularity of A. In just the same way, 
A must have no less than rn negative eigenvalues. Since n = 2m, the assertion of the lemma follows. 

Now we form an auxiliary (n + p) • (n + p) nmtrix: 

Let the congruence 

A B r ) 
A =  B 0 " (3.8) 

= g ) A O  r 

Q(P0 
with the transforming matrix 

be applied to A, P being a nonsingular matrix fl'om (3.5). The matrix A thus obtained can be partitioned as 
follows: 

. 
o g o 

By Lemina 3.1, the inertia of the submatrix 

is 

M=( Z')0 (3.9) 

In M = (p, p, 0). 

Suppose that the matrix M -1 is given a partitioned forln similar to (3.9). Then it is not difficult to see 

that block (1,1) in M -1 is zero. This implies that 

Applying (2.19) to A, one obtains 

I n A = I n C i =  I n M + I n A ~ _ p  
= (p, p, 0) + InAn_p. (3.10) 

When deducing Algorithm l, we have found out that the L;-definiteness of the matrix A amounts to 

positive definiteness of the submatrix A~_p. Therefore, the following theorem is valid. 

T h e o r e m  3.1. A matrix  A E S,~ is E-definite i f  and only if, for  the corresponding matrix (3.8), the positive 
inertia is eq~tal to n. 

This assertion is immediate from relations (3.10). 
In the same way, relations (3.10) imply 

T h e o r e m  3.2. A matrix A E S,~ is E-sem, idefinite if  and only if, for  the corresponding matriz  (3.8), the 
negative inertia is equal to p. 

Thus, Theorems 3.1 and 3.2 indicate a very simple criterion for E-definiteness. 



Algorithm 2 for checking the s of the matrix A 

1. Form matrix (3.8). 
2. Find the inertia of A. If the positive inertia is equal to n, the matrix A is s If this condition 

is not fulfilled but the negative inertia of matrix (3.8) is equal to p, then the matrix A is s 

We embed matrix (3.8) into tile family of matrices of tile form 

If re(A) = n, for A = A0, then 

A B r ) 
B t _ r p  " 

= n 

for any negative value of t that is sufficiently small in modulus. For such a t, the relation 

In (A~) = In (t I,) + In (d - ~ B ~B) 

= (0, p, 0 ) +  I n ( A -  S S) 

in conjunction with (3.11) implies 

(3.11) 

I n ( A - _ 1  BrB)  = (n, O, 0). 
t 

In this way, an assertion is obtained, which is called the Finsler theorein ([16]; see also [1]). 

Theorem 3.3. A matrix A E S, is s if and only if the matrix 

A(k) = A + k B r B  (3.12) 

is positive definite for all sufficiently large positive values of h. 

By a similar reasoning one can prove 

Theorem 3.4. A matrix A E S,, is s if and only if, for matrix (3.12), the negative inertia is 
equal to p for all negative values of k that are sufficiently larye in modulus. 

Now we shall discuss how the criteria for the s contained in Theorems 3.3 and 3.4 can be 
implemented with the use of computer algebra systems. Assmne that the Sylvester criterion is employed 
to check the positive definiteness of the matrix A (k). Any leading principal minor A~ (k) of A (k) can be 
regarded as a polynomial in k. The sign of its values, as k --+ +ec, is determined by the sign of the leading 
coefficient. For modest n, one can obtain explicit expansions for the minors Ai (k), using a computer algebra 
system; in fact, only the leading coefficients of these expansions are needed. As a result, we arrive at the 
following algorithm. 

Algorithm 3 for checking the/: -def initeness  of the matrix A 

1. Form matrix (3.12). 
2. Determine the signs of the leading coefficients of the polynomials Ai (k), which are the leading principal 

minors of the matrix A (k). The matrix A is E-definite if and only if all these signs are positive. 

The leading coefficients of the polynomials Ai (k) also determine tile signs of tile values of these polyno- 
mials as k --+ -eo .  Thus, for verifying the s of a matrix, one must apply the Jacobi signature 
rule to the modified sequence of the leading coefficients (i.e., for the polynomial Ai, its leading coefficient is 

multiplied by (-1)~). By virtue of Theorem 3.4, the matrix A is s if the sequence above contains 
exactly p sign alternations. 



The criterion tbr the g-definiteness given by Theorem 3.1 can be converted into a set of determinantal 
inequalities similar to the Sylvester criterion. Assume that a nonzero minor of the maximal order is contained 
in the first p colunms of B. This can always be achieved by a proper permutat ion of the columns of B and 
a (symmetrical) permutat ion of the rows and cohmms of A. Along with matrix (3.8), consider its principal 
submatrices of the form 

A~.= B~. 0 ' r = p +  l , . . . , n .  

Here A~ is the leading principal r x r submatrix of A, and the p x r matrix/~.~, has been obtained by deleting 
the last n -  r columns of/9.  Obviously, rank B,. = p. Thus, the arguments used in the proof of Theorem 3.1 
are applicable to the matrix A~ as well. As a consequence, one has 

In A~ = (p, p, 0) + In A,._p. 

If A is g-definite, the submatrices fi~,._p, r = p + 1 , . . . ,  n, must be positive definite (see Algorithm 1). 

Hence, for all matrices (3.13), the determinants have the same sign, namely, ( -1)  p. In other words, 

( - 1 ) "  det Ar > 0, r = p + 1 , . . . ,  n. (3.14) 

Conversely, assume that  inequalities (3.14) hold. We define the matr ix .A; by analogy with (3.13). Note 

that  Bp corresponds to a nonzero minor of i3 and, hence, is nonsingular. Applying Lemma 3.1, we have 

sign det Ap = ( -1)  p. 

According to (3.14), for all matrices A,., r = p +  1 , . . . ,  n, the determinants have the same sign, which coincides 
with the sign of det Ap. 

Observe that  the matrices Mp, .Ap+I, �9 . . ,  A,-1  become the leading principal submatrices of A = A~ when 

the rows and columns of the latter are properly (and symmetrically) reordered. By the Jacobi signature rule 
the coincidence of signs of their deternfinants means that the positive inertia of A is at least 

~(A~) + (,, - p) = n, 

and the negative inertia of A is at least u(Ap) = p. However, the order of A is n +p,  and, hence its inertia is 

equal to (n, p, 0). By Theorem 3.1, this ainounts to the g-definiteness of A. 

The determinantal inequalities (3.14) were found in [13, 35]. They lead to one more criterion for g- 
definiteness. 

A l g o r i t h m  4 for c h e c k i n g  the  g -de f in i t eness  o f  t h e  matr ix  A 

1. Find a nonzero minor of the maximal order in t9. By permuting the columns of/3, place this ininor 
into the first p colmnns. Perform the corresponding permutation of the rows and cohunns of A. 

2. For the sequence of matrices (3.13), che& whether all inequalities (3.14) hold. If they do, then the 
matrix A is C-definite. 

Suppose that  the Jacobi rule is employed for computing the inertia of A in Algorithm 2. Then its stage 
2 actually differs from stage 2 of Algorithm 4 only by the choice of a different sequence of principal nfinors. 
However, the principal minors in Algorithm 4 are known to be nonzero, which cannot be guaranteed for 
Algorithm 2. The price of this guarantee is that  one has to carry out additional calculations at stage 1. 

The determinantal conditions for the g-semidefiniteness can be established in a sinfilar way, but they are 
more intricate. Let R be a subset of the index set { 1, 2 , . . . ,  n}. We denote by An the t)rincipal snbmatrix of 
A which is defined by the choice of R. The symbol Bn stands for the matr ix that. is obtained by deleting the 
columns of B whose indices do not belong to R. By analogy with (3.13), let 

An B~ ) 
An  = Bn 0 ' 
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Tile precondition according to which the leftlnost p x p submatrix of B is nonsingular remains valid. Then 
tile following assertion holds. 

T h e o r e m  3.5. A matrix A E S~ is s if and only if 

( -1 )  p det AR _> 0 (3.15) 

for any index subset R such that 
R {1 ,2 , . . . ,p} .  

One can compare inequalities (3.15) with the determinantal criterion for the ordinary positive selnidefi- 

niteness. This criterion requires that  all principal minors (and not only the leading ones) be nonnegative. 

In [9], three other assertions are given that  indicate constructive techniques for checking tile E-definiteness. 
Although obviously impractical, these techniques are described below just for the sake of completeness. 

Let 

0 " 
(3.16) 

We will be interested ill the roots of the equation 

det 34t = 0. (3.17) 

This is an algebraic equation in t of degree less than n. Another option is to consider (3.17) as a generalized 
eigenvatue problem with t being the spectral parameter: 

det (A + t C) = 0. (3.18) 

Here A is matrix (3.8) and 0) 
0 0 " 

Both matrices are symmetric; in addition, C is senfidefinite. Therefore, all the roots of Eq. (3.17) are real. 

T h e o r e m  3.6. A matrix A E S,, is s if and only if all the roots of Eq. (3.17) are negative. 

Proof .  If A is /;-definite, then the matr ix A is nonsingular. Note that the way in which the matrix Adt 
is obtained from the pair of matrices (A + t I,,, B) is similar to that in which A is generated fi'om the pair 

(A, B). Also note that, along with A, tile matrix A + t I~ is s for any positive value of t. Hence, if It 
is nonsingular on the whole half-line t >_ 0. This proves the necessity part of tile theorem. 

Conversely, assume that, for given matrices A and B, all tile roots of Eq. (3.17) are negative. Consider 
the eigenvalues A1, . . . ,  ;~+~ of tile matrix Adt as fllnctions of tile parameter t. Then none of these functions 

can vanish on the half-line t _> 0. Thus, all the inatrices .s (t > 0) have the salne inertia. Since they contain 

a zero p x p submatrix, the matrices must  have at least p negative eigenvalues (none can be zero since 3dr 
is nonsingular). When t is positive and sufficiently large, the submatrix A + t I~ is positive definite, which 
implies that  at least n eigenvalues of 3//t are positive. Therefore, one must have 

 (Mt) =  (Mt) p 

for any t _> 0. In particular, 7r(A) = n. By Theorem 3.1, this ensures the s of the matrix A. 
The corresponding criterion for s is stated as follows. 

T h e o r e m  3.7. A matrix A E S~ is s ~f and only if all roots of Eq. (3.17) are nonpositive. 

Let f (x)  = 0 be a given algebraic equation. It was mentioned in Sec. 2 that,  by counting tile inertia 
of the symmetric matrices appropriately generated from tile coefficients of f ,  one can solve such problems 
as determining the number of real roots of the equation or the number of roots ill the left half-plane of the 

11 



complex plane. In principle, the criterion contained in Theorem 3.6 amounts to checking that all the roots of 

the algebraic equation (3.17) are real and, also, belong to the left ha l f  plane. In the case under consideration, 
the additional difficulty encountered in these standard tests is that we do not have an explicit expansion of 
the polynomial p(t) = det A4t. One can argue that we encountered a similar difficulty in Algorithm 3. Here, 

however, the situation is more complicated. When and if the coefficients of p(t) have been found, one still 
has to generate from them two new matrices and then compute the inertia of these new matrices. 

Our next criterion is given by 

T h e o r e m  3.8. A matrix A E S.~ is E-definite if  and only i f  the matrix M in (3.8) is nonsingular and the 

leading principal n • n submatrix in the inverse matrix A -1 is positive semidefinite. 

Proof .  For this assertion, it is the sufficiency part that  is easier to prove. Being nonsigular and having a 
zero p • p block, the inatrix A must have at least p negative eigenvalues. The positive semidefiniteness of the 

n • n submatrix implies that 7c(A -~) > n. Hence, 7c(A) = 7c(A -~) = n, and the matrix A is E-definite by 
Theorem 3.1. 

Conversely, let A be E-definite. 
partitioned: 

According to Theorem 3.1, the matrix A is nonsingular. Let A -~ be 

= L T M ' 

where K is an n • n subinatrix. We show that any nonzero eigenvalue # of K must be positive. We denote 
by x the corresponding eigenveetor, K x  = p x, and let 

Then the vector 

satisfies the equation 

or, which is the same, the equation 

u = 1--LTx. 
# 

w=(x) 
0) 

w = --# L T 0 w 

. / ~  •  = O. 

Theorem 3.6, the number i must be negative. This proves the necessity part of the theorem. By 
$ 

If the test for the E-definiteness is to be based on Theorem 3.8, then it should provide for inverting the 
matrix .4 and then count.ing the inertia of the block K in the inverse matrix A -1 (for which, say, the Jacobi 

rule can be employed). It is clear that  such an approach is necessarily less efficient than Algorithm 2. 
Ore" last assertion modifies Theorems 3.1 and 3.2 for the case where the matrix A is nonsingular. In this 

case, the Schur complement M / A  is well defined, and the following equality holds: 

I n A  = I n A  + In ( .A /A)  = + 

T h e o r e m  3.9. A nonsingular matrix A C S,~ i,v E-definite i f  and only 'if 

~(A) + ,~(BA-1B r) = n. 

For" the E-semidefiniteness, the necessary and sufficient condition is the equality 

~(A) + 7r(BA-1B T) = p. 
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Tile advantage of this formulation is that it involves only matrices of orders n and p and does not involve 
matrices of order n + p as in Algorithms 2 and 4. On the other hand, the nonsingularity of A is required as 

a precondition, and one must  compute the inverse matr ix A -1 (or the product  B A - ~ B  r without  explicitly 

forming A-l) .  

In conclusion, we shall show some applications of the notion of s 
The extremal problem 

min f ( x )  
x E R  ~ 

under  the linear constraint (3.1) gives the most obvious example of a situation where the property of a matrix 

to be E-definite is crucial. The matrix A that  is important  here is the matr ix  of the second differential of f 
at a stationary point x0 E E. For f to have a local minimmn at x0, it is necessary that  A be E-semidefinite. 
The  point x0 does supply a local minimum to f if A is E-definite. 

Euclidean distance matrices give one more example of tim conditional definiteness. 

D e f i n i t i o n .  A matrix A E Sn with zero diagonal entries and nonnegative off-diagonal ones is called a distance 

matrix. The matrix A is called a Euclidean distance matrix if there exist points xl, . . .  x~ E R ~ (r _< n) such 

tha t  
aij = Ilxi - xjll~ (1 _< i , j  <_ n). (3.19) 

If relations (3.19) hold for a set of points in R ~ but not in R ~-1, then A is said to be irreducibly embeddable 

in R ~. 
As early as in the thirties, various characterizations were proposed that  distinguish the Euclidean distance 

matrices in the class of the general distance matrices. The following assertion due to Schoenberg [17, 36] is 

of the most interest to us. 

T h e o r e m  3.10. Let 
e = ( 1 , 1 , . . . , 1 )  r .  (3.20) 

Then the distance n x n matrix  A is a Euclidean distance matrix i f  and only i f  it is negative E-semi&fin i te  

with respect to the subspace 

eTx = 0. (3.21) 

If 

is the orthoprojector on the subspace E, and 

1 
P = I,~ - - e e  r 

n 

r = rank ( P A P ) ,  

then A is irreducibly embeddable in R". 

