Stereoselective Route to Functionalized cis-Hydrindanes from Tricyclo[5.2.1.02,6]decan-10-ones. A Total Synthesis of (\pm)-Coronafacic Acid

Goverdhan Mehta* and Marapaka Praveen

School of Chemistry, University of Hyderabad, Hyderabad 500 134, India
A flexible approach to functionalized cis-hydrindanes via Haller-Bauer type cleavage of endo-tricyclo[5.2.1.02,6]decan-10-ones is delineated and its efficacy demonstrated through a concise synthesis of (\pm)-coronafacic acid.

Natural products based entirely on the cis-hydrindane skeleton or embodying this system as the core unit in their structure, e.g. 1-3 have been frequently encountered in recent years and evoked considerable synthetic interest. ${ }^{1}$ That many of these compounds also exhibit biological activity and are endowed with diverse functionalization and stereochemical patterns has further enhanced their synthetic appeal. We have conceived a short, stereocontrolled approach, offering considerable latitude in terms of functionalization, to the cishydrindane system from readily and abundantly available endo-tricyclo[5.2.1.02.6]deca-4,8-diene-3,10-dione 4. ${ }^{2}$ The tricyclic ring system of 4 has been deployed previously in natural product synthesis, but these efforts have focused on the extraction of either the endo-five membered ring via a retro-Diels-Alder reaction ${ }^{3 a}$ or the diquinane moiety through

1 Coronafacic acid

2 illudol

the oxidative cleavage of the norbornene double bond from appropriately elaborated precursors. ${ }^{2 c, 3}$ Our interest was to retrieve the hydrindane moiety (heavy lined) from 4 through the removal of the C-10-bridge and towards this end we have employed the hydroxide mediated Haller-Bauer type cleavage of the non-enolizable ketones as the key step. ${ }^{4} \dagger$ Herein, we describe a very short entry into several cishydrindanes, with variation in substitution from a single precursor 4 and as an illustration of their utility report a synthesis of (\pm)-coronafacic acid $\mathbf{1}$, a phytotoxin isolated from the culture broth of Pseudomonas coronafacience. ${ }^{5}$
The endo-tricyclic enone 4^{2} with a masked C-10-carbonyl group proved to be a highly profitable starting material in which the enone moiety could be readily elaborated to generate the desired features before unmasking the C -10carbonyl group for a variant of the Haller-Bauer cleavage.

$\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$
Scheme 1 Reagents and conditions: (i) ref. 2(c); (ii) 60\% aq. $\mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp., $2-3 \mathrm{~h}, 90 \%$; (iii) $\mathrm{MeLi}-\mathrm{CuBr}$, (Me) $)_{2} \mathrm{~S}$, diethyl ether, $-23^{\circ} \mathrm{C}, 68 \%$; (iv) MeLi-diethyl ether and pyridinium chlorochromate- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Celite), 67%; (v) $\mathrm{LiAlH}(\mathrm{OMe})_{3}$-tetrahydrofuran, $\mathrm{CuBr},-78{ }^{\circ} \mathrm{C}, 60 \%$; (vi) $\mathrm{Li}(\mathrm{Me})_{2} \mathrm{Cu}-\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$, diethyl ether, $-15^{\circ} \mathrm{C}$, room temp., 60%; (viii) Amberlyst- 15 , moist (Me) ${ }_{2} \mathrm{CO}$, room temp., $10 \mathrm{~h}, 85-90 \%$; (viii) 30% aq. $\mathrm{NaOH}-$ benzene, heat, $2-3 \mathrm{~h}, 60-70 \%$; (ix) as (viii) but 36 h

