

Carbohydrate Research 311 (1998) 103-119

CARBOHYDRATE RESEARCH

Syntheses of 2,6-anhydroaldonic acids from the corresponding anhydrodeoxynitroalditols (glycopyranosylnitromethanes) and their conversion into methyl esters, amides, and alditols

Manfred Dromowicz, Peter Köll*

Department of Chemistry, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, PO Box 2503, D-26111 Oldenburg, Germany

Received 27 March 1998; accepted with revisions 10 July 1998

Abstract

2,6-Anhydroaldonic acids were obtained by oxidation of the corresponding anhydrodeoxynitroalditols (glycopyranosylnitromethanes) with hydrogen peroxide in alkaline solution. Purification was achieved via the methyl anhydroaldonates. The syntheses of five 2,6-anhydrohexonic and eight 2,6-anhydroheptonic acids were accomplished in yields of 44–81%. All corresponding unprotected and acetylated methyl 2,6-anhydroaldonates were characterised. Ammonolysis of the former afforded the corresponding amides in quantitative yields; reduction with sodium borohydride gave the analogous anhydroalditols. © 1998 Elsevier Science Ltd. All rights reserved

Keywords: 2,6-Anhydroaldonic acids; Methyl 2,6-anhydroaldonates; 2,6-Anhydroaldonamides; Anhydroalditols; Anhydroalditols

1. Introduction

The classical route to 2,6-anhydroaldonic acids was introduced by Helferich and co-workers [1] and involves conversion of *O*-protected glycopyranosyl bromides with mercury(II) cyanide into the corresponding nitriles (glycopyranosyl cyanides) [2] which are converted into the methyl esters and sodium salts of the acids [1]. The isolation of the corresponding free acids was reported 4 years later by Fuchs and Lehmann [3]. With the use of trimethylsilyl cyanide, the toxicological problems associated with mercury can be avoided and glycopyranose peracetates can be employed directly with a Lewis acid as catalyst [4]. Nevertheless, because of the formation of mixed anomers and undesired by-products, these methods cannot be considered as universally applicable for the synthesis of 2,6-anhydroaldonic acids and their derivatives.

A highly efficient alternative method has been developed in this laboratory [5]. It involves the following steps: cyclodehydration [6] of the nitroalditols obtained by the addition of nitromethane

^{*} Corresponding author.

to aldoses (Fischer–Sowden reaction [7]) and subsequent acetylation of the resultant anhydrodeoxynitroalditols (glycopyranosylnitromethanes). Treatment of these acetates with phosphorus trichloride in pyridine yields the fully acetylated glycopyranosyl cyanides very efficiently [5], and these can be hydrolysed to 2,6-anhydroaldonic acids [1,3].

In the present paper we report on a more-direct route to these acids which also starts from glycopyranosylnitromethanes and uses hydrogen peroxide as an oxidising agent.

2. Results and discussion

In 1974, Bílik [8] reported that addition of hydrogen peroxide to aqueous (and thus alkaline) solutions of sodium salts of 1-deoxy-1-nitroalditols in the presence of catalytic amounts of molybdate, tungstate, or vanadate anions led exclusively to the aldoses formed similarly in a Nef reaction [9]. The latter, by contrast, requires strong acidic reaction conditions. It was stated explicitly that the catalyst is essential for this alternative approach to higher aldoses, which circumvents the intricacies of the Nef reaction. Later on [10] it was found that a reaction, formally constituting a retro-nitromethane addition, competes at high pH.

In 1980, Olah et al. [11] reported more generally on the transformation of primary and secondary nitroalkanes into aldehydes and ketones, respectively, in yields between 76 and 96% by treatment with hydrogen peroxide (30%) in methanol–water in the presence of potassium carbonate. We applied these reaction conditions, which do not demand contamination of the reaction mixture by a catalyst, to the readily available deoxynitroalditols and their 2,6-anhydrides, with the objective of preparing aldoses and anhydroaldoses, in spite of the aforementioned statements of the previous authors [8,10].

By oxidation of acyclic nitroalditols with hydrogen peroxide in aqueous potassium carbonate (pH \sim 14) for the reaction times given in the literature procedure [11], the aldoses derived by loss of C-1 were produced and completely degraded within several days [unpublished results]. However, when the reaction was carried out near pH 9 (sodium hydrogencarbonate), aldoses were produced by oxidative loss of the nitro group as in the Nef reaction, together with high proportions of the lower aldoses formed by loss of C-1 [unpublished results]. Only these cases resemble the Bílik reaction [8] just mentioned. At pH values below 8, no reaction occurred.

In the case of the anhydronitroalditols, entirely different results were obtained. Furanoid anhydrodeoxynitroalditols (glycofuranosylnitromethanes) generally underwent severe decomposition on treatment with hydrogen peroxide in alkaline media, and consequently these routes were not followed any further.

In contrast, pyranoid anhydrodeoxynitroalditols (glycopyranosylnitromethanes) [6], being more stable, when treated with hydrogen peroxide in aqueous potassium carbonate (pH \sim 14) at 20 °C underwent conversion into the corresponding 2,6anhydroaldonic acids [12,13]. Although most of the starting material had already been consumed after 16 h, prolongation of the reaction times from 48 up to 72h afforded almost quantitative yields. Removal of the potassium cations with exchange resin and treatment of the crude residues obtained by evaporation of the solvents with boiling dry methanol led to the corresponding methyl esters under the influence of the residual nitric acid. Two general routes (A and B) for the purification of the acids are outlined in Scheme 1. Route A (steps ab-c-d-e) involved acetylation of the crude methyl esters with acetic anhydride in pyridine and separation of the acetates by chromatography on silica gel. Deacetylation [14] and saponification, followed by acidification, gave the free aldonic acids. Route B (steps a-b-e) is more direct, but requires more sophisticated chromatographic equipment for the purification of the unprotected methyl esters.

Four pyranoid anhydrodeoxynitrohexitols (β glycopyranosylnitromethanes, derived from the pentoses L-arabinose, D-lyxose, D-ribose, and Dxylose) and eight 2,6-anhydrodeoxynitroheptitols $(\beta$ -glycopyranosylnitromethanes, derived from the eight D-hexoses), each bearing an equatorial nitromethyl group [6], were oxidised and the crude 2,6-anhydroaldonic acids were purified by the foregoing procedures. In addition, 2,6-anhydro-Daltro-hexonic acid (13a, Table 1, derived from 2,6anhydro-1-deoxy-1-nitro-D-altro-hexitol [13,15]), the α anomer of 2,6-anhydro-D-allo-hexonic acid (3b), and its esters were synthesised because of the ready availability of compounds having this configuration. In contrast to the other compounds studied, all of which have the β -configuration at

 R^1 = H, CH₂OH; R^2 = H, CH₂OAc **Route A** via steps a-b-c-d-e; **Route B** via steps a-b-e

Scheme 1. (a) H_2O_2 (30%, aq), K_2CO_3 , 20°C, 48–72 h; (b) dry MeOH, HNO₃, reflux, 16 h; (c) Ac_2O , pyridine, 20°C, 6–16 h; (d) NaOMe, dry MeOH, 20°C, 1 h; (e) NaOH (0.5 N, aq), 60°C, 2 h, then Amberlite IR-120 (H⁺); (f) NH₃, MeOH, 5°C, 6 h; (g) NaBH₄ (0.3 M, aq), Amberlite IR-120 (H⁺), 0–5°C, 12 h.

C-2 and adopt the ${}^{5}C_{2}$ conformation, **13a** and its derivatives have the α -configuration at C-2 and adopt the ${}^{2}C_{5}$ conformation. All of the compounds described therefore have the carboxyl groups in the thermodynamically favourable equatorial positions.

By treating the methyl 2,6-anhydroaldonates with cold saturated ammoniacal methanol the corresponding 2,6-anhydroaldonamides were obtained in quantitative yields. This reaction can also be applied to the per-O-acetylated methyl esters, but reaction of ammonia with the acetate groups yielded acetamide, which was difficult to separate from the desired products by fractional crystallisation. Therefore, although the 2,6-anhydroaldonic acid amides could be isolated by chromatographic methods, it is more convenient to deacetylate the protected methyl esters before ammonolysis.