Applying Theorem 3.2 to this particular situation, we can restate criterion 3.10 as follows. 

T h e o r e m  3.11. The distance n • n matrix A is a Euclidean distance matrix i f  and only if the bordered matrix 

A =  e r 0 

has negative inertia 1. Furth, ermore, A is irreducibly embeddable in the space R" ,  where 

r = n - 1 - a(A). 

Tile criterion is given in this form in [20]. We mention that  Euclidean distance matrices are used in 
conformation calculations to represent the squares of distances between the atoms in a molecular structure 
[19]. 
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4. Coposi t ive  Matrices 

The nonnegative or thant  of the n-dimensional space R ~ will be denoted by R+: 

R ; = { x l  x_>0}. 

Inequalities like x _> y, where x and y are vectors in R '~, are to be interpreted elementwise. 

D e f i n i t i o n .  A matrix A E S,, is called copositive if 

(Ax, x) _> 0 

and strictly copositive if 

V x c R : ,  (4.1) 

(Ax, x ) > 0  V x E R ~ ,  x # 0 .  (4.2) 

R e m a r k .  Sometimes an intermediate class of copositive-plus matrices is also considered (for example, see 

[37]). These matrices are defined as copositive matrices with the additional property that  

(Ax, x)=O, x E R ~ _  ', A x = 0 .  

However, in this survey the discussion is limited to matr ix  classes (4.1) and (4.2). 

Obviously, if A is (strictly) copositive, the same is true of any one of its principal submatrices. In 

particular, we have 

L e m m a  4.1. All the diagonal entries of the copositive matrix A are nonnegative. If A is strictly copositive, 
then all its diagonal entries are positive. 

Let P be a nonsingular nonnegative matrix. 

L e m m a  4.2. If a matrix A E S,, is (strictly) copositive, then B = p T A p  is also (strictly) copositive. 

C o r o l l a r y  4.1. Suppose that B is obtained from a (strictly) copositive matrix A by a symmetrical perrn'atation 
of rows and columns. Then B is also (strictly) copositive. 

We denote by Cn the set of n • n copositive matrices. Obviously, C,, is a cone in the space Mn (or S~). 

(Here and in what follows, a "cone" always means a "convex cone.") The two subsets of the cone C,~ are well 
known. 

L e m m a  4.3. Any nonnegative matrix A E S,~ is copositive. If all the diagonal elements aii in the nonnegative 
matrix A are positive, then A is strictly eopositive. 

P r o o f .  The first assertion of the l emmais  obvious. Indeed, for x > 0, the inner product (A:r, x) is the stun of 

n 2 nonnegative terms. If the main diagonal of A is positive and the component  xi of the nonnegative vector 
:r is positive, then 

(Az, x) _> > O. 

Thus, the cone A/'~ of symmetric nonnegative n x n matrices is a part  of the cone C,,. Positive semidefinite 
n x n matrices constitute one more subset of this cone, which we denote by 7)$D,.  Obviously, 7)SD,~ is also 
a cone .  

It turns out that, for n = 2, the following relation holds: 

C~ = dV~.2 hJ 7&SD> (4.3) 

Indeed, let the 2 x 2 matr ix  A be copositive. Then 

a:tl ~ O, a22 _> O. 
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If we also have at2 _> 0, then  A E A&. In the case a~2 < 0, we consider the iimer p roduc t  (Ax, x) for the 

vectors x = (xt, x2) r with  a nonzero first component  xl. Sett ing t = x2/xl yields 

2 2 (Ax, x) = a11x 1 q- 2a12xtx2 + a22x 2 

= x ~ ( a l l  - -  2a12t + a22t2). 

For the polynomial  

f ( t )  =a l l  + 2a12t + a22t 2 

to be nonnegative for any t _> 0, it is necessary, first of all, tha t  the inequality a22 > 0 hold. Also, the value 

f(to) that  the polynomial  assumes at the point  of minimum to - a12 must  be nonnegative,  i.e. 
a22 

a22 
aH - - -  > 0. (4.4) 

a22 

The inequality a22 > 0 combined with (4.4) ensures the positive semidefiniteness of the mat r ix  A. 

C o r o l l a r y  4.2.  The conditions that are necessary and sufficient for the symmetric 2 • 2 matrix A to be 
copositive can be described by the set of inequalities 

aH >_0, a22>0, 

a12 + x/alia22 >_ O. (4.5) 

Formally, condit ions (4.5) involve radicals. However, using relation (4.3), one can easily avoid comput ing 
radicals when verifying the copositivity of a matrix. 

C o r o l l a r y  4 . 3 .  Since any principal 2 x 2 submatrix of the matrix A E C~ is also copositive, one must have 

a i j + ~ > > _ O  V i , j ,  i # j .  (4.6) 

Among other things, this implies that if aii = 0 for the copositive matrix A, then aiy = ay~ > 0 for any j. 

R e m a r k .  In the same way as equality (4.3) was justified, one can prove the following assertion. Any strictly 
copositive 2 x 2 mat r ix  is either a nonnegative matrix with positive diagonal entries or a positive-definite 
matrix.  

Familiarity wi th  the conjugate cone C~ allows one to better  unders tand  how the cone C,, itself is organized. 

Recall that ,  for the cone ]C in the Euclidean space E, the conjugate (or dual) cone/C* is defined by the formula 

= {y I (x,y)_>0 v x  

If/C* =/C,  then /C  is a self-conjugate cone. 
For the matr ix  spaces MR and S~, the most  natural inner product  is 

(A, 13) tr (AB T) ~ aijbij. (4.7) 
i , j = l  

Obviously, tr (AB r)  _> 0 for any A, B E N2. Hence, 

A& C As (4.8) 

\Ve denote by E~j the n • n matr ix whose only nonzero entry is equal to 1 and placed in the t)osition 

(i, j ) .  It is easily s e e n  tha t  (A, ~ij) : tr (A~ji) = a i j .  

For the t ime being, we assume M,, to be an underlying Euclidean space. Therefore, A& will be regarded 
as the cone of all nonnegat ive matrices (i.e., including nonsylnmetric  ones). Note that  the condit ion (A, B) _> 
0 V B E A/~ implies, in particular,  that  

(A,E~j) >_O V i , j .  
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Hence, any matrix A E 3/s must be nonnegative. Comparing this fact to (4.8) shows that . ~  is a self-conjugate 
c o n e .  

This result (i.e., that the cone A/,, is self-conjugate) also holds in the case where A& is interpreted as a 
subset of &; one must only replace the matrix Eij in the argument above by the symmetric matrix Eij + Eji. 

Using the spectral decomposition of a symmetric matrix, it is easy to prove the following proposition: 
the cone 7)3:D~ of positive-semidefinite n x n matrices is self-conjugate as a subset of the space Sn. 

Let us now find out what the cone C,* is, which is conjugate to the cone of copositive matrices with respect 
to the inner product (4.7). The definition below will be helpful. 

Defini t ion.  A quadratic form Q = (Bz ,  z) is called completely positive if Q can be expressed in the form 

N 

e -- E L~ (4.9) 
i=1  

Here Li, i = 1 , . . . ,  N, are linear forms with nonnegative coefficients. 

The matrix of a completely positive quadratic form is also called completely positive. If B is such a 
matrix, then it can be expressed in the form 

N 

B = ~ l i l T i ,  l,:ffR+,~ i = l , . . . , N , ,  (4.10) 
i=1  

which corresponds to representation (4.9). 

Remark .  One can show that the classical definition of a completely positive matrix [2, Chap. XIII, Sec. 8] 
restricted to the case of square symmetric matrices is equivalent to the definition given above. 

T h e o r e m  4.1. For the cone On of copositive n x n matrices, the conjugate cone (with respect to the inner 
product (4.7)) coincides with the cone 13~ of completely positive n x n matrices: 

13,~ =d~.  (4.11) 

Proofi  The fact that B~ is really a cone is quite obvious fl'om (4.10). Suppose that A E 13,*. Then 

t r (AB)>_0  V B E B ~ .  

In t)articular, setting here 

one has 

B =  :cx T, x E RY;, 

(4.12) 

tr ( A z ,  z r )  = z r  A z  = ( A x  , z )  > O. 

Since this inequality holds for any z E R~_, the matrix A is copositive. Thus. the inclusion 

/3* C Cn (4.13) 

is established. 
Assmne now that A E Cn and that B is a completely positive matrix. Using representation (4.10) tbr/~, 

one finds 
N N 

tr (AS) : ~ tr(Al~,Z~) : ~ (A l~ , l , )  > O. 
i=1  i = i  

Hence, A E 13", and 
G c G  

13; = G ,  

Combining this with (4.13) yields the equality 
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which is equivalent to (4.11). 

It is shown in [14] tha t  tile relation 

d~ = PS~D~ + N'~ (4.14) 

holds for n = 3, 4. Recall that ,  for subsets X and Y of the vector space V, the suln X ~- Y is defined to be 
the set 

{ x + y l  x E X ,  y e  Y } .  

M. Hall proved in [5, Chap. 16, Sec. 2] tha t  equality (4.14) is false already for n = 5. Below we reproduce 
his arguments.  

By conjugating bo th  sides of (4.14), the equivalent relation is obtained,  namely, 

U,~ = C~ = P S i ;  n i l ;  = P S ~  nN.. (4.1.5) 

Thus,  in order to disprove (4.14), it suffices to produce a matr ix  tha t  would be nonnegative and positive 
semidefinite but,  at the  same time, not completely positive. For n = 5, all these requirements are satisfied by 
the matr ix  B of the quadrat ic  form 

2 2 2 q 2 3 
Q ( x l , . . . ,  xs) = x 1 + x 2 g- x 3 4- x/l + x 5 § x lx2 -- x lx5  + x2x3 + 2x3x4 + X4X5 

1 1 1 , 
= (.T,2 -~- EXl - -  X3) 2 -~- (X5 -}- EXl -~- X4) 2 @ ~ ( X l  - -  ~ X 3  - -  -~- ~(x3 + x4) 2. ( 4 . 1 6 )  

It is obvious from the first representation of the form Q that  B is nonnegative,  and from the second, t h a t / 3  
is positive semidefinite. Suppose tha t  B is completely positive. Then  Q, being completely positive, admits  
the representation 

Q = L~ + - . .  + L~ + L~2,+1 + . . .  + L~v. 

All linear forms Li, i - 1 , . . . ,  N, have nonnegative coefficients and are nmnbered so that. L t , . . . ,  L~. are those 
in which x3 and x4 have positive coefficients. Since the form Q has no terms with the products  xlx3,  x2x4, 

and x3xs, the forms L 1 , . . . ,  LT must have zero coefficients for Xl, x2, and xs, or 

Hence, 

L i  = l~i) x3 + t 4 x4, > O. > O, i = 1 , . . . ,  r. 

3 
L ~ g - . . . g - L 2 = a x ~ + ~ x 3 x 4 + b x 2 4 ,  a > 0 ,  b > 0 .  (4.17) 

Let us set 
Q1 Q l ( x l , . .  xs) 2 L 2 = -, = L,,+I + " "  + N" 

Then  
3 

Q ax.~ + ~'~J'4 + bx~ + @ ( x l , . . .  ,xs). (4.18) 

Consider both  sides of (4.18) when the unknowns x3 and x4 assmne arbitrary values and the other 
nnknowns are expressed in terms of x3 and x4 by the formulas 

X3 ~- X4 3x3 + x4 x3 + 3x4 
:r I - -  - -  X 2 - -  - -  X 5 - -  

2 4 4 

In this case (see (4.16)), 

and (4.18) assumes the  form 

5 
Q = ~(: / :3  ,4-X4)  2, 

~(x3 3 + x4) 2 = +  x:3 4 + + Q, .  
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Since the quadrat ic  form Q1 is positive senfidefinite, the inequalities 

5 5 
0 < a < g ,  0 < b < -  

must  hold. Now we set x3 = 1, x4 -- - 1  ill (4.17) and have 

3 < 5  
/'([131) __ /41))2(, @ . . .  ~_ [ (rt/3) __ /4))2('r ,, : a @ b -  E - 8 -- 

5 3 1 

8 2 4'  

which is impossible. The source of the contradict ion is the assumption that  the form Q is completely positive. 
Therefore, Q and its matr ix  B cannot be completely positive. 

Note now a remarkable spectral p roper ty  of copositive matrices tha t  makes them similar, to some extent, 
to nonnegative and positive-semidefinite matrices. 

De f in i t i on .  A square matr ix A is said to have the Perron property if its spectral radius p(A) is an eigenvalue 
of A. 

Evidently, the Perron property is inherent  in any positive-semidefinite matrix. The  fact tha t  all non- 
negative matrices (including nonsymmetr ic  ones) have the Perron proper ty  is the substance of the famous 
Perron-Frobenius  theorem. 

It turns out  that  the Perron proper ty  is also valid for copositive matrices [21]. 

T h e o r e m  4.2.  The spectral radius p(A) of the matrix A E d,~ is an eigenvalue of A. 

P r o o f .  Suppose that  p = p(A) is not an eigenvalue of A. Then A must  have - p  as an eigenvalue. Let :r be 
a corresponding unit  eigenvector: 

Ax : - p x ,  [[ x 112= L 

z = y - z ,  y>O, z>_O, ( y , z ) = 0 ,  

We represent X as 

and set 
u = y + z .  

Obviously, u _> 0, [[ u II2= 1. Furthermore,  

Hence, 

(Ax, x) + (Au, u) : - #  + (Au, u ) =  2 [(Ay, y )+  (Az, z)] > 0. 

(Au, u) >_ p. (4.19) 

However, the values that  the quadratic form (Av, v) assumes on unit  vectors v cannot  exceed the maximal 

eigenvalue A1 of the matr ix A (see (2.6)). Thus,  (4.19) implies 

(Au, u) = & = ~, 

which contradicts the originM assumption.  

R e m a r k .  In fact, a more general result t han  Theorem 4.2 is proved in [21]. Let ]C be an arbi trary cone in 
R n. A matr ix  A E S~ is said to be copositive with respect to h2 if (Ax, x) > 0 for any x E ]C. 

T h e o r e m  4.3  [21]. A matrix A ~ S,, has the Perron property 'if and only '~if A is copositive with respect to a 
self-conjugate cone ]C C R". 

