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A short total synthesis of sulfobacin A
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Abstract—A total synthesis of the von Willebrand factor receptor antagonist sulfobacin A is described. Key steps for this short
route to sulfobacin A include ruthenium-catalyzed asymmetric hydrogenation and diastereoselective electrophilic amination for

the construction of the three stereogenic centers.
© 2003 Elsevier Ltd. All rights reserved.

While screening for novel von Willebrand factor (VWF)
receptor antagonists, Kamiyama and co-workers'~ iso-
lated in 1995 sulfobacins A and B in the culture broth
of Chryseobacterium sp. NR 2993, a strain isolated
from a soil sample collected in Iriomote Island (Scheme
1). These compounds showed potent inhibitory activity
against the binding of vWF to its receptor in a compet-
itive manner with ICs, of 0.47 uM for sulfobacin A and
2.2 uM for sulfobacin B. The same year, Kobayashi
and co-workers® isolated sulfobacin A  and
flavocristamide A from a marine bacterium Flavobac-
terium sp., separated from the marine bivalve Cristaria
plicata collected in Ishikary Bay (Scheme 1). These
compounds exhibited inhibitory activity against DNA
polymerase o.
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Scheme 1. Structures of flavocristamide A and sulfobacins A
and B.
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Two syntheses of sulfobacin A have been reported by
Shioiri** and Mori.%” As part of our ongoing efforts
towards the synthesis of biologically active natural
products,®'° we report herein a short synthesis of sul-
fobacin A using sequential catalytic asymmetric
hydrogenation!!"!? and electrophilic amination'*!* for
the construction of the three stereogenic centers.

Scheme 2 shows our retrosynthetic analysis for sul-
fobacin A. Our approach is based on the use of B-
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Scheme 2. Retrosynthetic analysis for sulfobacin A.
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hydroxy ester 6 as a key intermediate for the synthesis
of both fragments 7 and 14 whose coupling reaction
would afford the desired sulfobacin A (1). Thus, B-
hydroxy acid 7 would be obtained from 6 by simple
alkaline treatment while 14 would be prepared via
compound 9, easily obtainable by diastereoselective
electrophilic amination of 6. Asymmetric hydrogena-
tion of B-keto ester 5 using chiral ruthenium complexes
would furnish the key intermediate 6 with high enan-
tiomeric excess.

The synthesis of the desired B-hydroxy ester 6 began
with the commercially available 10-bromodecan-1-ol 2
which was converted into alcohol 3 by treatment with
isoamylmagnesium bromide in the presence of dilithium
tetrachlorocuprate’ in 95% yield (Scheme 3). Oxidation
of 3 using Jones’ reagent then furnished the corre-
sponding carboxylic acid 4, which was converted into
the B-keto ester 5 using Masamune’s procedure.'®

Thus, the addition of carbonyl diimidazole to 4 fol-
lowed by treatment with the magnesium salt of
monomethyl malonic acid gave the requisite B-keto
ester 5 in 81% yield. For the asymmetric hydrogenation
of 5, we used our recently reported simple procedure
for the in situ preparation of chiral ruthenium catalysts
starting directly from anhydrous RuCl,.'® Thus, hydro-
genation of 5 was carried out at 80°C in methanol
under a low pressure of hydrogen (6 bar), using 1 mol%
of the RuCl;/(R)-MeO-BIPHEP system.

