A NOVEL ACYLATED FLAVONOID GLYCOSIDE FROM ASTRAGALUS COMPLANATUS 1)

Baoliang Cui, Junei Kinjo, Motoyuki Nakamura, and Toshihiro Nohara^{*}

Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862, Japan

Abstract: A novel flavonoid glycoside acylated with a sesquiterpene, dihydrophaseic acid, was obtained from the seeds of Astragalus complanatus R. BR.

Astragali Semen, the seeds of Astragalus complanatus R. BR. (Leguminosae), has been used as a tonic in the traditional Chinese medicine. In the preceding paper,²⁾ we reported the occurrence of the oleanene glycosides in the methanolic extract of the title plant. We now present a paper of a novel flavonoid glycoside acylated with an abscisic acid-type sesquiterpene, designated as complanatin.

Complanatin (1), pale yellow needles, mp 192-4°C, $[\alpha]_{\rm D}$ +0.5° (MeOH), showed a peak due to $[M+1]^+$ at m/z 889 in the positive FAB-MS, UV absorption peaks $[\lambda max 267 \ (\log \varepsilon \ 4.88), 340 \ (\log \varepsilon \ 4.39)]$, and IR absorptions (cm⁻¹) at 3428 (OH), 1705 (ester carbonyl), 1658 (conjugated carbonyl) and 1602 (aromatic ring). The ¹H- and ¹³C-NMR spectra of **1**³) displayed that it was constituted with a flavonoid portion, glycosidic parts and a sesquiterpene moiety as listed in Table I. Since the appearance of the ester linkage was suggested, **1** was saponified with alkaline to afford a flavonoid derivative (**2**), pale yellow crystals, mp 271-3°C, $[\alpha]_{\rm D}$ +28.0° (DMSO-d₆), positive FAB-MS (m/z): 625 [M+1]⁺ and a sesquiterpene moiety (**3**), a resin, $[\alpha]_{\rm D}$ -72.6° (CHCl₃), EI-MS (m/z): 296 (M⁺).

The ¹H-NMR signals (in DMSO-d₆) [δ 6.38 (1H, d, J=2.2 Hz), 6.77 (1H, d, J=2.2 Hz), 7.17 (2H, d, J=8.8 Hz), 8.17 (2H, d, J=8.8 Hz), 12.56 (1H, s), 3.87 (3H, s)] of **2** could assign its structure to be a 3,5,7,4'-tetrahydroxyflavone (kaempferol) derivative. It was furthermore suggested to possess one methoxyl group at C-7 by the NOE experiment and subsequently two terminal glucosyl moieties [two anomeric proton signals at δ 5.50 (1H, d, J=7.3 Hz) and 5.04 (1H, d, J=7.3 Hz)] to attach to C-3-OH and C-4'-OH, respectively, by the ¹³C-NMR spectrum.⁴)

	1	2	3	4	5
Flavone moiety					
C-2	156.3	156.4			146.1
3	133.9	134.0			136.6
4	177.6	177.7			176.2
5	160.8	160.9			160.3
6	97.5	98.0			97.4
7	165.1	165.2			165.0
8	92.2	92.4			92.0
9	155.6	155.9			156.1
10	105.0	105.1			104.0
1'	124.0	123.6			124.7
2 '	130.6	130.7			129.2
3'	116.5	115.8			116.1
4 '	158.6	159.3			157.9
5 '	116.5	115.8			116.1
6'	130.6	130.7			129.2
Me0-7	56.0	56.2			56.0
3-0-glc					
C-1	100.7	100.8			
2	74,1	74.2			
3	76.3	76.5			
4	69.8	69.9			
5	77.5	77.6			
6	60,8	60.9			
4'-0-glc					
C-1	97.8	99.9			97.6
2	74.0	73.2			74.0
3	72.6	76.4			72.6
4	69.7	69.6			69.8
5	77.1	77.1			77,2
6	60.3	60.7			60.3
Terpene moiety					
C-1	48.1		48.4	48.3	48.1
2	43.8		43.5	52.5	43.7
3	63.8		65.3	208.1	63.8
4	45.4		45.0	52.8	45.4
5	81.5		82.4	82.3	81.5
7	75.3		76.3	77.6	75.2
8	85.7		86.0	85.8	85.7
1'	136.1		133.3	131.8	136.1
2 '	116.5		116.5	118.8	116.5
3'	151.2		149.9	149.0	151.2
4 '	129.3		130.5	131.2	129.2
5'	163.9		166.6	166.5	163.9
Me-1	16.1		16.0	15.7	16.1
Me-5	19.4		19.1	18.9	19.4
Me-3'	20.7		21.2	21.1	20.7
MeO-5'			51.2	51.3	