It was pointed  out at the begimfing of this section that  any principal submatr ix of the copositive matrix 
A is also copositive. This explains why most  criteria for copositivity are based on a sequential analysis of 
principal submatrices,  arranged in increasing order fl'om 1 to n. Thus, if the inspection of the main diagonal 
shows that  some of its elements are negative, then A cannot be copositive. If all the diagonal entries are 
nonnegative, then  A is still not copositive if at least one of inequalities (4.6) is violated, and so on. 
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If we use tile inductive apI)I'oach indicated above, then  it is of inajor impor tance  to examine the s i tuat ion 
where, for a certain k, all principal k x k submatrices have already been tested and proved to be copositive, 
and one has to pass to the analysis of (k + 1) x (k + 1) submatrices,  hi this analysis, the terminology given 
below will be useful. 

D e f i n i t i o n .  Let m be a positive integer, 1 < m < n. A mat r ix  A E S~ is called (strictly) copositive of order 

m if any principal m x m submatr ix  of A is (strictly) copositive. If A is a (strictly) copositive matr ix  of order 

m, but  not of order m + 1, then  m is said to be the exact order or index of (strict) copositivity of A. 

In these terms, we have to verify whether  the matr ix  A E Sn is (strictly) copositive if it is already known 

that  A is (strictly) copositive of order n - 1. Following [18], we introduce one more auxiliary definition. 

D e f i n i t i o n .  Let A, B E S~, and B be strictly copositive. The  pair (A, B) is called eodefinite if 

Ax  = ABx, x > 0, (4.20) 

implies tha t  A >_ 0. If (4.20) implies that  A > 0, then the pair  (A, B) is said to be strictly codefinite. 

Let us consider the reasoning that  is used in the proofs of several subsequent assertions. Suppose tha t  
A E Sn is a copositive matr ix  of order n - 1; at the same time, A is not eopositive. Then, for some vectors 
in the nonnegat ive or thant  R~,  the values of the Rayleigh ratio 

(Ax, x) 
p ( x ) - -  (x ,x)  (4.21) 

are negative. Since all the principal ( n -  1) • ( n -  1) submatr ices  are copositive, functional (4.21) is nonnegat ive 
on the bounda ry  of R~_. Therefore, for the Rayleigh ratio, the min imum in R~: is furnished by an interior 
vector x0 > 0. 

It is well known that  the gradient of functional (4.21) at the point x0 is expressed by the formula 

grad~(x0)  - - -  
II x0 II 2 

(Axo - ~(Xo)Xo). 

If x0 delivers a local minimuln to the Rayleigh functional, then  x0 is an eigenvector of the matr ix  A, and 
~(x0) is the corresponding eigenvalue. In the case under  consideration, the mat r ix  A must have a positive 
eigenvector associated with a negative eigenvalue. 

Ins tead of the eigenvalues and eigenvectors of the mat r ix  A, one can examine those of the problem 
Ax  = ABx,  where B E Sn is a strictly copositive matrix. Assume that  A, not being copositive, has the index 
of coposit ivity n - 1. Repeat ing the argument  above wi th  obvious alterations, one arrives at the following 
conclusion: there exists a positive eigenvector x0 for the pair (A, B) that  corresponds to the negative eigenvalue 
A0. In particular,  taking as B the rank-1 matr ix 

B = bb T, 

where b is a positive vector, we find that  

Axo = A0b bT xo = # b, (4.22) 

the scalar factor # = (x0, b)A0 being negative. 

T h e o r e m  4 .4  [18]. Let A E S~ be a (strictly) copositive matrix of order n -  1. Then the following statements 
are equivalent. 

(1) A is (strictly) eopositive. 
(2) There exists a strictly copositive matrix t? E Sn such that the pair (A, B) is (strictly) codefinite. 
(3) For any strictly copositive matrix B E S,~ the pair (A, B) is strictly copositive. 
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P r o o f .  Assume (1), and let B E S~ be a strictly copositive matrix. Suppose that  the vector x in 

Ax  = A B x  

is positive. Then the number 

A -  (Ax,  x) 
(Bx, x) 

is nonnegative (positive, respectively) since A is copositive (strictly copositive). Thus, the pair (A, 13) is 
codefinite (strictly codefinite). 

The implication (3) ~ (2) is obvious. It reinains to show that (2) ) (1). Suppose that the matr ix A is 

not copositive. Then the pair (A, B) admits a positive eigenvector x0 associated with the negative eigenvalue 
A0. This contradicts the fact that  (A, B) is a eodefinite pair. The case where the pair (A, B) is strictly 
codefinite can be analyzed in a similar way. 

T h e o r e m  4.5 [18]. Let A E S,~ be a copositive matrix of order n - 1. Then the following statements are 

equivalent. 

(1) A is not copositive. 

(2) For any positive vector b, there exists a vector x > 0 such that A x  = #b, # < O. 

(3) The matrix A -1 exists and is nonpositive. 

(4) det A < 0, and the adjoint matrix A = adj A is nonnegative. 

P r o o f .  The implication (1) ~ (2) is essentially established above (see (4.22)). Conversely, it follows from 

(2) that  the pair (A, bb r)  is not codefinite; hence, A is not copositive. Thus, statements (1) and (2) are 
equivalent. 

Now assume (2) and suppose that  Ay = 0. For any b > 0, the equation A x  = b admits a solution x which 
implies 

yfb  = y r A  x = O. 

Since b is an arbitrary positive vector, the vector y must be zero. Therefore, A is nonsingular. Moreover, it 
�9 follows from (2) that A - l b  < 0 when b > 0. Regarding the coordinate vectors ei as the limits of sequences 

of positive vectors, we infer that  the vectors A-lei ,  i.e., the columns of the inverse matrix A - i ,  must be 
nonpositive. As for the reverse implication (3) > (2), it is obvious. 

The iInplication (4) ~ (3) is equally obvious. Thus, the theorem will be proved completely if we prove 
the implication (1) ~ (4). 

According to the reasoning that  precedes Theorem 4.4, the matrix A has a negative eigenvahle A with 
an associated positive eigenvector x. Suppose that another eigenvalue # of A is also negative and that  y is 
the corresponding eigenvector. One can assume that  (x, y) = 0. Clearly, the vector y has positive as well as 
negative entries. Hence, we can construct a linear combination 

z = x + ay  (4.23) 

which satisfies the following conditions: (a) the vector z is nonnegative, and (b) at least one of its entries is 
zero. 

Vector (4.23) belongs to the boundary of the orthant  R~_. Since A is a copositive matrix of order n -  1, 
the inequality 

(Az, z) > 0 

holds. On the other hand, 

(A (x  + ay) ,  x + c~y) = A(x, x) + #a2(y, y) < 0. 

This contradiction proves that  the matrix A has only one negative eigenvalue; thus, det A < 0. Since (1) and 
(3) are equivalent, the nonnegativity-of the adjoint matrix follows immediately. 

The "strictly copositive version" of Theorem 4.5 can be proved in a similar way. 
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T h e o r e m  4.6 [18]. Let  A E S,~ be a strictly copositive matrix of order n - 1. Then the following ,statements 

are equivalent: 

(1) A is not strictly copositive. 

(2) For any positive vector b, there exists a vector x > 0 such that A x  = pb, p <_ O. 

(3) det A <_ O, and the adjoint matrix adj A is positive. 

R e m a r k .  We use Theorems 4.5 and 4.6 to give a different proof of the criteria for copositivity and strict 
copositivity in the case of 2 • 2 matrices. For n = 2, the copositivity of order n - 1 is equivalent to the 
relations 

a l l > 0 ,  a22>0-  

According to s ta tement  (4) of Theorem 4.5, A is not  copositive if and only if 

and 

2 det A = aua22 - a12 < 0 

-al  = (adj A) l > 0. 

On the other hand, inequalities (4.5) are equivalent to A being copositive. 
In the same way, one can deduce the criterion of strict copositivity, 

a l l > 0 ,  a22>0, a ~ 2 + ~ > 0  

from s ta tement  (3) of Theorem 4.6. 

R e m a r k .  In [18], Theorems 4.5 and 4.6 are used to produce criteria for copositivity and strict coposit ivi ty 
in the case of 3 • 3 matrices. The copositivity of order n - 1 means here that ,  first, the main diagonal  of A 
mus t  be nonnegative and, second, the inequalities 

al2 + a~x/-577~ >_ 0, ata + ~ _> 0, a2a + ~ >_ 0 (4.24) 

must  be satisfied (see (4.6)). If these requirelnents are met,  A will be copositive if and only if at least one of 
the conditions below holds: 

det A _> 0 (4.25) 

and 
+ a,3v  + a23v  +  /aHa22a3  > 0. (4.26) 

To obtain a criterion of strict copositivity, one must  require that ,  first, the  main  diagonal of A be positive, 
second, inequalities (4.24} be satisfied, with the sign > replaced by >, and, third,  one of tile condit ions (4.25) 

and (4.26) hold; in the third case, tile sign k in (4.25} must  also be replaced by >. 
The  bad feature of these criteria is tha t  they  involve radicals. Later  in this section, rational criteria 

for copositivity will be described that  are applicable to low-order matrices. For the time being, we continue 
discussing the case of an arbitrary n. 

In [37], Theorems 4.5 and 4.6 are supplemented  by the following assertion. 

T h e o r e m  4.7. Let A E S,,~ be a matrix with the index of eopositivity n - 1. Then 

(1) I n A  = ( n -  1, 1,0). 

(2) A is positive semidefinite of order n - 1. 

(3) I f  A is strictly copositive of order n - 1, then it is positive definite of  order n - 1, and the inverse 

matr ix  A -1 is negative. 

[We ment ion that  the notions of positive definiteness and positive semidefiniteness of order m are intro- 
duced by a complete analogy with the above definitions for the copositivity and strict copositivity of order 
HL] 

P r o o f .  Tile first s ta tement  of tt~is theorem was already proved when tile implication (1) > (4) was justified 
in Theorein 4.5. Let A~_I be an arbitrary principal ( n -  1) • ( n -  1) submat r ix  of the matr ix  A. Then  (1) and 
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interlacing inequalities (2.8) imply that  all the eigenvalues #i of A,,_I, except,  perhaps, for tile sinallest one, 
are positive. However, observe that  (let A,.-1 is nonnegative since its value is a diagonal entry  of the adjoint 
matr ix adj A. Hence, for the smallest eigenvalue #,~-1 one obtains 

#n-z _> 0. (4.27) 

This proves s ta tement  (2) of the theorem. By Theorem 4.6, if A is strictly copositive of order n - 1, then the 

adjoint matrix is positive; therefore we have #,.-1 > 0 instead of (4.27). Since det A < 0, the inverse matrix 

A -~ must be negative. 
In [37], one can also find the following extension of Theorem 4.7. 

T h e o r e m  4.8. Let A E S,~ be a matrix with the index of copositivity n - 1. Then 

(1) A is positive definite of order n - 2. 

(2) In the inverse matrix A -1, all the principal minors, with the possible exception of diagonal entries, 
are negative. 

(3) A -1 is nonpositive, and its off-diagonal entries are negative. 

P r o o f .  Assume tha t  A contains a singular principal submatr ix  A~-2. No generality will be lost in considering 
A,_2 as the leading principal submatrix. We denote by r the rank of A,,-2. By p e m m t i n g  symmetrical ly the 
first n - 2 rows and columns in A, one can always achieve that  the leading principal r • r submat r ix  A~ will be 
nonsingular. In the Schur complement  C = A/A~,  the diagonal entry ctl is zero; however, some off-diagonal 
entries of the first column mus t  be nonzero. Otherwise, det A = det A,. det  C = 0, which contradicts  s tatement  
(4) of Theorem 4.5. 

Suppose tha t  the entry c~ ,  k > 1, is nonzero. Consider the principal (r + 2) x (r + 2) submatr ix  

A ( 1 , . . . , r , r  + l ; r  + k). 

Note that  its order r + 2 does not exceed n - 1. This submatr ix  is congruent  to the direct sum 

At@( Oc]~l CkkC]~l)" (4.28) 

Since the second term in (4.28) has inertia (1, 1, 0), the submatr ix  under  consideration is not positive semidef- 
inite, contrary to the second s ta tement  of Theorem 4.7. 

Statement (2) is immedia te  from (1) if we bear in mind the classical relationship between the minors of 

the matrix A and those of its inverse B = A -1 [2, Chap. I, Sec. 4]. Being applied to the principal minors, 
this relation has the form 

(let B(Zl" ' , . . . ,  z,,-k)" - det A(il,...,det A i~) 

Here zl ' , . . . ,  z~_~~ is a subset of the index set 1,, 2.,.. . , n, complementing the  subset i~, . . . ,  i~. 

Assume tha t  the off-diagonal entry b~j in B = A -1 is zero. Then,  for the corresponding principal 2 x 2 

minor, one has 

bii b~j > O, 
b.~j bjj - 

in contradiction to s ta tement  (2). 
Using the results above, one can give a complete  description of matrices with the index of copositivity 

n - 1 .  

T h e o r e m  4.9. Any of the two sets of conditions below i," necessaw and sufficient for a matrix A E S,. to 
have the index of copositivity n - 1: 

(1) In A = (n - 1, 1, 0) and A -~ is nonpositive; 

(2) det A < O, A -1 is nonpositive, and all the principal minors of A up to the order n - 2 are positive. 
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P r o o f .  We shall first show that. bo th  sets of conditions are equivalent. In the implication (1) > (2), the only 
nontrivial assertion is that  of the posit ivity of the principal minors.  Assume that  tile leading principal minor  
A~, k < n - 2, is nonpositive. Consider first the case where A~ < 0. Then at least one of tile eigenvalues of 
the leading principal k • k submatr ix  A~ is negative. A similar assertion is true for the principal submatr ix  

A,_~. The  conditions det A < 0, A -~ < 0 imply specifically that  all the principal minors of order n - 1 
in A are nonnegative; hence, An_~ _> 0. In such an event, aside from the smallest eigenvalue #=_~, which 
is negative, the submatr ix  A,,-1 must  have another  nonposit ive eigenvalue. As a consequence, at least two 
eigenvalues of A are negative, which contradicts  (1). 

Now assume tha t  Ak = 0. Let r be the rank of the principal submatr ix  A~; obviously, r < n - 2. 
Applying the same reasoning as in the proof  of the first s ta tement  of Theorem 4.8, we can show tha t  a 
principal submat r ix  of order < n - 1 exists that  has a negative eigenvalue. Then  the leading principal 
submatr ix A,,-1 must  also have a negative eigenvalue. The  rest of the proof is similar to the analysis of the 
case Ak < 0. 

Next we prove the reverse implication (2) > (1). Denot ing by An_l the de te rminant  of the leading 
principal submatr ix  A~_I, we again use the  inequality A~_~ _> 0, which follows from the conditions det A < 

0, A 1 _< 0. In conjunction with the posit ivity of tile leading principal minors of smaller orders, this inequality 
shows tha t  the submatr ix  A~_I is positive semidefinite. Therefore, the eigenvalue A~-i of the matrix A must  
be nonnegative. Since det A < 0, we have, in fact, A~_I > 0, A,~ < 0, and 

In A = (n - 1, 1, 0). 