On reduction of methyl 2,6-anhydroaldonates **4b** [16], **7b** [3,17,18], **8b** [3,19], and **11b** [19,20] by a modified Wolfrom and Thompson procedure [21] with aqueous sodium borohydride in the presence of cationic exchange resin, the corresponding

anhydroalditols 1,5-anhydro-L-*gluco*-hexitol (**4e**) [22], 2,6-anhydro-L-*glycero*-L-*galacto*-heptitol (**7e**, described previously [18,23] as 2,6-anhydro-D-*glycero*-L-*manno*-heptitol), the *meso* compound 2,6-anhydro-*meso*-D-*glycero*-D-*gulo*-heptitol (**8e**) [24,25,26], and 2,6-anhydro-D-*glycero*-D-*galacto*-heptitol (**11e**, the enantiomer of **7e**) [27,28] were obtained in yields greater than 90%.

Table 1 gives a survey of all compounds prepared. Their structures were confirmed by NMR data, which are summarised in Tables 2–4.

The chemical-ionisation mass spectroscopy (CIMS) fragmentation patterns (Table 5) of the hydroxy acids (**a** series) and hydroxy esters (**b** series) were characterised by loss of the C-2 substituents $([M + H]^+ - ROH \text{ and } [M + H]^+ - ROH - CO with R = H or Me)$ followed sequentially by the loss of two water molecules, and are thus analogous to those of the free aldoses [29,30]. Because of the formal loss of formaldehyde at the primary hydroxy group, the anhydroheptonic acids showed also the fragments found for their hexonic analogues. The *O*-acetylated methyl esters (**c** series), in

Table 1

2,6-Anhydroaldonic acids, their OH-free and fully O-acetylated methyl esters, their amides and four anhydroalditols

1 - 12

13

Compound	Configuration	Derived from	\mathbb{R}^1	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	R ⁸	Route	Yield%
1a	L-manno	L-arabinose	CO ₂ H	Н	ОН	ОН	Н	ОН	Н	Н	А	57 ^a
1b [17]	L-manno	L-arabinose	CO_2Me	Η	OH	OH	Η	OH	Н	Н	А	71 ^a
1c	L-manno	L-arabinose	$\overline{CO_2Me}$	Η	OAc	OAc	Η	OAc	Н	Н	А	87 ^a
1d	L-manno	L-arabinose	CONH ₂	Η	OH	OH	Η	OH	Н	Н	с	98 ^b
2a	D-galacto	D-lyxose	CO ₂ H	OH	Н	OH	Н	Н	OH	Н	В	64 ^a
2b	D-galacto	D-lyxose	CO_2Me	OH	Н	OH	Н	Н	OH	Н	В	70 ^a
2c	D-galacto	D-lyxose	$\overline{CO_2Me}$	OAc	Н	OAc	Н	Н	OAc	Н	В	91 ^a
2d	D-galacto	D-lyxose	CONH ₂	OH	Н	OH	Н	Н	OH	Н	с	93 ^b
3a	D-allo	D-ribose	CO ₂ H	Н	OH	Н	OH	Н	OH	Н	В	59 ^a
3b	D-allo	D-ribose	CO_2Me	Н	OH	Н	OH	Н	OH	Н	В	87^{a}
3c	D-allo	D-ribose	$CO_{2}Me$	Н	OAc	Н	OAc	Н	OAc	Н	В	71 ^a
3d	D-allo	D-ribose	CONH ₂	Н	OH	Н	OH	Н	OH	Н	с	98 ^b
4a	D-gulo	D-xvlose	CO ₂ H	Н	OH	OH	Η	Н	OH	Н	A	50 ^a
4b [16]	D-gulo	D-xvlose	CO ₂ Me	Н	ОH	OH	Н	Н	OH	Н	А	70 ^a
4c	D-gulo	D-xylose	CO_2Me	Н	OAc	OAc	Н	Н	OAc	Н	А	91 ^a
4d	D-gulo	D-xvlose	CONH ₂	Н	OH	OH	Н	Н	OH	Н	с	95 ^b
4 e	L-gluco	D-xvlose	CH ₂ OH	Н	ОH	ОH	Н	Н	OH	Н	d	90 ^b
5a	D-glycero-D-allo	D-allose	CO ₂ H	Н	OH	Н	OH	Н	OH	CH ₂ OH	В	59 ^a
5b	D-glycero-D-allo	D-allose	CO_2Me	Н	OH	Н	OH	Н	OH	CH ₂ OH	В	78 ^a
5c	D-glycero-D-allo	D-allose	CO_2Me	Η	OAc	Н	OAc	Н	OAc	CH ₂ OAc	В	73 ^a
5d	D-glycero-D-allo	D-allose	CONH ₂	Η	OH	Н	OH	Н	OH	CH ₂ OH	с	87 ^b
6a	D-glycero-D-gluco	D-altrose	CO_2H	OH	Η	Η	OH	Η	OH	CH_2OH	А	44 ^a
6b	D-glycero-D-gluco	D-altrose	CO_2Me	OH	Η	Η	OH	Η	OH	CH_2OH	А	71 ^a
6c	D-glycero-D-gluco	D-altrose	CO_2Me	OAc	Η	Η	OAc	Η	OAc	CH_2OAc	А	91 ^a
6d	D-glycero-D-gluco	D-altrose	$\overline{\text{CONH}}_2$	OH	Η	Н	OH	Н	OH	$\overline{CH_2OH}$	с	93 ^b
7a [3,17]	D-glycero-L-manno	D-galactose	CO_2H	Η	OH	OH	Н	OH	Н	CH ₂ OH	Α	54 ^a
7b [3,17,18]	D-glycero-L-manno	D-galactose	CO_2Me	Η	OH	OH	Η	OH	Η	CH ₂ OH	А	74 ^a
7c	D-glycero-L-manno	D-galactose	CO_2Me	Η	OAc	OAc	Η	OAc	Н	CH ₂ OAc	Α	90 ^a
7d [18]	D-glycero-L-manno	D-galactose	$CONH_2$	Η	OH	OH	Η	OH	Н	CH_2OH	с	92 ^ь
7e [18,23]	L-glycero-L-galacto	D-galactose	CH_2OH	Η	OH	OH	Η	OH	Н	CH_2OH	d	86 ^b
8a [3,19,26]	D-glycero-D-gulo	D-glucose	CO_2H	Η	OH	OH	Η	Н	OH	CH ₂ OH	Α	62 ^a
8b [3,19]	D-glycero-D-gulo	D-glucose	CO_2Me	Η	OH	OH	Η	Η	OH	CH ₂ OH	Α	75 ^a
8c [1,19,26,31]	D-glycero-D-gulo	D-glucose	CO_2Me	Η	OAc	OAc	Η	Η	OAc	CH ₂ OAc	А	87 ^a
8d	D-glycero-D-gulo	D-glucose	$CONH_2$	Η	OH	OH	Η	Η	OH	CH ₂ OH	с	86 ^b
8e [24–26]	D-glycero-D-gulo	D-glucose	CH ₂ OH	Η	OH	OH	Η	Η	OH	CH ₂ OH	d	89 ^b
9a	D-glycero-L-talo	D-gulose	CO_2H	Η	OH	Η	OH	OH	Н	CH_2OH	Α	75 ^a
9b	D-glycero-L-talo	D-gulose	CO_2Me	Η	OH	Н	OH	OH	Н	CH_2OH	Α	78 ^a
9c	D-glycero-L-talo	D-gulose	CO_2Me	Η	OAc	Η	OAc	OAc	Η	CH ₂ OAc	А	99 ^a
9d	D-glycero-L-talo	D-gulose	$CONH_2$	Η	OH	Η	OH	OH	Н	CH ₂ OH	с	96 ^b
10a	D-glycero-L-ido	D-idose	CO_2H	OH	Η	Н	OH	OH	Н	CH_2OH	В	81 ^a
10b	D-glycero-L-ido	D-idose	CO_2Me	OH	Η	Η	OH	OH	Н	CH ₂ OH	В	79 ^a
10c	D-glycero-L-ido	D-idose	CO_2Me	OAc	Η	Η	OAc	OAc	Н	CH ₂ OAc	В	82 ^a
10d	D-glycero-L-ido	D-idose	$CONH_2$	OH	Н	Н	OH	OH	Η	CH_2OH	с	99 ^ь
11a	D-glycero-D-galacto	D-mannose	CO_2H	OH	Н	OH	Н	Н	OH	CH ₂ OH	В	75 ^a
11b [19,20]	D-glycero-D-galacto	D-mannose	CO_2Me	OH	Н	OH	Н	Н	OH	CH ₂ OH	В	87 ^a
11c [19,32]	D-glycero-D-galacto	D-mannose	CO ₂ Me	OAc	Н	OAc	Н	Н	OAc	CH ₂ OAc	В	86 ^a
11d	D-glycero-D-galacto	D-mannose	$CONH_2$	OH	Н	OH	Н	Н	OH	CH ₂ OH	с	91 ^b
11e [27,28]	D-glycero-D-galacto	D-mannose	CH ₂ OH	OH	H	OH	H	Н	OH	CH ₂ OH	d	87 ^b
12a	D-glycero-L-altro	D-talose	CO_2H	OH	H	OH	H	OH	H	CH ₂ OH	B	65 ^a
12b	D-glycero-L-altro	D-talose	CO_2Me	OH	H	OH	H	OH	H	CH ₂ OH	B	85 ^a
12c [32]	D-glycero-L-altro	D-talose	CO_2Me	OAc	Н	OAc	Н	OAc	Н	CH_2OAc	В	77 ^a

