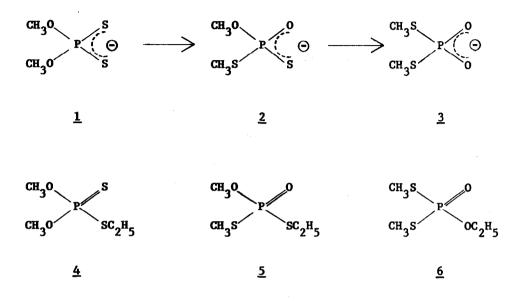
STUDIES OF SODIUM 0,0-DIMETHYLPHOSPHORODITHIOATE AND ITS ISOMERS

C. K. Tseng and James H.-H. Chan

Stauffer Chemical Company, Western Research Center,

Richmond, California 94804


(Received in USA 22 January 1971; received in UK for publication 15 February 1971)

Previous studies by Kabachnik and co-workers¹ have shown, by the use of the Hammett relationship, that phosphorothioic acids exist as the thione and thiol forms. Discrepancies in structural assignments as to whether the product was a thionate or thiolate from the reaction of potassium 0,0-diethylphosphorothioate with methyl chloroformate, were also reported^{2,3}.

We have observed that an aqueous solution of sodium 0,0-dimethylphosphorodithioate (1) isomerizes under mild heating (60°C) to sodium 0,S-dimethylphosphorodithioate (2) and sodium S,S-dimethylphosphorodithioate (3). When a mixture of 1, 2 and 3 was allowed to react with ethyl iodide, 0,0-dimethyl-S-ethylphosphorodithioate (4) and 0,S-dimethyl-S-ethylphosphorodithioate (5) were formed. No 0,S-dimethyl-0-ethylphosphorodithioate, the 0-ethylated product, was detected. Analysis of the solution showed that it contained only unreacted sodium salt 3. Under forcing conditions (heating at 90-95°C under autogenous pressure), 3 was found to react with ethyl iodide to give S,S-dimethyl-0-ethylphosphoro-

699

dithioate (6). The reaction products were isolated by preparative gas chromatography and characterized by NMR and infrared spectrometric methods.

Since no 0,S-dimethyl-O-ethylphosphorodithioate was detected, it is evident that the sulfur atom, rather than the oxygen atom, reacts preferentially with ethyl iodide. The relative reactivity of $\underline{1}$ and $\underline{3}$ further supports this result. The NMR chemical shifts and coupling constants of the respective sodium salts and their esters are listed in the table below.

Compd. No.	Compound	∫сн ₃ s ^с (J _{HCSP}) ^d	∫сн ₃ 0 ^с (J _{НСОР}) ^d	Sch3c ^c (ј ^{нссн}) _q	Sch ₂ s ^c (J _{HCSP}) ^d	Sch ₂ o ^c (J _{HCOP}) ^d
1 ^a	S (CH ₃ 0)2 ^P -SNa	-	3.58 (14.4)	-	-	-
2 ^a	CH ₃ O CH ₃ S P SNa	2.13 (13.5)	3.57 (14.7)	-	-	
3 ^a	0 (CH ₃ S)2 ^P -ONa	2.18 (14.3)	-	-	-	-
4 ^b	сн ₃ 0)2 ^р -sс2 ^н 5	-	3.75 (15.1)	1.29 (7.3)	2.82 (16.6)	-
5 ^b	CH ₃ 0 CH ₃ S CH ₃ S CH ₃ S CH ₃ S	2.32 (16.2)	3.82 (13.6)	1.36 (7.3)	2.91 (15.6)	-
6 ^b	0 (CH ₃ S)2 ^P -0C2 ^H 5	2.32 (16.0)	-	1.35 (7.0)	_	4.23 (9.8)

Table: NMR Data of the Various Dithiophosphates and Their Salts*

* The spectra were obtained from a Varian HA-60-IL spectrometer using TMS as an internal reference.

a. Solvent CD₃OD.

b. Solvent CDC13.

c. Expressed in ppm.

d. Expressed in Hz.

The relative rate of reaction⁴ of sodium 0,0- (<u>1</u>) and sodium 0,Sdimethylphosphorodithioate (<u>2</u>) (determined by allowing a mixture of the two sodium salts to compete for a deficiency of methyl iodide-d₃) was determined by NMR spectrometric methods. The reaction was carried out at room temperature with deuterated methanol as solvent. It was found that <u>1</u> reacted 6.4 ± 0.3 times faster than <u>2</u> (i.e. $\frac{k_1}{k_2} = 6.4 \pm 0.3$).

References

- M. I. Kabachnik, T. A. Mastrukova, A. E. Shipov and T. A. Melentyeva, <u>Tetrahedron</u>, 9, 10 (1960).
- 2. J. I. G. Cadogan, J. Chem, Soc., 3067 (1961).
- A. N. Nesmeyanov and M. I. Kabachnik, <u>Experimentia</u>, <u>Suppl. II</u>, 67 (1955).
- 4. B. Rickborn and J. H.-H. Chan, J. Org. Chem., 32, 3576 (1967).