Table I $^{13}\mbox{C-NMR}$ Spectral Data for 1,~2,~3,~4 and 5

These assignments were made by $^{1}\mathrm{H}\text{--}^{13}\mathrm{C}$ COSY experiment.

1, 2 and 5 were measured in DMSO-d₆; 3 and 4 were in CDCl₃.

On the other hand, the ¹H-NMR spectrum (in CDCl₃) of **3** showed signals due to two methyl groups (δ 0.89, 1.11, each s), one vinyl methyl (δ 1.99, d, J=1.5 Hz), one methoxyl group (δ 3.65, s), three olefinic protons [δ 5.69 (1H, s), 6.36 (1H, d, J=16.1 Hz), 7.95 (1H, d, J=16.1 Hz)], a methylene group bearing oxygen atom [δ 3.69 (1H, d, J=7.7 Hz), 3.74 (1H, dd, J=7.7, 2.2 Hz)], methine group adjacent to the hydroxyl group [δ 4.22 (1H, dddd, J=10.6, 10.3, 7.0, 7.0 Hz), and other methylene signals [δ 1.60 (1H, dd, J=13.6, 10.6 Hz), 1.67 (1H, dd, J=13.6, 10.3 Hz), 1.84 (1H, ddd, J=13.6, 7.0, 1.5 Hz), 2.10 (1H, ddd, J=13.6, 7.0, 1.5 Hz)] attributable to a sesquiterpene moiety, methyl dihydrophaseate,⁵) which was derived from (-)-methyl phaseate^{6,7}) by reduction with NaBH₄. Oxidation of **3** with chromic acid yielded a product (**4**),⁸ [α]_D -26.7° (CHCl₃), being identical with (-)-methyl phaseate in respects with specific rotation, ¹H- and ¹³C-NMR spectra.

Meanwhile, enzymatic hydrolysis of **1** provided a sole product (5),⁹⁾ which was estimated as a deglucosyl compound of **1** by the FAB-MS {[M+1]⁺ at m/z 727} and ¹³C-NMR spectrum. Moreover, the ¹³C-NMR spectrum revealed that the acylated glucosyl moiety attached to the C-4'-OH and furthermore the sesquiterpene residue linked to the C-2 hydroxyl group of glucosyl moiety [acylation shifts (ppm): C-1, δ 97.6(-2.3); C-2, δ 74.0(+0.8); C-3, δ 72.6 (-3.8)],¹⁰ whose ¹H-NMR spectrum also supported by the fact that signals due to H-1 and H-2 appeared at δ 5.83 (1H, d, J=8.1 Hz) and 5.94 (1H, dd, J=8.1, 9.5 Hz), respectively, being substantiated by the ¹H-1H COSY.

Consequently, the structure of complanatin (1) was determined as shown in the formula. A novel flavonoid glycoside acylated with sesquiterpene is firstly reported.