(continued)

Table 1—contd

12d	D-glycero-L-altro	D-talose	CONH ₂ OH H OH H OH H CH ₂ OH c 92 ^b
13a	D-altro	D-ribose	CO ₂ H OH OH OH — — — e 60 ^a
13b	D-altro	D-ribose	CO ₂ Me OH OH OH — — — e 48 ^a
13c	D-altro	D-ribose	CO_2Me OAc OAc OAc $ e$ 31^a
13d	D-altro	D-ribose	CONH ₂ OH OH OH — — — c 100 ^b

^a Based on the corresponding anhydrodeoxynitroalditol.

^b Based on the corresponding methyl anhydroaldonate.

^c Ammonolysis of the corresponding methyl anhydroaldonate.

^d Reduction of the corresponding methyl anhydroaldonate.

^e Direct crystallisation.

parallel manner, lost the C-2 substituents and then two molecules of acetic acid and ketene. They, therefore, show analogous fragmentation paths to those of the acetylated aldopyranoses [29]. In addition, fragmentation of the protonated dimers $[2M+H]^+$ could be observed. Fragmentation was not detected in the cases of the amides (**d** series), only the $[M+H]^+$ and $[2M+H]^+$ species being observed. The fragmentation of the anhydroalditols was exclusively characterised by the loss of water.

In order to obtain a complete set of data, the IR spectra from the crystalline unprotected compounds and all fully *O*-acetylated methyl esters were determined. Because of the similarity of the compounds it seemed necessary for us to list the significant peaks, even in the fingerprint region.

3. Experimental

General methods.—All solvents used for reactions were distilled before use. The progress of reactions was observed by TLC (Merck, silica gel F_{254}), with detection by charring with H_2SO_4 (10%). Column chromatography was performed on silica gel 60 (Merck, $63-200 \,\mu$ m). For TLC and column chromatography the following solvent systems (s.s.) were used (v/v): s.s. 1, 7:7:6:2:2 EtOAc-EtOH-AcOH (50%)-MeOH-*n*-BuOAc; s.s. 2, 10:1 tert-BuOMe-petroleum ether (PE) (40/60); s.s. 3, 5:3:1 EtOAc–MeOH–toluene; s.s. 4, 1:1 EtOAc–PE (60-80); s.s. 5, 2:1 EtOAc-PE (60-80); s.s. 6, 3:1 EtOAc-PE (60-80); s.s. 7, 19:1 CH₂Cl₂-Me₂CO. Amberlite IR-120 (H⁺-form) cation-exchange resin and Amberlite IRA-400 (HCO₃⁻⁻-form) anion-exchange resin were employed for deionisations. Melting points were determined on the heating table of a Leitz Laborlux 12 microscope and are uncorrected. Optical rotations were measured at 20 °C with a Perkin–Elmer 241 MC polarimeter.

The samples were dissolved 24 h before measurements to allow equilibrations. The concentrations of all samples were 1% (w/v). Hydroxylic compounds were measured in H₂O, acetylated esters in CDCl₃. Elemental analyses were carried out by use of an Erba-Science analyser, model 1104. The ¹H (500.13 MHz) and ${}^{13}\text{C}$ (125.75 MHz) NMR spectra were recorded with a Bruker AMX R500 spectrometer. The assignment of signals of the carbon atoms was done by ¹H-¹³C correlated 2D-spectroscopy using the software "INVCH". The correlation of the hydrogen atoms was done in cases of doubt by ¹H⁻¹H correlated spectra with the program "COSYHH". All ¹H NMR spectra measured in D₂O were referred to internal Me₂CO (¹H δ 2.09, ${}^{13}C \delta$ 30.5). All samples measured in CDCl₃ refer to internal CHCl₃ [δ 7.24 or 77.0 (middle signal of the CDCl₃-triplet), respectively]. IR spectra were recorded on a Philips PU 9706 spectrometer. Crystalline samples were incorporated in KBr pellets. Syrupy compounds were dissolved in CCl₄ and held between NaCl monocrystalline plates. The measurements of the chemical-ionisation mass spectra (CIMS) were carried out on a Finnigan MAT 95 including the data system DEC 5000. Crystalline samples were applied directly onto the target, syrups were dissolved in H₂O or MeOH before application. The reactant gas was isobutane. For chromatographic separations by HPLC and MPLC the following equipment was used: pump: Knauer HPLC Pump 64; detector: Knauer Differential Refractometer; integrator: Shimadzu C-R3A Chromatopac; fraction collector: Isco Cygnet Fraction Collector with a Knauer Peak Detector of the type 77; HPLC: precolumn: Nucleosil 100 C18 $(30 \text{ mm} \times 16 \text{ mm})$ (Knauer), separation column: Lichrosorb RP-18 (250×25 mm) (Merck); MPLC: separation column: column "Labochrom" containing Pyrex-borosilicate glass (750×10 mm) with adjustable adapters of Labomatic, length of the gel

Table 2 ¹³C NMR data^a for 2,6-anhydroaldonic acids and derivatives, chemical shifts