The fact tha t  both  sets of conditions (1) and (2) are necessary is established by Theorems 4.7 and 4.8. 

Now we shall prove tha t  they are sufficient. Since set (1) is invariant under symmetric  reorderings of rows and 

columns in A, the same must  be true for set (2). In tile preceding paragraph, the positive semidefiniteness 

of the leading principal submatr ix  A,,_l was derived from set (2). Tile invariance pointed out above implies 

that  in reality all the principal (n - 1) • (n - 1) submatrices are positive semidefinite and, hence, copositive. 
Thus, the matr ix  A is copositive of order n - 1. 

To prove tha t  A is not copositive, one can use the ::anti-Perron" property of the inverse matr ix  B = A -~. 
By the hypothesis,  B < 0; hence, the negative number - p ( B )  is an eigenvalue of B. It is associated with 
the "Perron" eigenvector x all of whose nonzero components  are positive. Recall tha t  B and A have identical 
eigenvectors. Thus,  A has a nonnegative eigenveetor x with tile associated negative eigenvalue 

1 (Ax, x) 
p(B) (x,x) 

However, the inequalities x >_ O, (Ax,  x) < 0 are incompatible with copositivity. We infer that  A has the 
index of copositivity n - 1, which completes the proof of the theorem. 

The next two assertions describe a special subset of copositive matrices. They are proved in the same 
way as the theorems above [37]. 

T h e o r e m  4.10.  Let A E S,, be a copositive matrix with index of strict copositivity n - 1. Then 

(1) In A = (n - 1, 0, 1), and the zero eigenvalue of A is associated with a positive eigenvecto~ 

(2) A is positive semidefinite of ranh n - 1; 

(3) A is positive definite of order n - 1. 

T h e o r e m  4.11.  The set of conditions below is necessary and s'a.~cient for the matrix A E S,, to be copositive 

with index of strict copositivity n - 1: (a) det  A = 0, (b) the leading principal minors of A up to the order 

n - 1 are positive, and (c) A has a positive cigenvector associated with the zero eigenvalue. 

Now tha t  the special cases of copositivity have been described, one can obtain a complete  characterization 
of it. The two auxiliary assertions below will be helpful. 

L e m m a  4.4. Let A E S~ be a copositive matrix. Then the relations Xo >_ 0 and XTo A Xo = 0 imply the 

inequality Axo > O. 
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P r o o f .  

nonnegative o r than t  to the quadrat ic  form 
One can deduce fl'om the hypothesis of the lemina tha t  the vector x0 supplies a Ininimum in the 

,;,(x) = (Ax,  (4.29) 

Therefore, for any coordinate vector ei, we have 

O~ ~o = li~n ~(x0 + ~e,:) -'~'(Xo) 
0 X  i c~---++0 O~ 

= l i m  (A(xo + c~e~), Xo + c~e~) >_ O. 
c~---++0 OZ 

Thus, 

= , . . . ,  _>0. 

Now the assertion of the lemma is immediate  fl'om the well-known formula 

grad ~p = 2A x. 

L e m m a  4.5. Let A E S~ be a nonsingular copositive matrix. Then no column of the inverse matrix B = A -1 
can be nonpositive. 

P r o o f .  Assume the  contrary, i.e., tha t  the i th column bi of B is nonpositive. Let x = -b~. Then x > 0, and 

y = A x = - A  bi - - e i  <_ O. (4.30) 

This yields 
bi~ = (e~,bi) = (y,x)  = (Ax,  x) < O. 

Since A is copositive, we must,  in fact, have the equality (Ax, x) = 0. This equality, combined with (4.30) 
and tile assmnpt ion  x _> 0, contradicts the previous lemma. 

Now we can s tate  a criterion for copositivity. To be more exact, this is a criterion for the opposite 
property, i .e ,  the lack of copositivity. 

T h e o r e m  4 .12  [37]. A matrix A E S,, is not copositive if and only if  it contains a nonsinguIar principal 

submatrix D such that a certain column of the inverse matrix D -1 is nonpositive. 

P r o o f .  The sumeiency part of tile theorem is ahnost obvious. According to Lemma 4.5, the submatr ix  D 
cannot be copositive, but  ~hen the whole matr ix  A is not copositive either. 

To prove the  necessity part,  assume tha t  the index of copositivity of A is k, k _~ n - 1 (including tile case 

k = 0). Then A contains a principal (k + 1) • (k + 1) submatrix,  say: D which is not eopositive. By Theorem 

4.5, tire inverse mat r ix  D -1 exists and is nonpositive. 
Theorem 4.12 essentially coincides with the determinantal  criterion of copositivity due do E. Keller. 

T h e o r e m  4 .13  [23]. A matrix A E S~ is not copositive if  and only if  it contains a principal submatrix D 

with det D < 0 for  which all the cofactors of the last column are nonnegative. 

P r o o f .  If we replace the word "last" in this formulation by the word "certain/ '  then the identity of bo th  
statements,  the present one and tha t  of Theorem 4.12, will be obvious. However, the mention of the last 
cohmm does not  have any real significance. Indeed, it was found in the proof of necessity that  the whole 
matr ix D -1 is nonpositive, i.e., any column of the adjoint matr ix  is nonnegative. 

The criteria of strict copositivity below are justified in a sinfilar way. 

T h e o r e m  4 .14  [37]. A matrix A E S~ is not strictly copositive if and only if  at least one of the following 
conditions is satisfied: 

(a) A contains a nonsinguIar principal submatrix D such that a certain column of D -~ is nonpositive; 

(b) A contains a singular positive semidefinite principal submatrix with a nonnegative eigenvector attached 
to the zero eigenvalue. 
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T h e o r e m  4.15.  A matrix A C S~ is not strictly copositive if and only 'if it contains a principal submatrix D 
with (let D <_ 0 for which all the cofaetors of the last column are positive. 

This de terminanta l  criterion for strict copositivity was found by Motzkin in 1967 [31]. It is expedient 

to clarify the relat ionship between condit ion (b) of Theorem 4.14 and the Motzkin condit ion for tile case 
where det D = 0. Suppose that. A has the index of strict copositivity k. Then  D is a singular principal 
(k + 1) x (k + 1) submatr ix  that  is not  strictly copositive. According to s ta tement  (3) of Theorem 4.6, the 

adjoint mat r ix  D = adj D is positive. If, fox" a singular D, the matr ix  D is not zero, then  rank D = k. In this 

case, r a n k D  = 1, and any column of D is a solution to the homogeneous linear sys tem Dx = 0. In other 
words, any column of the adjoint matr ix  is a positive eigenvector of D associated with the zero eigenvalue. 

Recall t ha t  the use of criteria of this kind presupposes a sequential analysis of the principal submatrices 
arranged in increasing order. The procedure terminates  as soon as a noncopositive submat r ix  is found. Indeed, 
in this case the matr ix  A itself cannot be copositive. The positive answer for copositivity can only be obtained 
when all the principal submatrices are inspected. Therefore, in general, tile amount  of computat ional  work 
in these criteria grows exponentially with the order n of a matrix.  

This rapid growth is, to a certain extent,  unavoidable. It was proved in [32] tha t  the problem of verifying 
whether a given square integer matr ix  is copositive or not is NP-complete. This explains why the situations 
that  make it possible to significantly reduce the inspection of principal submatrices are so important .  Two 
situations of this kind are discussed in [37]. 

T h e o r e m  4.16.  Suppose that a matriz A E S~ has p positive eigenvalues, p < n. Then A is (strictly) 
copositive if and only if it is (strictly) copositive of order p + 1. 

P r o o f .  For definiteness, we shall consider only the s ta tement  relating to copositive matrices. The strictly 
copositive case can be proved similarly. 

The necessity part  of the theorem is obvious. To prove the sufficiency part ,  assume that  A is not 

copositive and has index of copositivity 1. Then  A contains a principal (l + 1) x (1 + 1) subinatrix A that  is 

not copositive. According to Theorem 4.7, the submatr ix  _A must  have 1 positive eigenvalues. Then A has at 
least 1 positive eigenvalues, which implies tha t  l < p. However, this means tha t  A contains a noncopositive 
principal submat r ix  of order < p + 1, contrary to the hypothesis  of the theorem. 

T h e o r e m  4.17.  Suppose that a matrix A E Sn is singular of rank r. Then A is copositive if and only if it is 
copositive of order r. 

P r o o f .  Only the sufficiency part needs proving. If r = ~r(A), then A is positive semidefinite and, hence, 

copositive. For r > 7r(A), the preceding theorem can be applied. Indeed, the coposit ivity of A follows fl'om 

the fact tha t  it is copositive of order ~r(A) + 1 < r. 
The  strictly copositive version of Theorem 4.17 is s ta ted as follows. 

T h e o r e m  4.18.  Suppose that a matrix A E Sn is singular of rank r. Then A is strictly copositive if and only 
if it is strictly copositive of order r + 1. 

Thus, if the rank or the positive inertia of a matr ix  A E Sn is considerably smaller than  n, then, in order 
to get a positive answer to the question concerning its copositivity or strict copositivity, one can terminate  
the inspection of the principal subinatrices much earlier than  in the general case. 

Criteria of the Motzkin or Keller type are called inner criteria in [37], because when analyzing a principal 
submatr ix D, they do not use information concerning the part. of the matrix A tha t  is exterior to D. There 
exist criteria of a different type, which are called outer criteria; the first of them were constructed in [37]. We 
give one of these criteria without proof. However, some preliminary nomenclature mus t  be introduced simI)ly 
for formulat ing it. 

Assmne tha t  a leading principal submat ix  A n  in a matr ix  A E S~ is nonsingular.  We part i t ion A as in 
(2.10) and form the n x n matrix 

( Cn C12 ) (4.31) 
C =  C21 C22 ' 
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where 
Cn = A-in, Cr2 = -A{llA12, C21 = A12A -~, (4.32) 

and C22 = A / A n  is the Schur complement  of the submatr ix  A n  in A. In contrast  to A, the matr ix  C is 

generally not symmetr ic  since C21 = - C ~ .  The transit ion from A to C is called the principal block pivotal 
operation with pivot An .  

The principal block pivoting motivates  a remarkable representat ion of the quadrat ic  form (4.29). Let 

y = Ax  (4.33) 

and part i t ion the vectors x and y in accordance with the par t i t ioning of A: 

x =  , y =  . 
xe y2 

Since the block A n  is nonsingular, the subvector Xl can be expressed in terms of Yl and xe (see (4.33)), 

- 1  xl = An  Yl - A~Axexe .  (4.34) 

Substi tut ing this relation into the second block equality (4.33) yields 

T - 1  ye = d12An + (A22-  d~2A~lX gx2)X2. (4.35) 

Hence, the mat r ix  of Eqs. (4.34)-(4.35)is precisely matr ix  the (4.31)-(4.32). 

If, in tile quadrat ic  form ~b(x) = (Ax, x), the original vector of tile unknowns x is replaced by tt~e new 
vector 

217 2 ' 

then one gets 

'r = (Cnyl, Yl) + (C22x2, x2). 

Thus, the block elimination in the matr ix  A is associated with the block decomposit ion of the corresponding 
quadratic form. 

In outer criteria for copositivity, the inspection of a current  principal submatr ix  D is connected with an 
analysis of the corresponding block pivotal operation. By a symmetr ic  permuta t ion  of rows and colmnns of 
A, one can place D in the position of the block An  in (2.10). Then  the principal block pivotal operat ion is 

described by mat r ix  (4.31). If the submatr ix  An  is of order k, then  let I = n - k be the order of the block 
C22. 

De f in i t i on .  Let A u  be a given principal submatrix. We say tha t  situation I occurs if, for a certain i, i = 
1 , . . . ,  l, the diagonal  entry cii of the block C22 and row i of the block C21 are nonpositive. If, for the index i 
above, there exists a negative entry in row i of the block Cm, then  we say that  s i tuat ion II occurs. 

T h e o r e m  4 .19  [37]. A matrix A ~ S~ is not (strictly) copositive if and only if situation II (situation I) occurs 
for a positive-definite principal submatrix D of A. 

R e m a r k .  A case is possible where the submatrix D in Theorem 4.19 is vacuous. The  vacuous square matr ix 
is considered to be positive definite, and, in t.his case, the mat r ix  A itself must  be interpreted as the Schur 
complement C22. 

It is claimed in [37] that,  from the computational  s tandpoint ,  the outer criteria are much more efficient 
than the inner ones because the former require only the inspect ion of positive-definite principal submatrices. 
However, no numerical  experiments are reported tllat would suppor t  this claim. As for the argument  pre- 
sented above, one must  say that ,  being purely speculative, it is ra ther  weak since something akin to it can be 
said of criteria of the  Motzkin-Keller type, namely, they involve only principal submatrices with nonpositive 
determinants. It is not clear a priori what  principal submatr ices  are larger in number  in tile given matr ix  
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A: those that  are important for an outer criterion or those that  are accounted for by an iimer criterion. For 
example, a positive-definite matr ix  A does not contain any principal submatrices with nonpositive determi- 
nants; on the contrary, all the principal submatrices are positive definite. It should be added that  a step of 
the outer  criterion that  amounts  to a principal block pivotal operation is considerably more labor-consuming 
than one of the inner criterion. 

Both inner and outer criteria organize the inspection of principal submatrices in the "bottom-up" direc- 
tion, i.e., from the smallest order to the largest one. However, the opposite direction should not be neglected. 
In some situations, the testing of an n x n matr ix A for copositivity can easily be reduced to a similar test 

for one or several matrices of a smaller order. This approach was recently pursued in [7, 24]. 
The simt)lest situation of this kind is described by the lemma below�9 

L e m m a  4.6. Let the matrix A E S,. be partitioned: 

All 

A: 
A T  

A12 ...  Aim 
A2e . . .  A2~ 

J A~.~ .. .  A,,~,~ 

where all off-diagonal submatrices Aij, i # j,  are nonnegative. Then the (strict) copositivity of A amounts to 
the (strict) copositivity of all its principal submatrices A n , . . . ,  Atom. 

C o r o l l a r y  4.4. Assume that the matrix A E S~ is partitioned: 

A=( a'' a An-1 ' (4.36) 

where the entry an and the vector a are nonnegative. Then the copositivity of A amounts to the copositivity 
of the principal submatrix A~_l. 

R e m a r k .  For convenience, here and in later formulations we consider only part i t ioning (4.36) of A, with the 
first row and the first column singled out. However, similar assertions clearly hold for other rows and columns 
of A. 

The situation where the vector a in (4.36) is nonpositive is the next in order of complexity. To analyze 

it, we need two assertions from [24]. 

L e m m a  4.7. Assume that in the partitioned matrix (2.10) the block An  is of order 2. For a real parameter 
t, we define the (n  - 1) x (n - 1) matrix 

B ( t ) = (  bH(t)b~2(t) bm(t) (4.37) 

by the formulas 

where 

bn(t) - ( A x x u ,  u ) ,  b~2(t) = uTAh2, 

u = ( t , l - - t )  T. 

