New Compounds

Possible Anthelmintic \mathbf{III}^1 Thiazol-5-ylbenzimidazoles.

J. M. Singh²

School of Chemistry Meerut College, Meerut, Inida

Received February 23, 1968

In view of the potent anthelmintic activity3 shown by a large series of benzimidazole compounds, a few new thiazol-5-ylbenzimidazoles were synthesized.

Experimental Section

2-Chloro-4-methyl-5-carbethoxythiazole.4—2-Amino-4-methyl-5-carbethoxythiazole (5 g) in a cooled solution of 80% H₃PO₄ (25 ml) was treated with concentrated HNO₃ (14 ml), cooled to -5°, diazotized with a solution of NaNO₂ (4 g) with stirring over 1 hr, and added to a solution of CuSO₄ (9 g) and NaCl (9 g) in water (40 ml); N2 evolution ceased in 10 min. After standing an additional 1 hr, the mixture on neutralization and steam distillation afforded a cream-colored product which was recrystallized from absolute alcohol; yield 40%, mp 191–192° dec.^{5a} Anal.^{5b} (C₇H₈NO₂SCl) N, Cl; S: calcd, 15.57; found, 15.82.

2-Bromo-4-methyl-5-carbethoxythiazole.—The above procedure using NaBr instead of NaCl afforded the compound recystallized from ethyl acetate; yield 45%, mp 210–211° dec. Anal. ($C_7H_8NO_2SBr$) N, S; Br. calcd, 32.00; found, 31.

2-Propylamino-4-methyl-5-carbethoxythiazole.—2-Amino-4methyl-5 carbethoxythiazole (5 g), propyl alcohol⁶ (25 ml) and 80% H_2SO_4 (20 ml) was heated at $70\,^\circ$ for 5 hr. The solution on pouring onto ice and neutralizing with NH4OH gave a colorless product which was recrystallized from dioxane, yield 45%, mp 176–177° dec. Anal. $(C_{10}H_{16}N_2O_2S)$ S; N: calcd, 12.28; found, 12.38.

2-Isopropylamino-4-methyl-5-carbethoxythiazole.—The above procedure using isopropyl alcohol gave a product which was recrystallized from a mixture of ethanol and ethyl acetate, yield 45%, mp 195–196° dec. Anal. ($C_{10}H_{16}N_2O_2S$) N; S: calcd, 14.03; found 14.90

2-(2-Chloro-4-methylthiazol-5-yl)benzimidazole.—A mixture of 2-chloro-4-methyl-5-carbethoxythiazole (0.01 mole) and o-phenylenediamine (0.01 mole) in polyphosphoric acid (40 ml) was heated for 6 hr at 250° , cooled to 90° , poured onto crushed ice, neutralized with NH₄OH, and filtered, and the filtrate was evaporated to dryness under reduced pressure. The residue on extraction with ethanol (50 ml) and concentration under reduced pressure gave a product which was recrystallized from dioxane, yield 42%, mp 176-177° dec. Anal. (C₁₁H₈N₃SCl) N, Cl, S.

2-(2-Bromo-4-methylthiazol-5-yl)benzimidazole.—The above procedure gave a product which was recrystallized from acetone; yield 40%, mp 190-191° dec. Anal. (C₁₁H₈N₃SBr) N; S: calcd, 10.88; found, 10.98.

2-(2-Propylamino-4-methylthiazol-5-yl)benzimidazole was recrystallized from dioxane, yield 42%, mp 182-184° dec. Anal. $(C_{14}H_{16}N_4S) N, S$

2-(2-Isopropylamino-4-methylthiazol-5-yl)benzimidazole was

(1) Part II: J. M. Singh and S. P. Gupta, J. Indian Chem. Soc., 42, 337 (1965).

(2) Defence Science Laboratory, Delhi-6, India.

(3) A. Turk and E. M. Ueckert, J. Am. Vet. Med. Assoc., 141, 240 (1962). (4) R. M. Dodson and L. C. King, J. Am. Chem. Soc., 67, 2242 (1945).

(5) (a) All melting points are uncorrected. (b) Where analyses are given by symbols of the elements, analytical results were within $\pm 0.4\%$ of theory.