	Compound	OMe
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1a ^b	_
	1b [17] ^b	53.2
	1c ^c	52.5
	1d ^b	
	2a ^b	
$2e^{\circ}$ 167.0 76.1 68.6 71.0 65.8 66.7 — 52.2 $2d^{h}$ 174.3 78.6 69.7 74.0 66.4 69.0 — — — $3b^{h}$ 172.7 74.5 69.2 70.0 66.6 64.8 — 52.2 $3b^{h}$ 172.7 74.5 69.2 70.1 66.5 64.8 — 52.2 $3d^{h}$ 175.1 74.3 69.1 70.3 66.5 64.5 — — $4b^{h}$ 171.6 78.8 71.5 77.1 69.1 69.0 ^d — 53.2 $4e^{h}$ 167.7 76.3 69.2 70.9 66.6 75.2 61.3 — $4e^{h}$ 69.1 69.7 77.8 70.0 ^d 80.6 ^d 61.2 — — 53.2 $5e^{h}$ 173.0 74.3 69.3 70.9 66.6 75.4 61.3 53.2 54.4 53.2 54.4 61.3 53.2 54.4 61.3 53.2 54.4 61.3<	2 b ^b	53.0
	2c ^c	52.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2d ^b	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3a ^b	
$3e^{c}$ 168.3 73.3 67.5 67.5 66.0 63.6	3b ^b	53.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3c ^c	52.7
$4a^b$ 173.2 78.7 71.5 77.1 68.9 68.8	3d ^b	
4b ^b 171.6 78.8 71.5 77.0 69.1 ^d 69.0 ^d — 53.3 4c ^c 167.7 76.3 69.2 71.8 68.3 66.1 — 52.8 4d ^b 174.1 79.1 71.7 77.3 69.2 69.0 — — 4e ^b 69.1 69.7 77.8 70.9 66.6 75.2 61.3 — — 5b ^b 173.0 74.3 69.3 70.9 66.6 75.4 61.3 53.3 5c ^c 168.0 73.4 67.4 67.8 66.0 72.3 62.3 52.7 6a ^b 173.9 74.1 71.0 70.1 64.1 75.7 61.7 — 6a ^b 172.4 75.8 71.0 70.0 64.2 75.8 61.8 — 7a [17] ^b 173.2 78.6 68.6 73.8 69.0 79.1 61.4 53.2 6d ^b 175.2 74.5 70.4 70.0 64.2 75.8 61.8 — 7	4a ^b	
$4c^{c}$ 167.7 76.3 69.2 71.8 68.3 66.1 — 52.8 $4d^{b}$ 174.1 79.1 71.7 77.3 69.2 69.0 — …<	4b ^b	53.2
	4c ^c	52.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4d ^b	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4e ^b	
	5a ^b	
5c° 168.0 73.4 67.4 67.8 66.0 72.3 62.3 52.7 5d° 175.4 74.0 69.3 70.9 66.5 75.0 61.2 6b° 173.9 74.1 71.0 70.1 64.1 75.7 61.7 6b° 172.4 75.8 71.0 70.0 64.1 74.3 61.7 53.0 6c° 167.2 73.5 69.0 66.0 64.8 72.1 62.7 52.2 6d° 175.2 74.5 70.4 70.0 64.2 75.8 61.8 7a [17]° 173.2 78.6 68.6 73.9 69.0 79.3 61.4 53.2 7c° 167.4 76.8 66.6 71.4 67.1 74.6 61.5 52.8 7d [18]b 174.6 61.8 80.3 67.6 74.3 69.5 78.7 61.7 8a [19]b 173.1 77.0 77.9 71.5 69.4 79.7 61.0 <td< th=""><th>5b^b</th><th>53.2</th></td<>	5b ^b	53.2
	5c ^c	52.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5d ^b	
	6a ⁰	
\mathbf{dc}^{c} 167.2 73.5 69.0 60.0 64.8 72.1 62.7 52.7 \mathbf{dd}^{b} 175.2 74.5 70.4 70.0 64.2 75.8 61.8	6D ⁰	53.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6C°	52.2
7a [17]173.278.668.673.969.079.161.4 7b [17,18] ^b 171.878.868.673.869.079.361.453.2 7c 167.476.866.671.467.174.661.552.8 7d [18] ^b 174.678.769.173.969.178.961.5 7e [18] [18] ^b 61.8 ^d 80.367.674.369.578.761.7 ^d 8a [19] ^b 173.177.077.971.569.479.761.0 8b [19] ^b 171.977.078.271.669.580.061.053.3 8c [19] ^c 167.276.469.473.468.076.162.052.5 8d ^b 174.477.178.271.969.479.661.0 8e ^b 61.479.770.177.670.179.761.4 9a ^b 174.174.766.170.369.475.261.4 9a ^b 172.775.166.270.369.475.161.5 10a ^b 173.975.166.570.269.475.161.5 10a ^b 173.975.166.570.269.475.161.5 10a ^b 172.575.468.768.768.176.361.853.0 10a ^b 172.575.468.7<		
$7b_{[17,18]}$ 171.8 76.8 66.6 71.4 67.1 74.6 61.4 53.2 $7c^{c}$ 167.4 76.8 66.6 71.4 67.1 74.6 61.5 52.8 $7d_{[18]}^{b}$ 174.6 78.7 69.1 73.9 69.1 78.9 61.5 $ 7e_{[18]}[18]^{b}$ 61.8^{d} 80.3 67.6 74.3 69.5 78.7 61.7^{d} $ 8a_{[19]^{b}$ 173.1 77.0 77.9 71.5 69.4 79.7 61.0 $ 8b_{[19]^{b}$ 171.9 77.0 78.2 71.6 69.5 80.0 61.0 53.3 $8c_{[19]^{c}$ 167.2 76.4 69.4 73.4 68.0 76.1 62.0 52.9 $8d^{b}$ 174.4 77.1 78.2 71.9 69.4 79.6 61.0 $ 8e^{b}$ 61.4 79.7 70.1 77.6 70.1 79.7 61.4 $ 9a^{b}$ 174.1 74.7 66.2 70.3 69.4 75.4 61.3 53.1 $9c^{c}$ 168.0 73.4 66.1 66.4 67.7 72.3 61.8 52.6 $9d^{b}$ 172.7 75.1 69.3^{d} 68.5^{d} 67.9 76.2 61.4 $ 9b^{b}$ 172.5 75.4 68.5^{d} 67.9 76.2 61.8 $ 10a^{b}$ 173.9 75.1 69.3^{d} 68.5^{d} 67.9 <	/a [1/] 7b [17 18]b	53.2
$7c$ 107.4 70.3 60.0 71.4 07.1 74.0 61.3 32.6 $7d [18]^b$ 174.6 78.7 69.1 73.9 69.1 78.9 61.5 $$ $7e [18] [18]^b$ 61.8^d 80.3 67.6 74.3 69.5 78.7 61.7^d $$ $8a [19]^b$ 173.1 77.0 77.9 71.5 69.4 79.7 61.0 $$ $8b [19]^b$ 171.9 77.0 78.2 71.6 69.5 80.0 61.0 $$ $8b [19]^c$ 167.2 76.4 69.4 73.4 68.0 76.1 62.0 52.9 $8d^b$ 174.4 77.1 78.2 71.9 69.4 79.6 61.0 $$ $8e^b$ 61.4 79.7 70.1 77.6 70.1 79.7 61.4 $$ $9a^b$ 174.1 74.7 66.1 70.3 69.4 75.4 61.3 53.1 $9c^c$ 168.0 73.4 66.1 60.4 67.7 72.3 61.8 52.6 $9d^b$ 172.7 75.1 66.2 70.3 69.4 75.4 61.3 53.1 $9c^c$ 168.0 73.4 66.1 66.4 67.7 72.3 61.8 52.6 $9d^b$ 172.7 75.1 66.2 70.2 69.4 75.1 61.5 $$ $10a^b$ 172.5 75.4 68.5^d 67.9 76.2 61.8 53.0 <tr< th=""><th>70 [17,10] 7 o^c</th><th>52.8</th></tr<>	70 [17,10] 7 o ^c	52.8
$7a [16]$ 174.6 174.7 60.1 150.7 60.1 16.7 61.5 $7e [18] [18]^b$ 61.8^d 80.3 67.6 74.3 69.5 78.7 61.7^d $8a [19]^b$ 173.1 77.0 77.9 71.5 69.4 79.7 61.0 $8b [19]^b$ 171.9 77.0 78.2 71.6 69.5 80.0 61.0 $ 8b [19]^c$ 167.2 76.4 69.4 73.4 68.0 76.1 62.0 52.5 $8d^b$ 174.4 77.1 78.2 71.9 69.4 79.6 61.0 $ 8e^b$ 61.4 79.7 70.1 77.6 70.1 79.7 61.4 $ 9a^b$ 174.1 74.7 66.1 70.3 69.4 75.4 61.3 53.1 $9c^c$ 168.0 73.4 66.1 60.4 67.7 72.3 61.8 52.6 $9d^b$ 172.7 75.1 66.2 70.3 69.4 75.4 61.3 53.1 $9c^c$ 168.0 73.4 66.1 66.4 67.7 72.3 61.8 52.6 $9d^b$ 172.7 75.1 66.5 70.2 69.4 75.1 61.8 52.6 $9d^b$ 172.7 75.1 66.5 70.2 69.4 75.1 61.8 52.6 $9d^b$ 172.7 75.1 66.5 70.2 69.4 75.1 61.8 52.6 $9d^b$ 175.6	7d [18] ^b	52.8