Then the matrix A is (strictly) copositive if and only if the matrix B(t) is (strictly) copositive for any t E [0, 1]. 

P r o o f .  Ally vector x E R~i with the first or second entry nonzero can be wri t ten as 

( t ) R'~-2 tE[0, l] - (4.38) x = a  l-t , c~>0 ,  y E ~ +  , 

Y 

It follows that the (strict) copositivity of the matrix A is equivalent to the following two requirements: first, 

the submatrix A22 must be (strictly) copositive, and, second, the inner product (Ax, x) must be nonnegadve 

27 



(positive) for any vector x of type (4.38). The last requirement amounts to that the scalar product (By ,  v), 

where 

v = E R+ ~ 
Y 

be nonnegative or positive respectively. Combining this with the (strict) copositivity of the submatrix A22, 
we conclude that B(t )  must be (strictly) copositive for any t E [0, 1]. 

L e m m a  4.8. Assume that a matrix  A E S,~ is parti t ioned as in (4.36). Then A is (strictly) copositive i f  and 

only i f  the three conditions below are met: 

(1) a11_>0 ( a n > 0 ) ;  
(2) the submatrix A22 is (strictly) copositive; 

(3) for  any vector y such that 
n - - 1  y ~ R +  , (a ,y)_<0,  

the inequality 

( ( a l i A 2 2 - a J ) y , y )  >_ 0 (> O, respectively) (4.39) 

holds. 

P r o o f .  For definiteness, we shall prove the assertion relating to copositive matrices. The original definition 
of copositivity 

(Ax,  x) > 0 Vx E R~_ (4.40) 

can be recast as the requirement that tile 2 x 2 submatr ix 

(a,y)  (A22y, y) 

n - -  I be copositive for any vector  y E R+ . This becomes clear if one writes the vector x in (4.40) as 

x =  sy 0 y s ' 

with (t, s) ~ E R~. 

If (a, y) _> 0, then the copositivity of matrix (4.41) is immediate from conditions (1) and (2). For the 

case where (a~ y) < 0, all three conditions (4.5) are needed to ensure copositivity. The last of them assumes 
tile form of inequality (4.39). 

T h e o r e m  4.20. Assume that the vector a in matr ix  (4.36) is nonpositive. Then A is (strictly) copositive if  

and only i f  the two conditions below are fulfilled: 

(1) all ~ 0 (> 0); 
(2) the (n - 1) • (n - 1) matrices A22 and aliA22 - aa T are (strictly) copositive. 

P r o o f .  Here we also restrict ourselves to considering only the copositive case. Since a _ 0, the vector y 

in condition (3) of Lemma 4.8 is an arbitrary vector fl'om R"~-~ But then inequality (4.39) turns into the 

requirement that the matrix a~A22 - aa ~ be copositive. 

C o r o l l a r y  4.5. Assume that the vector a in matr ix  (4.36) is nonpositive and a~ > O. Then A is (strictly) 

copositive ~f and only ~f th, e (only) (n - 1) • (n - 1) matr#:  al~A.,2 - a J  is (strictly) copositive. 

P r o o f .  If the matrix B = aliA22 - aa T is (strictly) copositive~ the same lnust be true for the matrix 

B + aa T = aliA.22. Since all > 0~ the submatrix A22 is also (strictly) copositive. Thus, the hypothesis of 
Theorem 4.20 relating to A2e is fulfilled automatically. 

R e m a r k .  Under the hypothesis of the corollary above, the matrix B differs fl'om the Schur complement 
A / a l l  only by a positive scalar factor a11. 
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Another  remarkable consequence of Theorem 4.20 is 

T h e o r e m  4.21.  Assume that all the @diagonal  entries of a matrix A E Sn are nonpositive. Then A is 
(strictly) copositive i f  and only if it is positive semidefinite (definite). 

P r o o f .  The sufficiency par t  of the theorem is obvious. To prove the  necessity, we use induction. Suppose 
tha t  the assertion of the theorem is valid for any (n - 1) • (n - 1) matrix.  If a n  = 0, then  the vector a inust 

be zero (see the remark after inequalities (4.6)). By the inductive hypothesis,  the copositive subinatr ix A:: is 
positive semidefinite. Hence, the whole matr ix  A is positive semidefinite. 

Now assume tha t  al l  > 0. According to Theorem 4.20, the matr ix  B = ariA.z2 - aa T is copositive and, 
hence, positive semidefinite. Writing a vector x E R"  as 

x =  , c t E R ,  y E R  ~-t ,  
Y 

one deduces the positive semidefiniteness of A from the identity 

a n ( d x ,  x) = (By, y) + [ano~ + (a, y)] 2. 

The strictly copositive case can be proved similarly. 
In [24], Theorem 4.20 is used for construct ing a rational criterion for copositivity of the 3 • 3 matr ix  

A =  a12 a22 a23 . (4.42) 
at3 a23 a33 

T h e o r e m  4.22.  Assume that all the diagonal entries in matrix (4.42) are nonnegative (positive). Then 
(1) I f  all the off-diagonal entries are nonnegative, then A is (strictly) copositive. 
(2) If  exactly one off-diagonal entry, say, aij, is negative, then A is (strictly) copositive if  and only if the 

submatrix 

(ai~aiJ)ai j  ajj (4.43) 

is (strictly) copositive. 

(3) I f  the entries aij and ai~ are negative, then A is (strictly) copositive if and only if  the 2 • 2 matrices 

a j ~  a k k  ' a i ia f lc  - -  a i j a i k  a i i a k k  - -  a2k 
(4.44) 

are (strictly) copositive. 

P r o o f .  The first assertion of the theorem follows from Lemma 4.6, the second follows from Corollary 4.5, 
and the third from Theorem 4.20. 

R e m a r k .  For 2 x 2 matr ices  (4.43) and (4.44), the copositivity is tested by means of inequality (4.5). It was 
already noted tha t  this inequality can be given a rational form. 

The  main result of [24] is a rational criterion for copositivity of the 4 • 4 matr ix 

A = 

a l t  a12 el3 a14 '~ 

J 
el2 a22 a23 a24 

a13 a23 a33 a34 

el4  a24 a34 a44 

(4.45) 

Suppose that  the main diagonal of matr ix  (4.45) has already been inspected and all the diagonal entries aii 
proved to be nonnegative (positive). In the criterion below, eight cases are distinguished tha t  correspond to 
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distinct sign distributions for the off-diagonal entries aid. In each case, we either state that  A is (strictly) 

copositive or claim that the (strict) copositivity problem for A is equivalent to the same problem for matrices 
of a smaller order, their number being one, two, or three. Note that, in the descriptions of the cases, the 
nmnbers i, j ,  k, and 1 are indices of distinct rows (or columns) of the matrix A. 

Case 1. All the off-diagonal entries a~y are nonnegative. 

hi this case, A is (strictly) copositive by Letnlna 4.6. 
Case 2. There is only one negative off-diagonal entry, say, aij. 

The matrix A is (strictly) copositive if and only if 

aiiajj -a~j  > 0 (> 0). (4.46) 

Indeed, inequality (4.46) ensures the (strict) copositivity of submatrix (4.43). Consider the transition 
from this submatrix to A as a twofold augmentat ion by nonnegative rows and columns. Then it is clear that 
A must preserve the (strict) copositivity property. 

Case 3. There are exactly two negative off-diagonal entries aij and akl belonging to distinct rows and 
columns of A. 

The matrix A is (strictly) copositive if and only if the following inequalities hold: 

> 0 (> 0). (4.47) 2 > 0  (>0) ,  a~kall--akl,_ a i i a j j  - -  a i j  _ 

Assume, for simplicity, that i = 1, j = 2, k = 3, and l = 4. Then inequalities (4.47) ensure the (strict) 
copositivity of the block diagonal matrix 

a12  a22 a34 a44 

One can obtain A from this matrix by adjoining nonnegative elements in the off-diagonal blocks. By Lamina 
4.6, A preserves the (strict) copositivity property. 

Case ~. There are exactly two negative off-diagonal entries aij and a~:~ belonging to the same row i of A. 

The matrix A is (strictly) copositive if and only if its principal submatrix corresponding to the indices 

i, j ,  and k is (strictly) copositive. 
If we again set i = 1, j = 2, and k = 3, then, to obtain A, the leading principal 3 x 3 submatrix must be 

augmented by the fourth row and column, which are nonnegative. This auglnentation preserves the (strict) 
copositivity property. 

Case 5. There are exactly three negative off-diagonal entries agj, a~k, and a~ belonging to the same 
principal 3 x 3 submatrix of A. 

The matrix A is (strictly) copositive if and only if the matrix 

aij ayj aj~ (4.48) 
a i k  a j k  a k k  

is positive semidefiifite (definite). 
By Theorein 4.21, matrix (4.48) is (strictly) copositive if and only if it is positive semidefinite (definite). 

The transition flom (4.48) to A Call again be carried out by adjoining nonnegative numbers to the former 
matrix. 

Case 6. There are exactly three negative off-diagonal entries aij, ai~, and a~z belonging to the same row 
i of A. 

The lnatrix A is (strictly) copositive if and only if the 3 x 3 lnatrix below is (strictly) copositive: 

a i i a j k  - -  a i j a i k  a i i a k k  - -  a i k  a i i a k l  - -  a i k a i l  �9 

a i i a j l  - -  a i j a i l  a i i a k l  - -  a l k a l i  a i i a u  - -  a21 
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This clainl is based on Corollary 4.5. Note that since the off-diagonal entries of the row i are negative, 

one must  have a~, > O (otherwise, A eanuot be eot)ositive; see inequality (4.6)). 

For the two remaining eases, the analysis is much more complicated. Therefore, the claims below are not 

supported by explanations. We only point out, that  their justification in [24] uses Lemma 4.7. 

C a s e  7. There are exactly three negative off-diagonal entries a~j, aj~, and akl ( they are not contained in 

the same row or in the same principal submatrix of A). 

The mat r ix  A is (strictly) copositive if and only if inequality (4.46) holds and the 3 x 3 matrix B below 

is (strictly) copositive. The entries of the matr ix  B are given by the tbrmulas 

2 b n  = a ~ ( a j y a i ~  - 2ai~aj~ai j  + a i ia jz ) ,  

b22 - -  a j j a k k  - -  a~k,  

b33 a k k a l l  - -  a~r l, (4.49) 
b~2 = akk(a j ja~k  -- a~jay~), 
b13 = a~k(ai~aj l  -- ajka~z), 

b2a = akka3z - aykakz. 

We give an illustration of Case 7 taken from [24]. For the matrix 

2 - 2  - 1  2 

-2 3 2 -3 )  (4.50) 
A =  - 1  2 1 1 

2 - 3  1 4 

the conditions above are met with i = 3, j = 1, k = 2. Calculating matrix (4.49), one finds 

B =  6 2 0 . 
18 0 3 

Being a nonnegative matrix with a positive main diagonal, B is strictly copositive. Since 

2 = 1 ,  a 3 3 a l l  - -  a 1 3  

the matr ix  A is strictly copositive as well. 
C a s e  8. There are exactly four negative off-diagonal entries aij ,  aye, akl, and a~l. 

The matr ix  A is (strictly) eopositive if and only if inequality (4.46) holds and the two 3 • 3 matrices are 

(strictly) copositive, namely, matr ix  (4.49) and the matrix C with the entries 

This case is also illustrated by 

C l l  = a l l ( a i i a 2 1 -  2 a j z a i l a i j  + ajjai~ ), 
2 

C22 ~ a i ia l l  - -  ail~ 
2 

c 3 3  ---- a k k a l l  - -  ak l ,  

C12 = a l l ( a i i a j !  - a i j a i l ) ,  

c 1 3  = al l (a ikaj l  -- a i la jk ) ,  
C23 z allaik -- ailakl. 

[24]. For the matrix an example in 

(4.51) 

3 2 - 2  - 2  / 
2 8 - 3  - 3  

A =  - 2  - 3  2 2.5 ' 
- 2  - 3  2.5 2 

the conditions defining tile case hold with i = 1, j = 3, h - 2, l = 4. Inequality (4.46) is valid and matrices 

(4.49) and (4.51) are as follows: 

B = - 1 6  7 11 , C = 7 2 - 2  . 
- 8  11 7 - 2  - 2  7 
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We use Theorem 4.22 to show tha t  bo th  matrices are strictly copositive. In the mat r ix  B, the off-diagonal 
entries of the first row are negative. The  matr ix 

has positive entries and, hence, is strictly copositive. It follows that  the submat r ix  

is also strictly copositive. This proves tha t  B is strictly copositive. 
For the matr ix  C, the strict coposit ivity can be verified in much the same way. One only has to consider 

the third row instead of the first one. As a consequence, the whole matrix A is strictly eopositive. 
Rational  algorithms for testing copositivity, similar in the approach to the criteria above, are given in 

[7]. They are also meant for matr ices of low orders (up to order five inclusive). These algorithms take into 
account the sign distribution in a single fixed row rather  than  in the whole matrix;  therefore, the number  of 
distinct cases here is smaller than  in [24]. No generality will be lost if one fixes the first row for the analysis 
below. 

To describe the algorithms, the following notat ion will be needed: 

mat  (b l , . . . , b~)  
ei, i =  1 , . . . ,  

is a row vector of length n - 1, with the entries 
al,d+l, l = i ,  

= Z = j ,  

0, otherwise 
is a square matr ix  with the rows b~ , . . . ,  b~ E R ~ 
are coordinate row vectors in the ar i thmet ic  space 
under  consideration. 

Assume tha t  A is part i t ioned as 

A = (  al~ a T )  
a A 2 2  " 

Let B = altA2e - aaT. Suppose tha t  a n  > 0 (otherwise, A is obviously not copositive). The values of tile 

indices i, j ,  k (i, j, h, t) in the descriptions below const i tute  a permutat ion of {1, 2, 3} ({1, 2, 3, 4}). 
For the 4 x 4 matr ix A, the following distinct cases are possible. 
Case 1. All the off-diagonal entries of the first row are nonnegative. 
The  matr ix  A is copositive if and only if its snblnatr ix A22 is copositive. 
Case 2. All the off-diagonal entries of the first row are nonpositive. 
The mat r ix  A is eopositive if and only if the two 3 x 3 matrices A22 and B are copositive. 
Case 3. There is exactly one negative off-diagonal entry al,i+~ in the first row. 

The  mat r ix  A is copositive if and only if the two 3 • 3 matrices A22 and W(i)BW(i) T are copositve. Here 

= m a t  f / ' : ' b -  

Case d. There  are exactly two negative off-diagonal entries at,i+1 and al,y+~ in the first row. 