Structure of 1

REFERENCES AND NOTES

1. Part 25 in the series of studies on the constituens of leguminous plants.

- Cui, B. L.; Sakai, Y.; Takeshita, T.; Kinjo, J.; Nohara, T. Chem. Pharm. Bull., submitted.
- 3. The ¹H-NMR spectrum of **1** (δ ppm, in DMSO-d₆): flavone moiety, 3.86 (3H, s, MeO-7), 6.37 (1H, d, J=2.2 Hz, H-6), 6.73 (1H, d, J=2.2 Hz, H-8), 7.12(2H, d, J=8.8 Hz, H-3', 5'), 8.15 (2H, d, J=8.8 Hz, H-2', 6'), 12.54 (1H, s, HO-5); sugar anomeric protons, 5.52 (1H, d, J=7.7 Hz, 3-O-glc H-1), 5.35 (1H, d, J=7.3 Hz, 4'-O-glc H-1); terpene moiety, 0.87 (3H, s, Me-1), 1.03 (3H, s, Me-5), 1.57 (1H, br t, Ha-2), 1.64 (1H, br t, Ha-4), 1.74 (1H, dd, J=13.2, 6.6 Hz, Hb-2), 1.90 (1H, dd, J=13.2, 6.2 Hz, Hb-4), 2.07 (3H, s, Me-3'), 3.55 (1H, d, J=8.1 Hz, Ha-7), 3.77 (1H, d, J=8.1 Hz, Hb-7), 3.93 (1H, m, H-3), 5.78 (1H, s, H-4'), 6.53 (1H, d, J=15.8 Hz, H-2'), 7.98 (1H, d, J=15.4 Hz, H-1').
- 4. Markham, K. R.; Ternai, B; Stanley, R.; Geiger, H.; Mabry, T. J. Tetrahcdron, 1978, 34, 1389-1396.
- 5. Milborrow, B. V. Phytochemistry, 1975, 14, 1045.
- 6. MacMillan, J.; Pryce, R. J. Chem. Soc., Chem. Commun., 1968, 124.
- Kitahara, T.; Touhara, K.; Watanabe, H.; Mori, K. Tetrahedron, 1989, 45, 6387.
- 8. The ¹H-NMR spectrum of **4** (δ ppm, in CDCl₃): 1.04 (3H, s, Me-1), 1.25 (3H, s, Me-5), 2.02 (3H, s, Me-3'), 2.48 (1H, d, J=18.5 Hz, Ha-2), 2.55 (1H, dd, J=18.5, 2.6 Hz, Hb-2), 2.64 (2H, br t, H-4), 3.73 (3H, s, Me-5'), 3.78 (1H, d, J=8.1 Hz, Ha-7), 3.98 (1H, dd, J=8.1, 2.6 Hz, Hb-7), 5.80 (1H, s, H-4'), 6.23 (1H, d, J=16.1 Hz, H-2'), 8.15 (1H, d, J=15.8 Hz, H-1').
- 9. The ¹H-NMR spectrum of **5** (δ ppm, in pyridine-d₆): flavone moiety, 3.80 (3H, s, MeO-7), 6.60 (1H, d, J=2.2 Hz, H-6), 6.70 (1H, d, J=2.2 Hz, H-8), 7.47 (2H, d, J=9.2 Hz, H-3',5'), 8.43 (2H, d, J=9.2 Hz, H-2',6'); sugar moiety, 4.23 (1H, overlapped with other signal, H-5), 4.37 (1H, dd, J=8.8, 9.2 Hz, H-4), 4.38 (1H, d, J=12.1 Hz, Hb-6), 4.48 (1H, dd, J=8.8, 9.5 Hz, H-3), 4.59 (1H, br d, J=12.1 Hz, Ha-6), 5.83 (1H, d, J=8.1 Hz, H-1), 5.94 (1H, dd, J=8.1, 9.5 Hz, H-2); terpene moiety, 1.22 (3H, s, Me-1), 1.51 (3H, s, Me-5), 1.88 (3H, d, J=1.1 Hz, Me-3'), 2.19 (1H, br t, Ha-4), 2.20 (1H, dd, J=13.2, 7.3 Hz, Ha-2), 2.27 (1H, dd J=13.6, 10.3 Hz, Hb-4), 2.53 (1H, dd, J=13.2, 7.0, 1.8 Hz, Hb-2), 3.94 (1H, d, J=7.3 Hz, Ha-7), 4.24 (1H, d, J=7.3 Hz, Hb-7), 4.71 (1H, tdd, J=10.3, 7.3, 7.0 Hz, H-3), 5.92 (1H, s, H-4'), 6.93 (1H, d, J=15.8 Hz, H-2'), 8.86 (1H, d, J=15.8 Hz, H-1').
- 10. Dorman, D. E.; Roberts, J. D. J. Am. Chem. Soc., 1971, 93, 4463.

(Received in Japan 20 June 1991)