$\mathbf{r}_{1} [\mathbf{r}_{1}]^{1}$ $\mathbf{r}_{1,0}$ <thr< th=""><th>7e [18] [18]^b</th><th></th></thr<>	7e [18] [18] ^b	
b17.617.7 <	8 a [19] ^b	
8 $[19]^c$ 167.276.469.473.468.076.162.052.9 8d ^b 174.477.178.271.969.479.661.0 8e ^b 61.479.770.177.670.179.761.4 9a ^b 174.174.766.170.369.475.261.4 9a ^b 172.775.166.270.369.475.461.353.1 9c ^c 168.073.466.166.467.772.361.852.6 9d ^b 172.575.166.570.269.475.161.5 10a ^b 173.975.169.3 ^d 68.5 ^d 67.976.261.8 10b ^b 172.575.468.4 ^d 69.4 ^d 67.976.361.853.0 10b ^b 172.575.468.768.176.362.252.5 10b ^b 175.475.768.768.176.362.1 11a ^b 172.977.370.273.766.979.861.3 11b [19] ^b 171.577.570.373.666.880.061.353.1 11c [19] ^c 166.575.868.571.565.676.362.652.5	8b [19] ^b	53.3
8db 174.4 77.1 78.2 71.9 69.4 79.6 61.0 — 8eb 61.4 79.7 70.1 77.6 70.1 79.7 61.4 — 9ab 174.1 74.7 66.1 70.3 69.4 75.2 61.4 — 9bb 172.7 75.1 66.2 70.3 69.4 75.4 61.3 53.1 9cc 168.0 73.4 66.1 66.4 67.7 72.3 61.8 52.6 9db 175.6 74.7 66.5 70.2 69.4 75.1 61.5 — 10ab 175.6 74.7 66.5 70.2 69.4 75.1 61.5 — 10ab 175.6 74.7 66.5 70.2 69.4 75.1 61.5 — 10ab 172.5 75.4 68.4d 69.4d 67.9 76.3 61.8 53.0 10cc 167.6 74.2 66.3d 65.6d 64.9 72.8 62.2 52.5 10db 175.4	8c [19]°	52.9
8e ^b 61.4 79.7 70.1 77.6 70.1 79.7 61.4 — 9a ^b 174.1 74.7 66.1 70.3 69.4 75.2 61.4 — 9b ^b 172.7 75.1 66.2 70.3 69.4 75.4 61.3 53.1 9c ^c 168.0 73.4 66.1 66.4 67.7 72.3 61.8 52.6 9d ^b 175.6 74.7 66.5 70.2 69.4 75.1 61.5 — 10a ^b 173.9 75.1 69.3 ^d 68.5 ^d 67.9 76.2 61.8 — 10b ^b 172.5 75.4 68.4 ^d 69.4 ^d 67.9 76.3 61.8 53.0 10c ^c 167.6 74.2 66.3 ^d 65.6 ^d 64.9 72.8 62.2 52.5 10d ^b 175.4 75.7 68.7 68.1 76.3 62.1 — 11a ^b 172.9 77.3 70.2 73.7 66.9 79.8 61.3 53.1 11b [19] ^b	8d ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8e ^b	
9b ^b 172.7 75.1 66.2 70.3 69.4 75.4 61.3 53.1 9c ^c 168.0 73.4 66.1 66.4 67.7 72.3 61.8 52.6 9d ^b 175.6 74.7 66.5 70.2 69.4 75.1 61.5 — 10a ^b 173.9 75.1 69.3 ^d 68.5 ^d 67.9 76.2 61.8 — 10b ^b 172.5 75.4 68.4 ^d 69.4 ^d 67.9 76.3 61.8 53.0 10c ^c 167.6 74.2 66.3 ^d 65.6 ^d 64.9 72.8 62.2 52.5 10d ^b 175.4 75.7 68.7 68.1 76.3 62.1 — 11a ^b 172.9 77.3 70.2 73.7 66.9 79.8 61.3 53.1 11b [19] ^b 171.5 77.5 70.3 73.6 66.8 80.0 61.3 53.1 11c [19] ^c 166.5 75.8 68.5 71.5 65.6 76.3 62.6 52.5 <th>9a^b</th> <th></th>	9a ^b	
$9c^{c}$ 168.073.466.166.467.772.361.852.6 $9d^{b}$ 175.674.766.570.269.475.161.5 $10a^{b}$ 173.975.1 69.3^{d} 68.5^{d} 67.976.261.8 $10b^{b}$ 172.575.4 68.4^{d} 69.4^{d} 67.976.361.853.0 $10c^{c}$ 167.674.2 66.3^{d} 65.6^{d} 64.972.862.252.5 $10d^{b}$ 175.475.768.768.176.362.1 $11a^{b}$ 172.977.370.273.766.979.861.3 $11b [19]^{b}$ 171.577.570.373.666.880.061.353.1 $11c [19]^{c}$ 166.575.868.571.565.676.362.652.5	9b ^b	53.1
$9d^b$ 175.674.766.570.269.475.161.5 $10a^b$ 173.975.1 69.3^d 68.5^d 67.9 76.2 61.8 $10b^b$ 172.575.4 68.4^d 69.4^d 67.9 76.3 61.8 53.0 $10c^c$ 167.674.2 66.3^d 65.6^d 64.9 72.8 62.2 52.5 $10d^b$ 175.475.7 68.7 68.1 76.3 62.1 $11a^b$ 172.977.370.273.7 66.9 79.8 61.3 $11b [19]^b$ 171.577.570.373.6 66.8 80.0 61.3 53.1 $11c [19]^c$ 166.575.8 68.5 71.5 65.6 76.3 62.6 52.5	9c ^c	52.6
$10a^b$ 173.9 75.1 69.3^d 68.5^d 67.9 76.2 61.8 $$ $10b^b$ 172.5 75.4 68.4^d 69.4^d 67.9 76.3 61.8 53.0 $10c^c$ 167.6 74.2 66.3^d 65.6^d 64.9 72.8 62.2 52.5 $10d^b$ 175.4 75.7 68.7 68.7 68.1 76.3 62.1 $$ $11a^b$ 172.9 77.3 70.2 73.7 66.9 79.8 61.3 $$ $11b [19]^b$ 171.5 77.5 70.3 73.6 66.8 80.0 61.3 53.1 $11c [19]^c$ 166.5 75.8 68.5 71.5 65.6 76.3 62.6 52.5	9d ^b	
10bb172.575.4 68.4^{d} 69.4^{d} 67.9 76.3 61.8 53.0 10c^{c}167.674.2 66.3^{d} 65.6^{d} 64.9 72.8 62.2 52.5 10db175.475.7 68.7 68.7 68.1 76.3 62.1 $$ 11ab172.977.370.273.7 66.9 79.8 61.3 $$ 11b [19]b171.577.570.373.6 66.8 80.0 61.3 53.1 11c [19]c166.575.8 68.5 71.5 65.6 76.3 62.6 52.5	10a ^b	
$10c^c$ 167.674.2 66.3^a 65.6^a 64.9 72.8 62.2 52.5 $10d^b$ 175.475.7 68.7 68.7 68.1 76.3 62.1 $$ $11a^b$ 172.977.370.273.7 66.9 79.8 61.3 $$ $11b [19]^b$ 171.577.570.373.6 66.8 80.0 61.3 53.1 $11c [19]^c$ 166.575.8 68.5 71.5 65.6 76.3 62.6 52.5	10b ^b	53.0
$10d^{\circ}$ 175.475.768.768.768.176.362.1 $11a^{\rm b}$ 172.977.370.273.766.979.861.3 $11b [19]^{\rm b}$ 171.577.570.373.666.880.061.353.1 $11c [19]^{\rm c}$ 166.575.868.571.565.676.362.652.5	10c ^c	52.5
11a°172.977.370.273.766.979.861.3 $-$ 11b [19]b171.577.570.373.666.880.061.353.111c [19]c166.575.868.571.565.676.362.652.5	10d ^o	
116 $[19]^6$ 1 /1.5 1 /2.5 1 /2.		52.1
1101191° 166.5 /5.8 68.5 /1.5 65.6 /6.3 62.6 52.3	11b [19] ⁰	53.1
	11c [19] ^c	52.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11a°	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ^{ab}	
12a 1/2.0 70.0 70.3 09.1 00.7 79.2 01.7 $-$ 12b 171 5 78 2 70 4 60 1 68 6 70 3 61 6 53 1	12a 12h ^b	53 1
120 1/1.5 76.2 70.7 07.1 00.0 77.5 01.0 55.1 12e ^c 166.7 76.4 66.4 67.9 65.0 74.0 61.6 52.4	120 ^c	52.5
$12d^{b} 1744 786 697 690 692 793 610 52$	12d ^b	
13a ^b 172.9 78.1 70.7 68.0 68.8 70.4 $ -$	13a ^b	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13b ^b	53.1
13c ^c 167.3 76.1 66.9 67.5 66.1 68.3 $-$ 52.4	13c ^c	52.5
13d ^b 174.3 78.7 70.1 68.2 68.9 70.6 — —	13d ^b	_