[^0]Thus, in short sequences 4 could be elaborated into HallerBauer precursors $5-9 \ddagger$ as summarized in Scheme 1.
On refluxing 5-9 in a biphasic medium (30% aq. $\mathrm{NaOH}-$ benzene) for few hours and subjecting the crude product to diazomethane esterification, bicyclic esters $\mathbf{1 0 - 1 4}$ could be obtained readily in $60-70 \%$ yield. The structures of the bicyclic esters follow from their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data \ddagger and the X-ray crystal structure of a derivative of $\mathbf{1 4}$. Some features with regard to the ready formation of cis-hydrindanes $\mathbf{1 0 - 1 4}$ merit further comment. The Haller-Bauer cleavage consistently exhibits good regioselectivity with preferential C(1)$\mathrm{C}(10)$ bond scission, possibly guided by the bystander $\mathrm{C}(3)$-electron withdrawing substituent.§ The isolated double bond in the product migrated under the basic reaction conditions to furnish α, β-unsaturated esters $\mathbf{1 0 - 1 4}$ in all cases but no epimerization at the ring junction was observed.

While 10-14 are serviceable for the synthesis of various natural products, we exemplify their utility through a new synthesis of (\pm)-coronafacic acid 1 , a frequently pursued synthetic objective. ${ }^{6}$ Protection of the carbonyl group in 10 to 15 and allylic oxidation [$\mathrm{Bu}^{t} \mathrm{O}_{2} \mathrm{H}$-pyridinium dichromate (PDC) $]^{7}$ furnished the enone ester 16 . Ethylidenation of 16 led to 17 , which underwent regio- and stereo-selective hydrogenation from the convex face to 18 in which the endo-ethyl group stereochemistry was fully secured. Exposure of $\mathbf{1 8}$ to dil. HCl led to the hydrolysis of both the acetal and the ester groups and coronafacic acid 1, m.p. $120^{\circ} \mathrm{C}$, identical (IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) with the natural product, was obtained in a short, simple sequence, Scheme 2.
Since recent reports indicate that tricyclodecane systems related to $\mathbf{4}$ can be obtained in both the enantiomeric forms through biotransformations, ${ }^{3 c, d}$ our approach can be readily adapted for the synthesis of chiral cis-hydrindanes as well.

Scheme 2 Reagents and conditions: (i) $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$, toluene-p-sulfonic acid, benzene, 95%; (ii) PDC , $\mathrm{But}^{4} \mathrm{O}_{2} \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{6}$, Celite, room temp., 61%; (iii) $\mathrm{Ph}_{3} \mathrm{P}^{+}-\mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{Br}^{-}$, $\mathrm{BuLi}, \mathrm{C}_{6} \mathrm{H}_{6}$, room temp., 57%; (iv) $10 \% \mathrm{Pd}-\mathrm{C}$, EtOAc, room temp., $5 \mathrm{~min}, 86 \%$; (v) $\mathrm{HCl}\left(2.5 \mathrm{~mol} \mathrm{dm}^{-3}\right)$, heat, $3 \mathrm{~h}, 70 \%$
\ddagger All compounds in Scheme 1, except 4 and 5, are new and were characterized on the basis of their spectral (IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) and analytical data. ${ }^{13} \mathrm{C}$ NMR values for the key compounds are as follows. 10: $\delta 220.6,167.2,140.6,131.6,51.5,46.5,36.9,35.6,27.2$, 23.8 and 19.3. 11: $\delta 220.5,167.7,140.6,132.1,51.6,45.3,44.9,42.2$, $35.0,23.0,20.7$ and 20.0. 12: $\delta 220.2,167.9,141.4,130.1,51.5,46.4$, $45.3,38.7,32.3,24.2,21.8$ and 18.3. 13: $\delta 220.4,169.3,140.6,132.1$, $53.4,51.7,46.8,44.7,39.9,30.2,25.8,22.9$ and 22.3. 14: 162.0, 139.8, $133.4,83.2,51.4,46.0,42.0,40.9,33.8,30.0,25.2,25.0$ and 18.4. 1: δ $220.1,171.4,146.9,131.0,46.7,38.2,38.0,36.2,28.2,27.8,25.9$ and 11.3.
\S In the case of the $\mathbf{7 \rightarrow \mathbf { 1 2 }}$ transformation, a small amount ($\approx 15 \%$) of the other isomer was detected (NMR) but not isolated.