The  matr ix  A is copositive if and only if the three 3 • 3 matrices A~_.z, I/VtBWf, and 14~BW.e r are 
copositive. Here 

Wt = m a t  (e/., ej, ~ ik) ,  rclz2 : Ina t  (ej, ~i,k, ~/.j,k). 
We illustrate this algori thm by an example borrowed from [7]. Suppose tha t  we again check whether  

matr ix (4.50) is copositive. For this matrix,  the first row and the second satisfy the conditions of case 4 and 
the two remaining rows satisfy those of case 3. Technically, case 3 is simpler (one must  form and analyze two 
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3 • 3 matrices rather than three). Therefore, we choose, say, the fourth row as a pivotal  one. For convenience, 

we interchange rows and columns 1 and 4. The new matrix A is 

A = 

4 - 3  1 2 '~ 

) - 3  3 2 - 2  
1 2 1 - 1  " 

2 - 2  - 1  2 

Both off-diagonal entries of the third row in the submatrix A22 are negative. Hence, the copositivity of A22 
depends on whether  the 2 • 2 matr ix  

2(3212)_(2),211,=(22,2) 
is copositive. This matrix is even positive; thus, A22 is copositive. 

Calculating the matrix t3 yields 

B = 11 3 - 6  . 
- 2  - 6  4 

Taking the vector x = (0, 1, 1) T, one has 

(Bz ,  z)  = - 5  < O, 

i.e., B is not copositive. However, the description of case 3 says that  it is not the matr ix  B that is important.  

Rather one needs that  the matrix C = W(1)BW(1)  T be copositive, where 

W(1)  - -  

(100)(100) 
a13 --al2 0 = 1 3 0 . 
a14 0 --a~2 2 0 3 

The matr ix  C turns out to be nonnegative: 

C = 
3 36 0 )  

36 96 12 . 
0 12 24 

Hence, A is copositive. 
Now consider a 5 x 5 matr ix A. Here, five cases will be  distinguished. Cases t and 2 are defined and 

analyzed just  as for n = 4. The description of case 3 is also preserved, with the only alteration that  W(i) is 

now the following 4 x 4 matrix: 

w(i) = mat (e,:, r ?~'~, ~'~). 

Case 4. There are exactly two negative off-diagonal entries al,i+t and al,j+t in the first row. 

The matr ix A is copositive if and only if the four 4 • 4 matrices A22, P~BP T, P2BP T, and P3BP T are 

copositive. Here 

P1 = mat (ei, ej, ~fi,k, t~i,1), 

P2 = mat, ( ? j , l  ej, ?~ ,k  Fi,l), 

/?.3 = ma t  (IF j'l, e~, f~g'~, vJ'~). 

Case 5. There are exactly three negative off-diagonal entries at,i+t, al,j+l, and aLk+t in the first row. 

The matrix A is copositive if and only if the four 4 x 4 matrices A22, Q~BQ T, Q2BQ T, and Q3BQ T are 

copositive. Here  

Q1 = mat (el, ej, ek, ~.i,l), 
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Q2 = mat (ej,  e~, f7 i'l, f/~,l), 

q3 = mat (ej, 17 ~'l, 17 k/, ~75/). 

It is indicated in [7] that when applying the algorithm, one can always do without case 5. Indeed, the 

overall number of negative off-diagonal entries in a (symmetric) matrix is even. Therefore, in a 5 x 5 matrix, 
there nmst be at least one row with an even number of negative off-diagonal entries. 

In conclusion, we discuss some applications of the concept of copositivity. First of all, we mention the 
quadratic Bernstein Bezier patches. These are functions of the form 

f = (A'< u),  A ~ & ,  (4.52) 

considered over the (n - 1)-dimensional simplex 

U ~ = { u e R ~ l u = ( u ~ , . . . , u ~ )  r ,  f l u e = l ,  u~_>0 Vi}. (4.53) 

Surfaces of this kind (and more general ones that  correspond to homogeneous polynomials of arbitrary 
degree k in variables Ux, . . . ,  u,,) are widely used in computer-aided geometric design [10, aa] The requirement, 

that function (4.52) be nonnegative at all points of simplex (4.53) is exactly equivalent to the copositivity of 
the matr ix  A. 

A remarkable application of eopositivity is given in [18]. Consider a quadratic differential equation, i.e., 
an autonolnous system of ordinary differential equations 

[I = f ( y ) ,  f : R ~ ~ R ~, (4.54) 

whose right-hand sides are quadratic polynolnials with nonnegative coefficients in the variables Y l , . . . ,  Y~, 

f i (Y )  = f i  bij~yyy~, i = 1 , . . . , n .  (4.55) 
j, k = l  

Systems of this kind occur, for example, in population genetics. 
Setting e = (1 , . . . ,  1) r,  we introduce the new variables, 

Y X - -  

When we rescale the time variable, gq. (4.54) assumes the form 

:i: = f ( x )  - ( f ( : r ) , e )x .  (4.56) 

Since b~jk > 0 Y i ,  j ,  k in (4.55), the nonnegative orthant  R~ is positively invariant with respect to system 

(4.54), and hence, positively invariant with respect to systeln (4.56). Taking the inner product of (4.56) and 
the vector e yields 

(5:,e) = ( f ( x ) ,  e)[1 - (x, e)], 

which inlplies that the simplex 

is also positively invariant with respect to (4.56). 
The Jacobian of system (4.56) is 

J ( z )  = .f '(x) - x eT  f ' ( x )  - (f(:r), e) I , .  

Consider the right-hand side of (4.56) to be a vector field on the simt)lex T. Then  the divergence of this field 
is 

Do = tr  J(:/~) ~- ( f ( x ) ,  e) 
= tr  i f ( z )  - ( f ' ( x ) x ,  e) - (n  - 1)(f(z),  e). 
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On the set T, the divergence D0(x) coincides with the quadratic flmction 

D(x)  = tr f ' ( x ) ( x , e )  - ( f ' ( x ) x , e )  - ( n -  1)(f(x), e). 

In coordinate notation, 

D(x)  = biji + buk - (n + 1) bi~k .z'jxk. (4.58) 
j,k=l i= l  

For n = 3, simplex (4.57) is just a triangle in the plane 

xl + x2 + x3 = 1. 

By the criterion of Dulac, an autonomous system of ODE in the plane does not have periodic solutions (except 

for constants) in a given simply connected domain if the divergence does not change sign in this domain. Since 

Do(z) = D(x ) ,  x E T, 

the inequality D(x)  > 0 on T (or D(x)  < 0 on T) excludes the existence of periodic orbits for system (4.56). 

Such an inequality amounts to the requirement that  the matrix of the quadratic form (4.58) be strictly 

copositive (or strictly copositive up to a negative scalar factor). There are vector fields to which this criterion 
applies, for example, bij~ = 1 V i , j ,  k, because then D ( x )  = - 6  Vx E T.  

5. ]~-Copositive Matrices 

Let K; be a nonempty polyhedral cone in R": 

= { lBx _> 0}, 

B being an m • n matrix. 

De f in i t i on .  A matrix A ~ Sn is called K-copositive if 

(Ax,  x) > 0 V z ~ ~5, 

and strictly K-copositive if 

(Ax,  z ) > O  V x E I ~ ,  z r  

(5.1) 

(5.2) 

(5.3) 

In particular, when /~ = R~_ (i.e., when t3 in (5.1) is the identity matrix Ix) (5.2) and (5.3) make us 

return to the definitions of copositive and strictly copositive matrices. Moreover, system (5.1), defining the 
cone/~,  may contain hyperplanes in an explicit or implicit way. By an explicit way we mean the situation 
where the system B z  > 0 contains a pair of inequalities which, up to positive scalar factors, have the form 

b~Xl + b2x2 + " �9 + b,~xn >_ 0 

a n d  

- b l x l  - b2x2 . . . . .  b,x,. >_ O. 

Theoretically, the system B x  >_ 0 can be equivalent to a systeln of linear equations. Hence, the case of 
matrices that are definite or semidefinite with respect to a linear subspace is also covered by definitions (5.2), 
(5.3). 

Thus, polyhedral cones may be highly different. Accordingly, the characterizations of the corresponding 
copositive matrices (lifter substantially in complexity. We already had a chance to see this in the previous 
two sections of this survey. In the subsequent discussion, we shall also distinguish between different kinds of 
cones. In this respect, the definitions below will be helpful. 
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Def in i t i on .  The dimension of a cone ~ is the dimension of its atone hull, i.e., of the linear space of smallest 
dimension containing K. A cone/~  C R ~ is te rmed solid if dim K = n. 

De f in i t i on .  A cone/C is pointed if 
tC n (-~C) = {0}. (5.4) 

L e m m a  5.1. C o n e  (5.1) is pointed if  and only i f  

rank B = n. (5.5) 

P r o o f .  Definition (5.4) is equivalent to the requirement  that  no line 

y = ~ x 0 ,  - o c  < t  < 0% 

belong to the cone/~. In o ther  words, the system of linear homogeneous equations B x  = 0 should not admit 
a nontrivial solution x0. This  yields (5.5). 

Another important  special case of the general definition is where the rows of the matr ix  B in (5.1) are 
linearly independent: 

rank B = m. (.5.6) 

It is easy to see that  the cone K satisfying (5.6) must  be solid. 

In [22], it was pointed out  that  a simple sufficient condition for the matr ix  A to be /Gcopos i t ive  is that  
A be decomposable in the  form 

A = B r C B  + S, (5.7) 

where 

and 

the m • m matrix C is copositive (5.8) 

the n • n matrix S is positive semidefinite. (5.9) 

Clearly, this assertion holds for any polyhedral  cone ]C. A matr ix  A with decomposit ion (5.7) is strictly 

K-copositive if (5.8) is valid and the matr ix  S in (5.7) is positive definite. 

In [27], the question is addressed whether  decomposi t ion (5.7)-(5.9) is necessary for the mat r ix  A E S~ 
to be ]C-copositive. A similar question related to strict hs is also treated. Many results of this 
paper are quite constructive, and therefore we discuss its contents in greater  detail. 

The case of a cone satisfying (5.6) is the simplest one. Let B be par t i t ioned as 

S = (/71 B2). (5.10) 

Without  loss of generality, one can assume tha t  the square m x m submatr ix /?~  is nonsingular. We make the 
following change of variables in (5.1)-(5.3): 

x = Qg, (5.11) 

where 

Q__(B; ) 
0 L,,-,~ " 

Since BQ = (L,~ 0), the cone/C is now described by the inequality 

u _> 0, 

where u E R"" is a subvector in the part i t ion of y: 

y z  
V 

(5.12) 

(5.13) 

(5.14) 
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In the new variables, 

(~,1 
7~ = O r A Q  = 7~r 

where the block fi*n is of order m. Vectors y of the form 

Y =  v 

the quadratic form y)(x) = (Ax, x) has the matrix 

A~2 ) 
A22 

obviously belong to K; (see (5.13)). Using the/C-copositivity of A for these vectors, we infer that  

(5.15) 

the submatriz ft22 in (5.15) must be positive semidefinite. (5.16) 

Let us now consider vectors (5.14), where a subvector u is nonzero (and nonnegative). For these vectors 
Y~ 

~) = (Ay, y) = (.All u, '/s ~- 2(u, .ffM2 y) -}- (2~22v , v). 

Suppose that  v E ker A22. Then 

'~ = ~(u)  = ( A , ~ ,  u) + 2(u, A12v) >_ 0 

for all u _> 0, and, hence A12v = 0. Thus, the inclusion 

ker A22 C ker A12 

holds. This implies, in particular, that  the rank of the matrix 

= &2&2A12 
A[2 A22 

coincides with the rank of the submatrix A22. Therefore (see (5.16)), 

the matrix S is positive semidefinite. 

Next, for the fixed vector u E R "~, the minimum in v of function (5.17) is attained on the vector 

v = -A22A12u 

(5.17) 

and is equal to 

where 

(5.18) 

(5.19) 

(5.20) 

(Cu,'a), (5.21) 

C All + -T = - A12A22A12. 

For any 'u > 0, the quadratic form (5.21) must be nonnegative, and, hence 

matrix (5.22) is copositive. 

The equality 

(5.22) 

(5.23) 

0) 00 +s 
is obvious from (5.19) and (5.22). Returning to the original variable z, one obtains a decomposition of A: 

A = Q - T f t Q - ~ = Q - r (  CO 00) Q-~+S" (5.24) 
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Here (see (5.20)) 

Since 

one has 

the matrix S = Q-r~;Q-1 is positive semidefinite. 

Q_ I = ( B1 B2 ) 
0 f~_,~ ' 

(.5.e5) 

Bearing in mind (5.23) and (5.25), we infer that (5.24) is the required decomposition (5.7)-(5.9) of the/C- 
copositive matrix A. Thus, this decomposition is a necessary condition for the /C-copositivity at least for 
cones K satisfying (5.6). At the same time, for cones of this type, a quite constructive way was found to check 
the/C-copositivity. We summarize it as the algorithm below. 

Algorithm for checking ~-coposit ivity  of the matrix A 

1. Reorder the variables to ensure the nonsingularity of the block B1 in matrix (5.10), which defines the 

cone/C. Reorder (symmetrically) the rows and columns of A in the corresponding way. 

2. Calculate the matrix A (see (5.15)). 

3. Check whether the submatrix -~22 is positive semidefinite. If not, then A is not a K;-copositive matrix. 
In this case, the execution of the algorithm comes to an end. 

4. Calculate the matrix C (see (5.22)). 
5. Using the algorithms of the preceding section, check whether C is copositive. If it is, and only in this 

case, then the matrix A is K-copositive. 

Note that the pseudoinversion of the (real) matrix A22, which is required by formula (5.22), can be 
accomplished over R by a finite rational procedure [3]. 

For a strictly/C-copositive matrix A, one can repeat the argument above almost word for word. However, 

some conclusions will be sharper. First, the submatrix A22 in (5.15) must now be positive definite. This fact 

makes the proof of inclusion (5.18) unnecessary. The equality rank S = rank Aa2 is obvious, as is the positive 

semidefiniteness of the matrix 5. Second, the quadratic form (5.21) is positive tor all nonnegative and nonzero 
vectors u; hence, matrix (5.22) is strictly copositive. Thus, we arrive at decomposition (5.7)-(5.9) of a strictly 
/C-copositive matrix A, in which the matrix C is, in fact, strictly copositive. The corresponding alterations 
should be made in the formulation of tile algorithm. 

Observe that the algorithm becomes considerably simpler in the important special case where the cone 
/C not only satisfies (5.6) but is also pointed, i.e., where 

rankB = m = n. (5.26) 

Indeed, in this case tile (strict) /C-copositivity of the matrix A is equivalent to the (strict) copositivity of the 
matrix 

= D- AB (5.27) 

In other words, if the matrix A is (strictly) copositive with respect to a cone of type (5.26), then, the positive 
semidefinite (definite) term in its decomposition (5.7) is redundant: 

A - Brf B, 2 is (strict@  opositive. (5.28) 

This is consistent with the analysis of tile case/C = R~ in the preceding section. 
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It turns  out that  a decomposi t ion of type (5.28) is valid for matrices tha t  are strictly copositive with 

respect to any pointed cone/C. To put  it differently, one can waive the first requirement  rank B = m in (5.26). 