^a Chemical shifts δ in ppm.
 ^b Recorded in D₂O.
 ^c Recorded in CDCl₃.
 ^d Assignments may be interchanged.

Table 3 ¹H NMR data^a for 2,6-anhydroaldonic acids and derivatives, chemical shifts

	ЭМе
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_
	3.681
	3.742
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.670
	3.723
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.676
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.718
	-
	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.681
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.722
5a ^b 4.051 3.616 4.060 3.506 3.544–3.594 3.755 ^d 3.544–3.594 ^d 5b ^b 4.094 3.612 4.051 3.501 3.532–3.582 3.748 ^d 3.532–3.582 ^d 5c ^c 4.306 5.144 5.668 4.957 3.996 4.186 4.186 5d ^b 3.938 3.579 4.051 3.515 3.565 3.586 3.752 6a ^b 4.400 4.051 3.930 3.678 3.606 3.606d 3.778 ^d 6b ^b 4.444 4.043 3.921 3.602 3.670 3.774 ^d 3.602 ^d 6c ^c 4.432 5.128 5.287 4.969 3.922 4.110–4.163 4.110–4.163 6d ^b 4.230 4.004 3.932 3.674 3.843 3.584–3.644 3.787 ^d 7a [17] ^b 3.813 3.675 3.547 3.851 3.593 3.648 3.589 7c ^c 7b [17] ^b 3.813 3.628–3.684 3.550 3.848 3.581–3.617 3.628–3.684 3.581–3.617 3.628–3.684 3.581–3.617 <td>-</td>	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.685
5db 3.938 3.579 4.051 3.515 3.565 3.586 3.752 6ab 4.400 4.051 3.930 3.678 3.606 3.606 ^d 3.778 ^d 6bb 4.444 4.043 3.921 3.602 3.670 3.774 ^d 3.602 ^d 6c ^c 4.432 5.128 5.287 4.969 3.922 4.110–4.163 4.110–4.163 6d ^b 4.230 4.004 3.932 3.674 3.584–3.644 3.584–3.644d 3.797 ^d 7a [17] ^b 3.813 3.675 3.547 3.851 3.593 3.648 3.589 7c ^c 3.971 5.346 5.079 5.427 3.919 4.145 4.145 7d ^b 3.628–3.684 3.628–3.684 3.550 3.848 3.581–3.617 3.628–3.684 3.581–3.617 8a ^b 3.386–3.446 3.845 3.386–3.446 3.302 3.350 3.598 3.767 8b ^b 3.377–3.434 3.887 3.377–3.434 3.291 3.346 3.585 3.760 8c [19,31] ^c 3.990 5.	3.730
6a ^b 4.400 4.051 3.930 3.678 3.606 3.606 ^d 3.778 ^d 6b ^b 4.444 4.043 3.921 3.602 3.670 3.774 ^d 3.602 ^d 6c ^c 4.432 5.128 5.287 4.969 3.922 4.110-4.163 4.110-4.163 6d ^b 4.230 4.004 3.932 3.674 3.584-3.644 3.584-3.644 ^d 3.797 ^d 7a [17] ^b 3.770 3.680 3.554 3.853 3.595 3.660 3.596 7b [17] ^b 3.813 3.675 3.547 3.851 3.593 3.648 3.589 3.589 7c ^c 3.971 5.346 5.079 5.427 3.919 4.145 4.145 7d ^b 3.628-3.684 3.628-3.684 3.550 3.848 3.581-3.617 3.628-3.684 3.581-3.617 8a ^b 3.386-3.446 3.845 3.386-3.446 3.302 3.350 3.598 3.767 8a ^b 3.360-3.423 3.725 3.360-3.423 3.778 3.612 3.760 8a ^b	
6bb4.4444.0433.9213.6023.6703.774d3.602d6cc4.4325.1285.2874.9693.9224.110-4.1634.110-4.1636db4.2304.0043.9323.6743.584-3.6443.584-3.644d3.797d7a [17]b3.7703.6803.5543.8533.5953.6603.5967b [17]b3.8133.6753.5473.8513.5933.6483.5897cc3.9715.3465.0795.4273.9194.1454.1457db3.628-3.6843.628-3.6843.5503.8483.581-3.6173.628-3.6843.581-3.6178ab3.386-3.4463.8453.386-3.4463.3023.3503.5983.7678bb3.377-3.4343.8873.377-3.4343.2913.3463.5853.7608c [19,31]c3.9005.1815.2385.0783.6964.2324.1338db3.360-3.4233.7253.360-3.4233.3153.3433.6123.7629ab4.0793.8613.9273.7293.7943.6353.5869bb4.1143.8523.9193.7253.7783.6233.5799cc4.2745.2385.3434.9454.1094.0674.1429db3.9583.8133.9153.7273.8093.6363.53110ab4.4253.9233.9313.5813.8023.7383.63110ab	
6c° 4.432 5.128 5.287 4.969 3.922 4.110-4.163 4.110-4.163 6db 4.230 4.004 3.932 3.674 3.584-3.644 3.584-3.644d 3.797d 7a [17]b 3.770 3.680 3.554 3.853 3.595 3.660 3.596 7b [17]b 3.813 3.675 3.547 3.851 3.593 3.648 3.589 7c° 3.971 5.346 5.079 5.427 3.919 4.145 4.145 7db 3.628-3.684 3.628-3.684 3.550 3.848 3.581-3.617 3.628-3.684 3.581-3.617 8a ^b 3.386-3.446 3.845 3.386-3.446 3.302 3.350 3.598 3.767 8b ^b 3.377-3.434 3.887 3.377-3.434 3.291 3.346 3.585 3.760 8c [19,31]° 3.990 5.181 5.238 5.078 3.696 4.232 4.133 8d ^b 3.360-3.423 3.725 3.360-3.423 3.315 3.433 3.612 3.762 9a ^b 4.079 3.861 </td <td>3.674</td>	3.674
6db4.2304.0043.9323.6743.584–3.6443.584–3.6443.797d7a [17]b3.7703.6803.5543.8533.5953.6603.5967b [17]b3.8133.6753.5473.8513.5933.6483.5897c°3.9715.3465.0795.4273.9194.1454.1457db3.628–3.6843.628–3.6843.5503.8483.581–3.6173.628–3.6843.581–3.6178ab3.386–3.4463.8453.386–3.4463.3023.3503.5983.7678bb3.377–3.4343.8873.377–3.4343.2913.3463.5853.7608c [19,31]°3.9905.1815.2385.0783.6964.2324.1338db3.360–3.4233.7253.360–3.4233.3153.3433.6123.7629ab4.0793.8613.9273.7293.7943.6353.5869bb4.1143.8523.9193.7253.7783.6233.5799c°4.2745.2385.3434.9454.1094.0674.1423.9519bb4.1143.8523.9153.7273.8093.6363.59110ab4.4253.9233.9313.5813.8063.7383.63110bb4.4683.905–3.9303.95–3.9303.5823.8023.7383.62710c°4.4535.0795.0794.8034.0834.2004.2431	3.623
7a [17] ^b 3.770 3.680 3.554 3.853 3.595 3.660 3.596 7b [17] ^b 3.813 3.675 3.547 3.851 3.593 3.648 3.589 7c ^c 3.971 5.346 5.079 5.427 3.919 4.145 4.145 7d ^b 3.628–3.684 3.628–3.684 3.550 3.848 3.581–3.617 3.628–3.684 3.581–3.617 8a ^b 3.386–3.446 3.845 3.386–3.446 3.302 3.350 3.598 3.767 8b ^b 3.377–3.434 3.887 3.377–3.434 3.291 3.346 3.585 3.760 8c [19,31] ^c 3.990 5.181 5.238 5.078 3.696 4.232 4.133 8d ^b 3.360–3.423 3.725 3.360–3.423 3.315 3.343 3.612 3.762 9a ^b 4.079 3.861 3.927 3.729 3.778 3.623 3.579 9c ^c 4.274 5.238 5.343 4.945 4.109 4.067 4.142 9d ^b 3.958 3.813 <t< td=""><td></td></t<>	
7b 17 ^b 3.813 3.675 3.547 3.851 3.593 3.648 3.589 7c ^c 3.971 5.346 5.079 5.427 3.919 4.145 4.145 7d ^b 3.628–3.684 3.628–3.684 3.550 3.848 3.581–3.617 3.628–3.684 3.581–3.617 8a ^b 3.386–3.446 3.845 3.386–3.446 3.302 3.350 3.598 3.767 8b ^b 3.377–3.434 3.887 3.377–3.434 3.291 3.346 3.585 3.760 8c [19,31] ^c 3.990 5.181 5.238 5.078 3.696 4.232 4.133 8d ^b 3.360–3.423 3.725 3.360–3.423 3.315 3.343 3.612 3.762 9a ^b 4.079 3.861 3.927 3.729 3.794 3.635 3.586 9b ^b 4.114 3.852 3.919 3.725 3.778 3.623 3.579 9c ^c 4.274 5.238 5.343 4.945 4.109 4.067 4.142 9d ^b 3.958 3.813	