We thank Professor V. Pattabhi, University of Madras for the X-ray crystal structure determination and Professor Ichihara for comparison spectra.

Received, 7th June 1993; Com. 3/03215I

References

1 C. H. Heathcock, S. L. Graham, M. C. Pirrung, F. Plavac and C. T. White, The Total Synthesis of Natural Products, vol. 5, ed. J. W. ApSimon, Wiley, New York, 1983; E. J. Corey and X.-M. Cheng, The Logic of Chemical Synthesis, Wiley, New York, 1989, pp. 359-425.
2 (a) N. B. Chapman, J. M. Key and K. J. Toyne, J. Org. Chem., 1970, 35, 3860; (b) L. A. Paquette, P. R. James and G. Klein J. Org. Chem., 1978, 43, 1287; (c) P. F. Schuda, H. L. Ammon, M. R. Heimann and S. Bhattacharjee, J. Org. Chem., 1982, 47, 3434.

3 (a) Review, M.-C. Lasne and J. L. Ripoll, Synthesis, 1985, 121; (b) J. M. J. Verloak, A. J. H. Klunder and B. Zwanenburg, Tetrahedron Lett., 1982, 5463 and earlier papers; (c) A. J. H. Klunder, W. B. Huizinga, P. J. M. Sessink and B. Zwanenburg, Tetrahedron Lett., 1987, 307; (d) S. Takano, K. Inomato and K. Ogasawara, J. Chem. Soc., Chem. Commun., 1989, 271; (e) A. P. Marchand and V. Vidyasagar, J. Org. Chem., 1988, 53, 4412;
(f) Z.-Y. Liu and X.-J. Chu, Tetrahedron Lett., 1993, 34, 3885; (g) S. Abramson and B. Fuchs, Tetrahedron Lett., 21, 1165, 1980 report the formation of a cis-hydrindane during the photodecarbonylation of 5 .
4 For some general references, see: K. E. Hamlin and A. W. Weston, Org. React., 1957, 9, 1; P. G. Gassman, J. T. Lumb and F. V. Zalar, J. Am. Chem. Soc., 1967, 89, 946; L. A. Paquette and G. D. Maynard, J. Org. Chem., 1989, 54, 5054 and earlier related papers of mechanistic interest.
5 A. Ichihara, K. Shiraishi, H. Sato, S. Sakamura, K. Nishiyama, R. Sakai, A. Furusaki and T. Matsumoto, J. Am. Chem. Soc., 1977, 99, 636.
6 For earlier syntheses of 1, see (a) A. Ichihara, R. Kimura, K. Moriyasu and S. Sakamura, Tetrahedron Lett., 1977, 4331; (b) A. Ichihara, R. Kimura, S. Yamada and S. Sakamura, J. Am. Chem. Soc., 1980, 102, 6355; (c) M. E. Jung and J. P. Hudspeth, J. Am. Chem. Soc., 1980, 102, 2463; (d) J. Tsuji, Pure Appl. Chem., 1981, 53, 1371; (e) M. Nakayama, S. Ohira, Y. Okamura and S. Soga, Chem. Lett., 1981, 731; (f) M. E. Jung and K. M. Halweg, Tetrahedron Lett., 1981, 2735; (g) M. Nakayama and S. Ohira, Agric. Biol. Chem., 1983, 47, 1689; (h) H.-J. Liu and M. Llinas-Brunet, Can. J. Chem., 1984, 62, 1747; (i) S. Ohira, Bull. Chem. Soc. Jpn., 1984. 57, 1902; (j) N. K. Bhamare, J. Granger, T. S. Macas and P. Yates, J. Chem. Soc., Chem. Commun., 1990, 739.

7 N. Chidambaram and S. Chandrasekharan, J. Org. Chem., 1987, 52, 5048.

[^0]: \dagger To our knowledge, Haller-Bauer cleavage on the tricyclo[5.2.1.0 $0^{2,6}$]decan-10-one system has not been reported before.

