RESEARCH NOTE

NMR spectra of some fluorosilyl amines

(Received 22 August 1970)

Abstract—The 1 H and 19 F nuclear magnetic resonance spectra of a number of F_{8} Sı— and —Sı F_{2} — amines are reported and discussed.

Introduction

The proton magnetic resonance spectra of H_2Si —derivatives have been employed extensively for diagnostic purposes, and proved especially useful in identifying the products of the reactions of CO_2 , OCS and CS_2 with silylamines [1, 2].

RESULTS AND DISCUSSION

The NMR parameters of some analogous fluorosilyl amines are given in Table 1. The observation of the couplings $^4J({\rm F}\ldots{\rm H})$ in several of the spectra indicates that ${\rm F_3Si-}$ (and $-{\rm SiF_2-}$) group exchange is slow on an NMR time scale. There is no evidence from the spectra that the α -methylene protons in ${\rm F_3SiNEt_2}$ are magnetically non-equivalent, consistent with the planar heavy-atom skeleton found [3] for ${\rm F_3SiNMe_2}$ by electron diffraction. The $^{29}{\rm Si-}{\rm F}$ coupling constant is significantly greater in the $-{\rm SiF_2-}$ than in the ${\rm F_3Si-}$ derivatives; a similar difference has been reported [4] for other SiF compounds. The NMR parameters for ${\rm F_3SiNMe_2}$ are in agreement with those reported [5] previously for a solution in ${\rm CCl_3F}$ ($\phi=156.5$ ppm, $\tau=7.42$ ppm, $^1J(^{29}{\rm Si-}{\rm F})=201.4$ Hz, $^4J({\rm F}\ldots{\rm H})$ not reported).

Samples containing F_3SiNMe_2 and CO_2 , OCS or CS_2 , in the approximate mole ratio 1:2, exhibited only the trifluorosilyl dimethylamine ¹H and ¹⁹F NMR spectra. This is in contrast to the rapid insertion reactions [1] of these compounds with H_3SiNMe_2 to give $H_3SiOC(O)NMe_2$ etc.

EXPERIMENTAL

Trifluorosilyl-piperidine[6], -t-butylamine[6], -dimethylamine[3] and $F_2S1(NMe_2)_2$ [7] were prepared and purified as described previously. Trifluorosilyl diethylamine was obtained by heating SiF_4 (7·7 m-mole) and Me_3SiNEt_2 (2·5 m-mole) to 150° for 45 min in a sealed tube, and was purified by repeated fractional condensation in vacuo. A tensiometrically pure sample (v.p. = 11 mm at $-23\cdot5^\circ$ C) having M=155(calc. $157\cdot1$) was taken as F_3SiNEt_2 . The analogous reaction of SiF_4 with Me_3SiNMe_2 has been reported [5] to yield F_3SiNMe_2 . The vapour phase reaction between methylamine (9·1 m-mole) and trifluorosilyl bromide (6·4 m-mole) yielded a white involatile solid and $(F_3Si)_2NMe$ (0·7 m-mole); the $-45/-96^\circ$ fraction of the volatiles (M=208, calc. for $(F_3Si)_2NMe$, 198) was used to obtain the NMR spectra. This compound readily disproportionated to SiF_4 , an involatile white solid, and a sublimable crystalline compound. The mass spectrum of the latter exhibited a base peak (intensity 100) corresponding to

^[1] E. A. V. EBSWORTH, G. ROCKTASCHEL and J. C. THOMPSON, J. Chem. Soc. 362 (1967).

^[2] C. GLIDEWELL and D. W. H. RANKIN, J. Chem. Soc. 279 (1970).

^[3] W. AIREY, C. GLIDEWELL, A. G. ROBIETTE, G. M. SHELDRICK and J. M. FREEMAN, J. Mol. Struct., in press.

^[4] S. G. Frankiss, J. Phys. Chem. 71, 3418 (1967).

^[5] J. J. Moscony and A. G. Macdiarmid, Chem. Commun. 307 (1965).

^[6] B. J. AYLETT, I. A. ELLIS and C. J. PORRITT, Chem. Ind. 499 (1970).

^[7] M. ALLAN, B. J. AYLETT and I. A. ELLIS, Inorg. Nucl. Chem. Letters 2, 261 (1966).

e.s.d.

Molecule	ϕ ppm	$ au_{lpha} \; \mathrm{ppm}$	$ au_{m{eta}} \; ext{ppm}$	¹ J(²⁹ S1—F) (Hz)	⁴ J(F H) (Hz)
F ₃ S ₁ NMe ₂	157.3	7 45		202	1.1
F ₃ S ₁ NEt ₂	154.0	7.08	8.92*	206	1.1
F ₃ S ₁ NC ₅ H ₁₀	156.3	7.04	8.44†	202	<1
F ₃ SıNH ^t Bu	147.7		8.77	204	
$(\mathbf{F_3S_1})_2\mathbf{NMe}$	152 9	7.18		204	0·4t
$F_2S_1(NMe_2)_2$	$152 \cdot 6$	7.50		219	1.1
$(F_2SiNMe)_3$	151.3	7.31		218	<0.3

 ± 0.02

 ± 2

Table 1. NMR parameters

 ± 0.02

 ± 1.0

 $S_{13}F_6N_3C_3H_8^+$ and a molecular ion (intensity 87) for $S_{13}F_6N_3C_3H_9^+$; it was therefore assumed to be the trimer (F_2S_1NMe)₃. A weak molecular ion (intensity 2) for the tetramer suggested that traces of other oligomers might also be present.

Proton spectra were recorded using a Varian Associates HA 100 spectrometer at 100 MHz, and fluorine spectra using a Perkin–Elmer R 10 spectrometer at 56.46 MHz. Samples were prepared as dilute solutions in CCl_3F ($\phi=0.0$) containing about 10% Me₄Si ($\tau=10.00$). Appreciable white precipitates formed on standing in the $(F_3S_1)_2NMe$ and $F_3S_1NMe_2/CO_2$ tubes, and traces in most of the others.

Acknowledgement—One of us (W. A.) thanks the S.R.C. for a maintenance grant.

University Chemical Laboratory Lensfield Road Cambridge

Westfield College Hampstead, London N.W.3 W. AIREY G. M. SHELDRICK

 ± 0.2

B. J. AYLETT I. A. ELLIS

^{*} ${}^{3}J(H ... H) = 7.3 Hz.$

[†] β plus γ . The H . . . H couplings were not resolved.

[‡] not fully resolved.