$7c^{c}$ 3.971 5.346 5.079 5.427 3.919 4.145 4.145 $7d^{b}$ $3.628-3.684$ $3.628-3.684$ 3.550 3.848 $3.581-3.617$ $3.628-3.684$ $3.581-3.617$ $8a^{b}$ $3.386-3.446$ 3.845 $3.386-3.446$ 3.302 3.350 3.598 3.767 $8b^{b}$ $3.377-3.434$ 3.887 $3.377-3.434$ 3.291 3.346 3.585 3.760 $8c$ [19,31]^{c} 3.990 5.181 5.238 5.078 3.696 4.232 4.133 $8d^{b}$ $3.360-3.423$ 3.725 $3.360-3.423$ 3.315 3.343 3.612 3.762 $9a^{b}$ 4.079 3.861 3.927 3.729 3.794 3.635 3.586 $9b^{b}$ 4.114 3.852 3.919 3.725 3.778 3.623 3.579 $9c^{c}$ 4.274 5.238 5.343 4.945 4.109 4.067 4.142 $9d^{b}$ 3.958 3.813 3.915 3.727 3.809 3.636 3.591 $10a^{b}$ 4.425 3.923 3.931 3.581 3.806 3.738 3.621 $10a^{b}$ 4.425 3.926 3.872 3.580 3.814 3.746 3.647 $11a^{b}$ 4.232 4.187 3.595 3.469 3.279 3.619 3.797	3.692
$7d^b$ $3.628-3.684$ $3.628-3.684$ 3.550 3.848 $3.581-3.617$ $3.628-3.684$ $3.581-3.617$ $8a^b$ $3.386-3.446$ 3.845 $3.386-3.446$ 3.302 3.350 3.598 3.767 $8b^b$ $3.377-3.434$ 3.887 $3.377-3.434$ 3.291 3.346 3.585 3.760 $8c$ [19,31]^c 3.990 5.181 5.238 5.078 3.696 4.232 4.133 $8d^b$ $3.360-3.423$ 3.725 $3.360-3.423$ 3.315 3.343 3.612 3.762 $9a^b$ 4.079 3.861 3.927 3.729 3.794 3.635 3.586 $9b^b$ 4.114 3.852 3.919 3.725 3.778 3.623 3.579 $9c^c$ 4.274 5.238 5.343 4.945 4.109 4.067 4.142 $9d^b$ 3.958 3.813 3.915 3.727 3.809 3.636 3.591 $10a^b$ 4.425 3.923 3.931 3.581 3.806 3.738 3.631 $10b^b$ 4.468 $3.905-3.930$ $3.905-3.930$ 3.582 3.802 3.738 3.627 $10c^c$ 4.453 5.079 5.079 4.803 4.083 4.200 4.243 $10d^b$ 4.232 4.187 3.595 3.469 3.279 3.619 3.797	3.735
8a ^b 3.386–3.446 3.845 3.386–3.446 3.302 3.350 3.598 3.767 8b ^b 3.377–3.434 3.887 3.377–3.434 3.291 3.346 3.585 3.760 8c [19,31] ^c 3.990 5.181 5.238 5.078 3.696 4.232 4.133 8d ^b 3.360–3.423 3.725 3.360–3.423 3.315 3.343 3.612 3.762 9a ^b 4.079 3.861 3.927 3.729 3.794 3.635 3.586 9b ^b 4.114 3.852 3.919 3.725 3.778 3.623 3.579 9c ^c 4.274 5.238 5.343 4.945 4.109 4.067 4.142 9d ^b 3.958 3.813 3.915 3.727 3.809 3.636 3.591 10a ^b 4.425 3.923 3.931 3.581 3.806 3.738 3.627 10b ^b 4.468 3.905–3.930 3.905–3.930 3.582 3.802 3.738 3.627 10c ^c 4.453 5.079 5.079 4.	_
8b ^b 3.377–3.434 3.887 3.377–3.434 3.291 3.346 3.585 3.760 8c [19,31] ^c 3.990 5.181 5.238 5.078 3.696 4.232 4.133 8d ^b 3.360–3.423 3.725 3.360–3.423 3.315 3.343 3.612 3.762 9a ^b 4.079 3.861 3.927 3.729 3.794 3.635 3.586 9b ^b 4.114 3.852 3.919 3.725 3.778 3.623 3.579 9c ^c 4.274 5.238 5.343 4.945 4.109 4.067 4.142 9d ^b 3.958 3.813 3.915 3.727 3.809 3.636 3.591 10a ^b 4.425 3.923 3.931 3.581 3.806 3.738 3.631 10b ^b 4.468 3.905–3.930 3.905–3.930 3.582 3.802 3.738 3.627 10c ^c 4.453 5.079 5.079 4.803 4.083 4.200 4.243 4.243 10d ^b 4.235 3.926 3.872	
8c $[19,31]^c$ 3.9905.1815.2385.0783.6964.2324.1338db3.360-3.4233.7253.360-3.4233.3153.3433.6123.7629ab4.0793.8613.9273.7293.7943.6353.5869bb4.1143.8523.9193.7253.7783.6233.5799cc4.2745.2385.3434.9454.1094.0674.1429db3.9583.8133.9153.7273.8093.6363.59110ab4.4253.9233.9313.5813.8063.7383.63110bb4.4683.905-3.9303.905-3.9303.5823.8023.7383.62710cc4.4535.0795.0794.8034.0834.2004.24310db4.2353.9263.8723.5803.8143.7463.64711ab4.2324.1873.5953.4693.2793.6193.797	3.692
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.727
$\mathbf{9a^b}$ 4.0793.8613.9273.7293.7943.6353.586 $\mathbf{9b^b}$ 4.1143.8523.9193.7253.7783.6233.579 $\mathbf{9c^c}$ 4.2745.2385.3434.9454.1094.0674.142 $\mathbf{9d^b}$ 3.9583.8133.9153.7273.8093.6363.591 $\mathbf{10a^b}$ 4.4253.9233.9313.5813.8063.7383.631 $\mathbf{10b^b}$ 4.4683.905-3.9303.905-3.9303.5823.8023.7383.627 $\mathbf{10c^c}$ 4.4535.0795.0794.8034.0834.2004.243 $\mathbf{10d^b}$ 4.2353.9263.8723.5803.8143.7463.647 $\mathbf{11a^b}$ 4.2324.1873.5953.4693.2793.6193.797	
$9b^b$ 4.1143.8523.9193.7253.7783.6233.579 $9c^c$ 4.2745.2385.3434.9454.1094.0674.142 $9d^b$ 3.9583.8133.9153.7273.8093.6363.591 $10a^b$ 4.4253.9233.9313.5813.8063.7383.631 $10b^b$ 4.4683.905-3.9303.905-3.9303.5823.8023.7383.627 $10c^c$ 4.4535.0795.0794.8034.0834.2004.243 $10d^b$ 4.2353.9263.8723.5803.8143.7463.647 $11a^b$ 4.2324.1873.5953.4693.2793.6193.797	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.688
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.723
10a ^b 4.425 3.923 3.931 3.581 3.806 3.738 3.631 10b ^b 4.468 3.905–3.930 3.905–3.930 3.582 3.802 3.738 3.627 10c ^c 4.453 5.079 5.079 4.803 4.083 4.200 4.243 10d ^b 4.235 3.926 3.872 3.580 3.814 3.746 3.647 11a ^b 4.232 4.187 3.595 3.469 3.279 3.619 3.797	_
10b ^b 4.468 3.905-3.930 3.905-3.930 3.582 3.802 3.738 3.627 10c ^c 4.453 5.079 5.079 4.803 4.083 4.200 4.243 10d ^b 4.235 3.926 3.872 3.580 3.814 3.746 3.647 11a ^b 4.232 4.187 3.595 3.469 3.279 3.619 3.797	
$10c^{c}$ 4.4535.0795.0794.8034.0834.2004.243 $10d^{b}$ 4.2353.9263.8723.5803.8143.7463.647 $11a^{b}$ 4.2324.1873.5953.4693.2793.6193.797	3.687
10d ^b 4.235 3.926 3.872 3.580 3.814 3.746 3.647 11a ^b 4.232 4.187 3.595 3.469 3.279 3.619 3.797	3.727
11ab 4.232 4.187 3.595 3.469 3.279 3.619 3.797	
11b ^b 4.283 4.179 3.591 3.464 3.272 3.619 3.795	3.681
11c [19.32]° 4.265 5.667 5.053 5.201 3.648 4.230 4.139	3.678
$11d^{b}$ 4.050 4.126 3.584 3.466 3.310 3.622 3.817	
$12a^{b} \qquad 4.192 \qquad 4.139 \qquad 3.723 \qquad 3.789 3.534 \qquad 3.759 \qquad 3.634$	
12b ^b 4.233 4.125 3.712 3.788 3.518 3.748 3.627	3.691
12c $[32]^{c}$ 4.286 5.548 5.095 5.247 3.901 4.201 ^d 4.170 ^d	3.687
12d ^b 3.994 4.078 3.708 3.786 3.554 3.764 3.649	
13a ^b 4.118 4.123 3.740 3.819 3.954 3.560 —	
13b ^b 4.182 4.121 3.738 3.820 3.956 3.563 —	3.684
13 c ^c 4.237 5.558 5.124 5.103 4.235 3.712 —	3.717
13d ^b 3.913 4.050 3.720 3.817 3.984 3.567 —	