This is implied by the following result from [27]. 

Let/C C R "  be a pointed cone. A matr ix  A E S~ is strictly IC-copositive if and only i f  the T h e o r e m  5.1. 
matrix 

where 

C. = + C2, (5.29) 

C1 : / r n  -- -B(-~TB) -I~T, (5.30) 

C2 = B ( B r  B) -~A(BT"B)-XB r, (5.31) 

is strictly copositive for  a positive value ~ = ~o. I f  such a ~o exists, then C ,  is strictly copositive for  all 
sufficiently large positive ~. Moreover, for  all ~, the matrix  C,  satisfies the equality 

A = B C B. (5.32) 

R e m a r k .  Under the conditions of Theorem 5.1, rank B = n. Hence, the matri•  

B + = ( B T B ) - I B  T 

is the Moore-Penrose pseudoinverse of B and Ct is the or thoprojector  on the or thogonal  compleinent of the 

subspaee im B, the image of B. The  matr ix  C2 = ( B + ) T A B  + is the closest possible analog of matr ix  (5.27), 

and equality (5.32) is an extension of (5.28). 

We will not prove Theorem 5.1, but  will only note  tha t  its proof in [27] is based on the following 

noteworthy generalization of the Finsler theorem (see Theorem 3.3). 

T h e o r e m  5.2. Let F be a closed cone in R "~, and A1, A2 E Sn, where A~ is copositive with respect to F. Let 

The relation 

holds i f  and only if  the matrix  

M={xlxEr, x 0} 

(A2x, x) > 0 V x E M 

A,, = r, A1 + A2 

is strictly F-copositive for  all sufficiently large positive z~. 

If F = R ~, then A1 is a positive semidefinite matrix.  Suppose that  the system of linear equations B x  = 0 

defines the null space ker A. Then  one can replace A1 in Theorem 5.2 by the ma t r ix  B T B  without  altering 
the conclusion of the theorem. In this case~ Tlleorem 5.2 turns  into the original Finsler theorem. 

This generalized Finsler theorem makes it possible for Mart in  and Jacobson [27] to get a complete answer 

to the question whether decomposi t ion (5.7)-(5.9) is necessary for the case where/(7 is an arbitrary polyhedral  
cone and A is strictly ~-coposit ive.  

T h e o r e m  5.3. Let 1C be cone (5.1). Th, en the following properties of the matrix A C Sn are equivalent: 

(1) A is strictly ~-copositive. 

(2) There exist a strictly copositive rnatr'i.~: C and a positive-definite matrix S such that decomposition 

(5.7) holds. 

(3) For a positive value ~ = Yo, 

and 

th, e matrix A + zJBT B is positive definite 

the matrix  D ,  = Im -- z~B(A + L, BY  B ) - I B  y is strictly copositive. 

(5.33) 

(5.34) 
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I f  such a Uo exists, then conditions (5.33) and (5.34) are fulfilled for' all sufficiently large positive u. 

R e m a r k .  We can see that  Theorem 5.3 ensures decomposition (5.7)-(5.9) with an excess: one can choose C 
to be even .strictly copositive. 

For small m and n, conditions (5.33) and (5.34) call be verified with the use of symbolic computations (or 
even on paper). Hence, they can be considered to be a criterion for strict/C-copositivity. As all illustration, 
we reproduce below two examples from [27]. 

Suppose that a cone/C C R a is defined by the inequalities 

3x + y - 8z > O, 

- x - 3 y + 8 z  > O. 

One must determine whether tile quadratic form 

tb = x 2 + y2 _ z 2 

is strictly K:-copositive. 
For this exalnple, 

The matrix in (5.33) is 

A = d i a g ( 1 ,  1 , - 1 ) ,  B =  ( 3 1 - 8  / 
- 1  - 3  8 / " \ 

lOu+  1 6u -32u  ) 
6u lOu + 1 -32u  . 

- 32u  - 3 2 u  1 2 8 u -  1 

The leading principal minors of E .  are the polynomials 

l O u + l ,  64u 2 + 2 0 u + 1  

and 
d(u) -= det E~ = 448/] 2 + 108/., - 1. 

The leading coefficients of these three polynomials are positive. Thus, the matrix E ,  is positive definite for 
all sufficiently large positive u, and condition (5.33) is fulfilled. 

If d(u) > 0, then one can examine the matrix 

F,, = d(u)D(u)  = d(r,)I.~ - u B  adj (A + uBT  B ) B  T 

instead of D ,  when checking condition (5.34). For our example, F,, is 

( 5 4 u - 1  58u ) 
58u 5 4 u -  1 " 

positive and, hence, strictly copositive for u > 5!44" Applying Theorem 5.3, we This nlatrix is infer that  the 

form ga is strictly/(Lcopositive. 
Now we preserve the form ~b, but change sign in the second inequality defining K. Tile new cone ]C is 

given by 
3:r + y -  8z > 0, 

x + 3y - 8z > O. 

Neither the matrix B T B  nor the matrix in (5.33) will change. Thus, condition (5.33) is again satisfied for all 
sufficiently large positive u. As for F, ,  this matrix assmnes the form 

( 5 4 u - 1  - 5 8 u  ) 
F,  = - 5 8 u  5 4 u -  1 " 
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It will not be positive as ~ -+ oo; therefore, we check inequality (4.5). It is obvious that  

{r~}~2 = (58~/) 2 > {Fv}n{F,,}22 = ( 5 4 ~ -  1) 2 

for all sufficiently large ~, i.e., for these ~ the matrix F~ is not copositive. Hence, the form '~ is not copositive 
with respect to the new cone/~.  

It has already been observed that  the system of linear inequalities that defines the cone/C may contain, 
explicitly or implicitly, linear equations. Suppose that  one can single out these equations in an explicit way. 
Then the original definition (5.1) of/C is replaced by 

~: = {x I B lz  _> 0, S~z = 0}. (5.35) 

In this case, it is possible to obtain a decomposition of A that  is more economical than that of (5.7)-(5.9). 
Here we cite one more result from [27]. 

T h e o r e m  5.4. Let IC be cone (5.35). 
decomposed as 

Then a matrix A E S~ is strictly 1C-copositive if  and only if  A can be 

A = .BTcI~I  + S1, (5.36) 

where C1 is a strictly copositive matrix and $1 is positive definite with respect to the linear subspace B2x = O. 

The economy of decomposition (5.36) consists in the order of the copositive matr ix  C1 being equal to the 

number of "genuine" inequalities in system (5.1), and not to the overall number of inequalities in this system. 
As we will shortly see, the question whether decomposition (5.7)-(5.9) is necessary for tC-copositive 

matrices proves to be much more delicate. However, for this case as well, one can get a number of useful 
implications from the results already stated above. One need only make use of the following simple observation: 
a matr ix A is/C-copositive if and only if the matrix A5 = A+e~In is strictly/C-coposit.ive for any ~ > 0. Applying 
Theorem 5.3 to A5, we obtain 

T h e o r e m  5.5. Let 1C be cone (5.1). Then the following properties of a matrix A C S,~ are equivalent. 

(1) A is copositive with respect to the cone 1C. 

(2) For each 6 > O, there exist a strictly copositive matrix C5 and a positive-definite matrix S5 such that 

and 

A5 = A + ~I ,  = BTC~B + Ss. (5.37) 

(3) For each ~ > O, there exists a positive value ~, = L'o (which may depend upon 6) such that 

the matrix A5 + r'BT B is positive definite (5.38) 

the matrix D,,~ = I,~ - r, B(A5 + r'BT B ) - I B T  is strictly copositive. (5.39) 

As was the case with Theorems 5.1 and 5.3, statements (2) and (3) become considerably simpler when 

the cone /C is pointed. Indeed, for such a cone, already the matrix B T B  is positive definite, and (5.38) is 
fulfilled automatically. 

T h e o r e m  5.6. Let IC in (5.1) be a pointed cone. 
equivalent. 

(1) A is copositive with respect to the cone 1C. 

(2) For each 6 > O, there exists a strictly copositive matrix C5 such, that 

A5 = A + 6I~ = BTCsB.  

(3) For each ~ > O, the matrix 

C,,,~ = ,C1 + C2~, 

Then the .following pTvperties of a matrix A E S,, are 

(5.40) 

(5.41) 
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where C1 is given by formula (5.30) and 

C2,5 = ]~(BT J~)-IAs([~T B) - I  B T, (5.42) 

is strictly copositive for all sufficiently large ~. 
(4) For each 5 > O, the matrix (see (5.30) and (5.31)) 

C, + 5I = 12C 1 -~ C2 ~- 5I (5.43) 

is .strictly copositive for all sufficiently large ~. 

Theorems 5.5 and 5.6 indicate one more way of checking tC-copositivity. This method, involving two 
parameters  u and 5, is even less convenient than the criterion of strict /C-copositivity of Theorems 5.1 and 
5.3. However, for small m and n, the new criterion can also be implemented by means of computer  algebra. 

Again we illustrate this by an example from [27]. 

The matrix 
A = diag ( - 1 , - 1 ,  1) (5.44) 

is obviously copositive with respect to the circular (or ice cream) cone 

i x  2 + y2 < z. (5.45) 

We inscribe in (5.45) the polyhedral cone K for which the vectors 

0 , 4 , , , - ( 5 . 4 6 )  

5 5 5 �9 5 

indicate the direction of the edges. Then A is also copositive with respect to K7 but not strictly copositive 
since the quadratic form ~b(u) = (An, u) vanishes on each vector (5.46). Thus, all assertions of Theorems 5.5 

and 5.6 must hold for A. 
The cone/(7 can be defined by a system of linear inequalities of type (5.1), where 

B = 

- 2  - 1  2 
0 - 5  4 
5 0 3 
0 5 4 

- 2  1 2 

The rank of this matr ix is 3. We verify that, for each (5 > 0, matr ix  (5.43) corresponding to the pair (A, B) is 

strictly copositive for all sufficiently large z~. To this end, the Motzkin criterion (see Theorem 4.15) is applied 

in [27]. For matrix (5.43), we have 

1875 -765  520 275 -575  
1 -765 465 -416  367 -275  

= - -  520 -416  416 -416  -520  
C1 2548 275 367 -416  465 -765  

-575 -275  520 -765  1875 

Tile diagonal entries of this matrix are positive, which ensures that  tile diagonal entries of C,, + 5I will be 
positive as ~ --+ +co. Now one has to examine in consecutive order all 26 principal submatrices of order _> 2. 
If a submatrix with a nonpositive determinant is detected, then one has to verify that, among the cofactors 
of its last cohmm, there are nonpositive cofactors. This verification is based on the signs of the leading 
coeificients of the corresponding polynomials. In our example, we come to the conclusion that  matr ix  (5.43) 
is strictly copositive for each 5 > 0 as u --+ +oo. For an illustration, consider the leading principal subinatrix 
of order 3. Its determinant is 

522645765u 2 - (25500 + 94689605 - 44942643252)u 
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+(225 - 336006 - 1000896062 + 41550745663) 

and is positive for all sufficiently large p if 6 > 0 is fixed. No further analysis of this submatrix is required, 
and we can begin examining the next one. 

Now we return to the discussion of decomposition (5.7)-(5.9) for the K-copositive matrix A. Recall that 

for the cone K satisfying (5.6) the necessity of this decomposition was proved at the beginning of this section. 
Also recall that for strictly K;-copositive inatrices we managed to remove eventually all limitations on the type 
of cone (see Theorem 5.3). The following simple exatnple fl'om [27] shows that  the situation is different for 
the/C-copositive case. 

In R 2 we take 

 :(01 01) 
and let the cone/(2 be defined by system (5.1) with the matrix 

( 1 0 )  (5.48) 
B =  - 1  0 " 

This system defines, in reality, the line z = 0. The quadratic form 

'~/: = (Au,  ~t) = 2xy  

vanishes identically along this line. Thus, matrix (5.47) is K-copositive. We shall prove that  this matrix does 
not admit decomposition (5.7)-(5.9). Indeed, for any symmetric matrix 

the matrix 

C =  9 7 ' 

~ : A -  B T c ~  ~ ( -0~ + 2/~-  01 ) 

cannot be positive seinidefinite because det S = - 1  < 0. 
Consider the set of matrices C5 in decompositions (5.37) of matrix (5.47). The example above shows 

that  this set does not have a limit point as ~ --+ 0. Indeed, if such a limit point Co existed, then it would 
necessarily be a copositive matrix. The matrix 

S0 = lira Sa = lim(A5 - B T c s B )  = A - B T C o B  5-+0 5--+0 
is obviously positive semidefinite, which yields a decomposition of type (5.7) (5.9) of A: 

A = B T C o B  + So. 

However, it has been proved that  this decomposition is impossible. 
The cone defined by matrix (5.48) is not solid, and one could at tr ibute the counterexample above to this 

fact. However, a more detailed analysis of matrix (5.44) and the solid cone K; given by the system of edges 
(5.46) shows that this/C-copositive matrix does not admit decoInposition (5.7)-(5.9) either. 

In [28], a complete description is given of polyhedral cones/C such that  any/Gcoposit ive inatrix can be 
represented in the form (5.7)-(5.9). Let us consider a cone in the matr ix space S~,, generated by cone (5.1) 
with the use of the formula 

CB = { B T C B I C  copositive}. (5.49) 

Def in i t i on .  Cone (5.1) is said to have the closure property if the matrix cone (5.49) is closed. 
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T h e o r e m  5.7. Let IG be cone (5.1). Any l~-copositive matrix A admits decomposition (5.7)-(5.9) if and only 

i f  the cone tG has the closure property and is either solid or pointed. 

Unfortunately, it is not clear how the presence or absence of the closure property for a part icular  cone/G 

can be constructively verified. Thus, equality (5.6) is still the most general sufficient condition ensuring that 

the ~-copositive matr ix  A can be decomposed as in (5.7)-(5.9). However, two more partial results of this 

kind can be found in [27]. 

T h e o r e m  5.8. Let 1~ in (5.1) be a solid cone. Suppose that the matrix B in (5.1) has no more than four 

rows. Then any ~-copositive matrix A can be decomposed as in (5.7)-(5.9). Moreover, the copositive matrix 

C can be chosen to be nonnegative. 

This assertion differs from condition (5.6) in that  the rows of the matrix B need not be linearly indepen- 

dent. 

T h e o r e m  5.9. Suppose that n = 2 and cone (5.1) is solid. Then any 1G-copositive 'matrix A either is positive 

semidefinite or can be represented as 

A = BTNB, 
where N is a nonnegative matrix. 