Under these conditions, B-hydroxy ester 6 was obtained
in 96% yield and excellent enantiomeric excess (e.e.
>99%, determined by HPLC analysis, Chiralcel OD-H
column, hexane/propan-2-ol: 99/1, flow rate: 1.0 mL/
min, detection: 215 nm), [«]5 -14.3 (¢ 0.51, CHCIl,),
lit.? [¢] —12.7 (¢ 0.52, CHC]l;). Finally, alkaline treat-
ment of 6 furnished the corresponding B-hydroxy car-
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Scheme 3. Reagents and conditions: (a) Me,CH(CH,),MgBr,
Li,CuCl, (1 mol%), THF, -78°C to rt, 12 h, 95%; (b) Jones’
reagent, acetone, rt, 1 h, 88%; (c) carbonyl diimidazole, THF,
rt, 6 h; Mg(O,CCH,CO,Me),, THF, rt, 16 h, 81%; (d) H, (6
bar), RuCl,;/(R)-MeO-BIPHEP (1 mol%), MeOH, 80°C, 23 h,
96%, e.e. >99%; (e¢) IN NaOH, MeOH, 0°C, 30 min, then rt,
3 h, 89%.
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Scheme 4. Reagents and conditions: (a) MeZnBr (1 equiv.),
0°C, 1 h; LDA (2 equiv.), -78°C, 1 h; DTBAD (2 equiv.),
—-78°C, 2 h, 72%, d.e. >95%; (b) TFA, CH,Cl,, rt, 3 h; (c) H,
(1 atm), Raney Ni, MeOH, ultrasound, rt, 14 h; (d) Boc,O,
NaHCO;, MeOH, ultrasound, rt, 3.5 h, 80% from 8; (e)
Me,C(OMe),, Et,O-BF;, CH,Cl,, rt, 1 h, 93%; (f) Ca(BH,),,
THF, EtOH, -15°C to rt, 22 h, 94%; (g) CH,COSH,
PrOCON=NCO,Pr, PPh,, THF, 0°C, 1 h, then rt, 16 h, 95%;
(h) H,O,, TFA, rt, | h.

boxylic acid 7, [¢]Z -11.6 (¢ 1.0, CHCLy), lit.!” [«]¥®
~12.0 (¢ 1.0, CHCl,).

The synthesis of 13 involved again B-hydroxy ester 6 as
shown in Scheme 4. The anti-N,N-Boc-a-hydrazino-f-
hydroxy ester 8 was readily obtained from 6 by elec-
trophilic amination with di-terz-butylazodicarboxylate
(DTBAD).'®!° Treatment of 6 with methylzinc bromide
followed by lithium diisopropylamide at —78°C fur-
nished the resulting zinc enolate which was reacted with
DTBAD to give 8 in 72% yield and with high
diastereoselectivity (d.e. >95%, determined by 'H
NMR). After deprotection of the hydrazine function,
the N-N bond was cleaved by hydrogenolysis using
Raney nickel and ultrasound.?® Subsequent protection
of the resulting amine with di-tert-butyl dicarbonate
and ultrasound?! afforded compound (2R,3R)-9 in 80%
overall yield starting from 8.

Protection of 9 was performed using 2,2-
dimethoxypropane with a catalytic amount of
Et,0'BF;, and the resulting oxazolidine 10 was then
reduced to the primary alcohol 11> by treatment with
calcium borohydride. After conversion of 11 into the
corresponding mesylate, all attempts to perform nucle-
ophilic substitution with sodium sulfite failed to afford
the expected sulfonic acid. Finally, Mitsunobu®*?** reac-
tion of 11 with thioacetic acid afforded thioester 12*° in
95% yield and subsequent oxidation with hydrogen
peroxide in trifluoroacetic acid led to the target com-
pound 13.
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Scheme 5. Reagents and conditions: (a) HONB, DCC, THF/
dioxane, 0°C, 40 min, rt, 24 h then 13, NaHCO,, dioxane/
H,O, rt, 20 h, 20% from 12.

Coupling of 13 with carboxylic acid 7 was carried out
using HONB and DCC to form the corresponding
active ester of 7, which was coupled with the sodium
salt of 13 in a mixture of dioxane and water at room
temperature (Scheme 5).2° After treatment with Amber-
lite IR-120B (H* form), sulfobacin A (1) was obtained
in 20% yield from 12. Spectral data of 17 were found to
be in agreement with those reported,>>¢ [«]5 —15.5 (¢
0.14, MeOH) {lit.! [«]%" =35 (c 0.14, MeOH), lit.? [o]¥
-7.9 (¢ 0.18, MeOH), lit.° [«]% —15 (c 0.14, MeOH)}.*®

In summary, in spite of the moderate yield obtained in
the final coupling reaction between compounds 7 and
13, our route to sulfobacin A is a very short one and
compares favorably with the other reported syntheses.
The ruthenium-catalyzed asymmetric hydrogenation of
B-keto ester 5 followed by diastereoselective elec-
trophilic amination allowed the stereocontrolled con-
struction of the three stereogenic centers. Preparation
of analogs of sulfobacin A is currently underway in our
laboratory and will be reported in due course.
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As mentioned earlier by Mori® the specific rotation value
of sulfobacin A seems to fluctuate depending on the
concentration or the pH of the solution.
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