(6) During propylation in the presence of H2SO4 the ester group remains unchanged as confirmed by infrared spectrum (5.85-\mu peak).

recrystallized from ethyl acetate, yield 45%, mp 176-177° dec Anal. (C14H16N4S) N, S.

Acknowledgment.—The author expresses his gratitude to the Head, Chemistry Department, Meerut College, Meerut, for providing necessary facilities.

Synthesis of Some New 6-Chloro-Ssubstituted 2-Mercapto-3-aryl- (or -alkyl-) 4(3H)-quinazolones as Antimalarials

P. N. BHARGAVA AND V. N. CHOUBEY

Department of Chemistry, Banaras Hindu University, Varanasi-5, India

Received November 12, 1968

The antimalarial activity of febrifugine, an alkaloid having the 3-substituted 4(3H)-quinazolinone structure, created interest in the preparation and testing of a number of quinazolines.1 Compounds having the side chain CH_2COCH_2R (where $R = \omega$ -N-piperidyl-n-butyl or ω -N-morpholinylpropyl) at position 3 of the 4(3H)quinazolinone nucleus were shown to have significant antimalarial activity.² Gujral, et al., observed the hypnotic activity of 2-alkyl-3-aryl-4(3H)-quinazolones in rats. A potent anticonvulsant property of 2-methyl-3-p-bromophenyl-4-quinazolone hydrochloride has been reported against pentylenetetrazole-induced convulsions in mice.4 These activities led to the synthesis of 2-Ssubstituted thio-3-aryl- (or -alkyl-) 4(3H)-quinazolones^{5,6} as possible antimalarials and ataractic agents.⁷ In the present work, the synthesis of 6-chloro-2-mercapto-3-aryl- (or -alkyl-) 4(3H)-quinazolones and their S-substituted derivatives from 5-chloroanthranilic acid,8 aryl (or alkyl) isothiocyanates, and alkyl halides has been studied.

Experimental Section

6-Chloro-2-mercapto-3-benzyl-4(3H)-quinazolone.—Equimolar quantities of 5-chloroanthranilic acid (19 g) and benzyl isothiocyanate (13.5 ml) in the presence of absolute EtOH (100 ml) were refluxed on a water bath for 4-5 hr. The product was cooled and dissolved (10% NaOH), filtered, and reprecipitated by dilute HCl. The precipitate was filtered, washed ($\mathrm{H}_2\mathrm{O}$), and crystallized (AcOH). Similarly, other 6-chloro-2-mercapto-3-aryl-(or -alkyl-) 4(3H)-quinazolones were prepared from the corresponding isothiocyanates and 5-chloroanthranilic acid (Table II).

6-Chloro-2-methylthio-3-benzyl-4(3H)-quinazolone.—MeI (3 ml) was added to a solution of 6-chloro-2-mercapto-3-benzyl-4(3H)-quinazolone (7.6 g) prepared in 10% alcoholic NaOH. The resulting mixture was stirred for 1 hr at room temperature and the separated crystalline product was washed (H2O, EtOH) and

(4) C. Bianchi and A. David, J. Pharm. Pharmacol., 12, 501 (1960).

(5) Br. Pawlewski, Ber., 38, 131 (1905).

(6) T. N. Ghosh, J. Indian Chem. Soc., 7, 981 (1930).

(7) J. E. McCarty, E. L. Haines, and C. A. Vanderwerf, J. Amer. Chem. Soc., 82, 964 (1960).

(8) W. Eller and L. Klemm, Ber., 55, 221 (1922).

⁽¹⁾ F. W. Wiselogle, "Survey of Antimalerial Drugs 1941-1945," Edward Brothers, Ann Arbor, Mich., 1946.
(2) O. Y. Magidson and Y. K. Lu, Zh. Obshch. Khim., 29, 2843 (1959);

Chem. Abstr., 54, 12144 (1960).

⁽³⁾ M. L. Gujral, P. N. Saxena, and R. S. Tiwari, Indian J. Med. Res., 43, 637 (1955); Chem. Abstr., 50, 6662 (1956).