Now we shall describe another type of criteria for ]Gcopositivity, which can be called enumerative type. 
One can think of criteria based on a sequential analysis of principal submatrices as their prototype in the 

case where/(; = R~.  For cone (5.1), the enumerat ion is governed by the set of submatrices tha t  are formed 

from the full rows of B. Such a submatrix will be called a row submatrix of B (this includes the vacuous row 

submatrix of size 0 x n). 

Suppose tha t  ct C {1, 2 , . . . ,  m} is an index set defining the row sublnatrix B~. Then ~ will denote the 

colnplementary index set and B~ will denote the complementary row submatrix. In the procedures under 
consideration, each step consists of certain tests for a matrix of the form 

A 
D ~ =  B~ 

c~ being an index set chosen for the current step. 

0 ' (5 .50)  

Tile description of tests will be given after some preliminary observations. If a matr ix  A is strictly 
copositive with respect to cone (5.1), then it must  also be s s being the null space of the matrix B. 

In other words, 
(Ax,  x) > 0 if Bx = 0 and x :fi 0. (5.51) 

Thus, property (5.51) is a necessary condition for the matrix A to be strictly ~-eopositive. As such, it will 

be called tile strong kernel condition. 
By the weak kernel condition we shall mean the property 

(Ax, x) > 0 if Bx = 0 and A x r  O. (5.52) 

It is shown in [26] tha t  for a solid cone K;, property  (5.52) holds for any ]Gcopositive matr ix A. 

As ill the preceding sections, the symbol e stands for the vector (1, 1 , . . . ,  1) r ,  its dimension being defined 

by the context. For a chosen nonvacuous row submatrix B~, consider the system 

which consists of n + m - t(~1 linear equations. We say that  B~ fails Test 1 if system (5.53) defines x in a 
unique way and this unique vector x satisfies the inequality 

B~x > 0. (5.54) 
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We say tha t  B~ fails Test 2 if the homogeneous system 

has a one-dimensional  solution space for x and one ray of it satisfies condition (5.54). Otherwise, B~ is said 
to pass the corresponding test. 

Suppose, for example, tha t  ker B~ = {0}. Of course, this is only possible when m > n. Both systems 

(.5.53) and (5.54) define the unique x; namely, x = 0. Thus,  bo th  tests are trivially passed by B~ in this case. 

The  procedures verifying whether  a given matrix A is (strictly) copositive wi th  respect to a given cone 

of type (5.1) are based on the following two assertions, which are the main results of [26]. 

T h e o r e m  5.10.  Let IC in (5.1) be a solid cone. Then a matrix  A E S,~ is ]C-copositive if  and only if  the weak 
kernel condition holds and every nonvacuous row submatrix B~ of the matrix B passes Test 1. 

T h e o r e m  5.11.  Let lC be cone (5.1). Then a matrix A E S~ is strictly tC-copositive i f  and only if the strong 
kernel condition holds and every nonvacuous row submatrix B~ of the matrix B passes Test 1 and Test 2. 

Both  procedures are simpler in the so-called regular case, i.e., when the mat r ix  A is nonsingular and 
every set of n or fewer rows of B is linearly independent.  The  tests that  are carried out in the regular case 
can be conveniently stated in terms of the Schur complements  in the matrix 

M = B A - 1 B  r.  (5.56) 

For an index set c~ C {1, 2 , . . . ,  m}, we associate with the row submatrices B~ and B-~ the principal 

submatrices of matr ix  (5.56) tha t  are defined by the formulas 

Also, let 

.~ -1  T z .Bo~ A Bo~. 

SR = B~,A-1B$. 

If one reorders (symmetrically) the rows and cohlnnls in M so tha t  R becomes the leading principal sublnatrix, 

then R, /~ ,  and SR will be the blocks of the reordered mat r ix  M~: 

We say tha t  the principal subinatr ix R of M fails Test 3 if R is nonsingular and the inequality 

(~f /R)  e < 0 (5.57) 

holds for the corresponding Schur complement  M / R .  We say t h a t / ~  fails Test 4 if R is singular, its null space 
is of dimension one, and one ray l of it satisfies 

S~'a > 0 V'a E 1. (5.58) 

T h e o r e m  5.12 [26]. Let (A, B) be a regular pair. Then a row submatrix B~ of the matrix B fails Test 1 

( Test 2) if  and only if  the corresponding principal submatrix R of  A.f .fails Test 3 ( Test 4). 

Thus,  for the regular case, Test 1 and Test 2 can be replaced by Test 3 and Test 4, respectively. 
One can verify the kernel condit ions by means of computa t ions  much similar to those that  were used at 

the beginning of this section for analyzing case (5.6). Let Q be a nonsingular n • n matr ix  such that  

BQ = (B 0), ker B = {0}. (5.59) 
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We change the variables: 

x = Q y  = Q v ' 

the size of u being equal to the number  t of columns of the block /~ in (5.59). In the new variables, the 

subspace Bx = 0 is defined by the condit ion u = 0 and the quadratic form r  = (Ax, z) is associated with 
the matr ix  

where -Art is a block of order t. Now the strong kernel condit ion alnounts to the requirement  that  the submatr ix  

A22 be positive definite, and the weak kernel condition amounts  to the combinat ion of two requirements,  

namely, tha t  -422 be positive semidefinite and the inclusion ker.422 C ker A~  hold. It is obvious tha t  both  
conditions can be verified via finite rat ional  procedures. 

Let us see how Tests 1 and 2 look in the case where K = R~,  i.e., when the matr ix  B in (5.1) is the 

identi ty matr ix  In. Suppose tha t  an index set a = {1, 2 , . . . ,  s}, s < n, has been chosen (we can reduce the 

general case to this special case by reordering variables). Then 

= (I, 0), = (0 In_ ) (5.60) 

for the zero submatrices of appropria te  sizes. We par t i t ion  x in accordance with (5.60) 

x t )  R.~. x =  , x t  E ( 5 . 6 1 )  
2C 2 

k ] 

The subst i tut ion of (5.60) and (5.61) into (5.53) yields 

A~.~ ~ x2 = 0 . 
I,_~ u 0 

(5.62) 

Here AH is a submatr ix  of order s. Now the third block row of system (5.62) implies 

X 2 ~ - 0 .  

Then the first block row gives 

AlIxl = - e .  (5.63) 

Thus, the submatr ix  B~ fails Test 1 if system (5.63) admits  a unique solution, i.e., the principal submat r ix  
A u  is nonsingular,  and this unique solution xl = B~x is positive. 

A similar analysis of Test 2 leads to the following conclusion: the submatr ix B~ fails Test 2 if the principal 
submatr ix  AI1 is singular, its rank deficiency is one, and, for any vector belonging to the null space of AH, 
all nonzero entries are of the same sign. 

The  criteria thus obtained are very close so the s ta tements  of Theoreins 4.12 4.15 and are precisely the 
criteria of Theorems 3.1 and 3.2 in [12]. 

There exist situations that  allow one to reduce substantial ly the amount  of enumerat ion  in the procedures 
indicated by Theorems 5.10 and 5.11. They are described in [38] and may be regarded as an extension of the 
situations discussed in Theorems 4.16-4.18. 

D e f i n i t i o n .  Let ~ be a given cone (5.1) and let k be a fixed positive integer, 0 _< h _< n. A matr ix  A E S,, 
is said to be (strictly) ]C-copositive of order h if A is (strictly) copositive with respect to every cone 

]C = ~ N ker B~.  

46 



Here B~ is any row subinatr ix  of tile matr ix  B such tha t  the null space ker B~ is of dimension k. If A is a 

(strictly) K~-copositive mat r ix  of order k, but  not of order k + 1, then k is said to be its exact order or index 

of (strict) /Gcopositivity. 

T h e o r e m  5.13. Let tC in (5.1) be a pointed cone. Suppose that a matrix A E Sn has p positive eigenvalues, 

p < n. Then A is (strictly) tC-copositive if and only if it is (strictly) 1C-copositive of order p + 1. 

T h e o r e m  5.14. Let I~ in (5.1) be a pointed cone. Suppose that a matrix A E S~ is singular of rank r. Then 
A is lC-copositive if and only if it is lC-copositive of order r. 

T h e o r e m  5.15. Let lC in (5.1) be a pointed cone. Suppose that a matrix A E S~ is singular of rank r. Then 
A is strictly lC-copositive if and only if it is strictly 1C-copositive of order r + 1. 

One more result of this kind can be found in [38]. For obvious reasons, it has no correspondence in the 
case K: = Rn_. 

T h e o r e m  5.16. Suppose that cone (5.1) is of dimension k < n. Then a matrix A E S~ is (strictly) IC- 

copositive if and only if it is (strictly) ]C-copositive of order k. 

The  criteria of Theorems 5.10 and 5.11 can be thought  of as extensions of the inner criteria from Sec. 
4. The  extensions of the outer  criteria are discussed in [38]. Since tile descriptions of these extended criteria 
are ra ther  bulky, they are not given here. We only want to point out tha t  the principal pivoting scheme for 
quadrat ic  programming is used as the main tool in outer  criteria, by analogy with the case K; = R~.  

We conclude this section by indicating two applications related to the not ion of tC-copositivity. 
Let 

= F( t )x  + G(t)u, x e R ~, ,a e R " ,  

z ( t o )  = xo 

be a linear system with the control function ~t(t). The problem is to mininfize the quadratic cost functional  

tl 
J(Xo,U) =/[uT( t )R( t ) 'u ( t )  + xT(t)Q(t)x(t)]dt  + :rT(t~)Hx(tl) 

to 

subject  to controller constraints  of the form 

~ ( t )  n( t )  ~ 0 a.e. Oil [to, tl] , 

where B(t )  is a given l • m, matr ix  function. 

An analysis of this problem with the use of the analog of the classical condi t ion of Legendre ill the calculus 
of variations leads to the following inference: a necessary condition for J to be bounded below is tha t  for 
almost  all t E [to, t~] the matr ix  R(t) be copositive with respect to the cone defined by the matr ix  B(t)  via 
formula (5.1). Note tha t  this example is taken from [28]. 

An interesting application of Theorem 5.3 is given in [27]. Consider, along with the lnatrix A E S,, and 
cone (5.1), the hyperellipsoid 

(Px, x) = 1, P E S,,, P is positive definite. (5.64) 

One needs to evaluate the nf inimum rn of tile quadrat ic  form '~(x) = (A:r, x) on hyperellipsoid (5.64) subject  
to constraints  B x  >_ O. 

The  following approach to this problem call be proposed. The number  rn is the suprenmtn of positive d 
such tha t  the matrix A - d P  is copositive with respect to cone (5.1). Applying Theorem 5.3, we infer tha t  

the supre lnum should be found of those 5 > 0 for which the matr ix A - ~P + p B T B  is positive definite and 
the mat r ix  I m -  ~B(A  - ~P + z~BTB)-IBT is strictly copositive for all sufficiently large ~. 
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We ilhlstrate this approach by an example from [27]. Assunte that  n = 3, P = I3 (thus, hyperellipsoid 

(5.64) is, in this case. a two-dimensional sphere), A = diag (1, 1, -1 ) ,  and 

t3 = - 1  - 3  8 ' 

The leading principal minors of the symmetric matr ix  A - dIa + r 'BYB  are 

10~ + 1 - d, 

6 4 .  2 + (20 - 20 (~)z~ + (1 - ~)2  

and 
d (zJ, ~) = (448 - 576 d)z9 + (108 - 256 d + 148 52)zJ - 1 + 6 + 52 - ~3. 

Tile first, and second minors are clearly positive as ~, --+ +oo. The determinant  d will only be positive for 

sufficiently large z~ if (~ < 448/576 = 7/9. 

For the symmetric 2 • 2 matrix 

the entries are 

and 

F,,6 = d(L,, 5)Io - ~,B adj (A - 6L3 + ~'BT B ) B  r 

{F,,,a}t,, = {F,,,a}2,2 = (54 - 1286 + 94 (~2)~ - 1 + ($ + ~2 _ d3 

{F,,a},,2 = (58 - 1280-+ 7052)t,. 

If (~ = 7/9, the leading coefficients of both polynomials are positive. Thus, the matr ix  F,, r/9 is positive (hence, 

strictly copositive) as z, --+ + ~ .  
This analysis shows tha t  the required supremum is equal to 

(~ = 7/9. 

In other words, 

7(x,x) (Ax, x) >_ 

if B x  >_ O, and the minimum of the form 'r on the intersection of the unit sphere and the cone Bx > 0 is 

7/9. 

6. C o n c l u d i n g  R e m a r k s  

In [15, 34], finite procedures are described for deciding whether or not a given inhomogeneous quadratic 

function 'O(x) is bounded below on a polyhedron M defined by a system of linear inhomogeneous inequalities. 

In the homogeneous case, the boundedness of a quadratic form below is equivalent to its nonnegativity on M. 
Indeed, assuming that "g'(Xo) < 0 for some point x0 E M, one finds that  

' * ( t*0 )  = t 2  (x0) - o o  

as t -+ +co (recall that  the I)olyhedron M is a cone for tile llomogeneous case). Hence, tile procedures in 

[15, 34] can also be used for checking/C-copositivity. However, their descriptions were not included in Sec. 5, 
tile reason being that, since these procedures are meant  for a more general situation, they will be less efficient 
for the homogeneous problem than algorithms specially constructed for this case. 

In the main body of this survey, the matr ix  property of copositivity was discussed with respect to the 
three types of subsets of the n-dimensional space R ~, namely, linear subspaces, the nonnegative orthant  R~c, 
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and, finally, arbitrary convex polyhedral cones. However, the copositivity can be defined and may be of 
interest for other types of subsets as well. By way of example, consider the ice cream cone 

,).2 ~1/2 (6.1) 

D e f i n i t i o n .  A matrix A E S~ is called h'n-eopositive if (Ax, x) >_ 0 Vx E K~. 

Using the inatrix g~ = diag ( - 1 , - 1 , . . . , - 1 ,  1), one can rewrite (6.1) as 

K , , = { x e R " [ ( J n x ,  x) >_0 A xn > 0}. 

T h e o r e m  6.1 [25]. A matrix A E S~ is K,~-copositive if and only if the matrix A - p J ~  is positive semidefinite 
for some p >_ O. 

Unfortunately, the criterion of K~-copositivity indicated in Theorem 6.1 cannot be regarded as a con- 

structive one because it does not show how to find the required scalar p (or show its absence). Unlike the 

criteria of the type of Theorem 3.3, here one cannot reduce the analysis to the investigation of the behavior of 

the principal minors as # --+ oo. Indeed, the matr ix  A - #J~ has a negative diagonal entry (n, n) as # -+ +c~ 

and, hence, it cannot be positive senfidefinite. As p -+ - o c ,  all diagonal entries, excluding the last one, are 
negative. 

The first author was supported by the Russian Foundation for Basic Research, project No. 97-01-00927. 
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