^a Chemical shifts δ in ppm.
 ^b Recorded in D₂O.
 ^c Recorded in CDCl₃.
 ^d Assignments may be interchanged.

Table 4 ¹H NMR data^a for 2,6-anhydroaldonic acids and derivatives, coupling constants

Compound	${}^{3}J_{2,3}$	${}^{3}J_{3,4}$	${}^{3}J_{4,5}$	${}^{3}J_{5,6a}$	${}^{3}J_{5,6b}/{}^{3}J_{6,7a}$	${}^{2}J_{6a,6b}/{}^{3}J_{6,7b}$	${}^{2}J_{7a,7b}$
1a	b	8.6	3.8	2.6	1.2	-12.6	
1b [17]	9.1	8.9	3.4	2.7	1.3	-12.7	
1c	8.1	8.9	3.3	4.0	2.0	-12.8	
1d	9.5	9.5	~3.3	b	2.0	-13.6	
2a	~ 1.0	3.2	9.6	b	b	Ь	
2b	1.4	3.4	9.7	10.5	5.5	-11.2	
2c	1.4	3.4	10.2	5.5	10.2	-11.3	
2d	1.3	3.3	9.7	10.7	5.6	-11.1	
3a	9.2	3.1	2.9	9.9	4.9	-11.1	
30	9.4	2.3	2.8	10.2	5.2	-11.0	
34	9.4	2.0	2.9	10.1	J.1 4 0	-11.1	
3u 4a	9.7	2.0	2.9	10.5	4.9	-10.8	
4a 4h	9.5	9.0	8.9	10.5	5.4	-11.3	
40	8.9	9.0 8.7	8.7	9.5	5.4	-11.5	
4d	9.1	9.1	8.6	10.7	5.5	-11.2	
5a	10.1	2.8	2.9	9.8	b	b	b
5b	10.1	2.6	2.8	10.0	b	b	b
5c	10.2	2.7	2.7	10.3	4.4	2.5	b
5d	10.1	2.7	2.6	9.9	5.4	~ 1.4	-14.5
6a	1.4	3.7	3.1	9.7	b	2.0	b
6b	1.5	3.7	3.1	8.6	~ 6.0	\sim 5.5	-14.7
6c	1.5	3.7	3.1	10.4	~ 4.6	~ 3.4	b
6d	1.4	3.8	3.2	10.0	6.1	1.9	-11.7
7a [17]	9.6	9.5	3.3	1.2	9.0	3.2	-12.3
7b [17]	9.9	9.6	3.4	b	8.8	b	-12.4
7c	9.9	10.2	3.4	0.9	6.6	6.5	b
7d	b	8.5	3.3	< 0.5	8.8	3.8	-12.4
8a	b	b	b	9.7	5.6	2.1	-12.4
8 b	b	b 0.4	b	9.6	5.7	2.0	-12.5
8C [19,31]	9.8	9.4 1-	9.2	10.1	5.0	2.2	-12.5
80 0a	D 10.2	2 2	D 2 Q	9.0	3.1 7 7	1.9	-12.4
9a 0h	10.2	3.2	3.0	1.2	7.7	4.4	-12.0
90 Qc	10.2	3.1	3.9	1.2	57	4.5	-11.8
9d	10.3	3.2	3.8	1.0	5.7 7.8	4 3	-11.9
70 10a	13	b.1	3.2	1.3	7.8	3.8	-11.7
10b	1.3	b	2.9	1.4	7.9	4.0	-11.8
10c	< 1.0	< 1.0	~3.1	1.4	6.8	6.0	-11.5
10d	1.2	3.2	2.9	1.2	8.1	3.5	-11.8
11a	1.2	3.4	9.7	9.7	6.4	1.9	-12.3
11b	1.2	3.5	9.6	9.8	6.4	2.1	-12.4
11c [19,32]	1.2	3.6	10.0	10.0	5.9	2.4	-12.4
11d	1.2	3.4	9.6	9.7	6.6	2.1	-12.3
12a	1.3	3.2	3.5	1.3	8.0	4.0	-11.9
12b	1.2	b	b	0.9	7.8	4.2	-11.9
12c [32]	1.5	3.9	3.7	1.3	6.4	6.4	-11.4
120	1.3	~ 3.4	~3.3	~ 1.3	8.2	3.7	-12.0
158	1.8	3.3	3.3	2.0	1.2	-12.8	—
130	1.0	3.2	3.4	2.5	1.2	-12.8	
150	1.8	3.0	3.2	2.2	1.0	-13.3	
130	1.5	3.2	3.0	1.9	1.3	-12.7	

^a Coupling constants in Hz.^b Signals of higher order.

bed: 600 mm, filling: packed with cationic exchange resin of the type Dowex[®] 50 W X 4 (H⁺-form), 200-400 mesh, and subsequently loaded with Nd^{3+} -solution ($NdCl_3 \times H_2O$, 15% solution) until a constant bed volume was reached.

General procedure (g.p.) 1: synthesis of methyl 2,6-anhydroaldonates from anhydrodeoxynitroalditols.—The anhydrodeoxynitroalditol (10 mmol) in H₂O (10 mL) was cooled on an ice bath and treated with H₂O₂ (30%, aq, 10 mL). K₂CO₃ (2.4 g)

 Table 5

 Observed CIMS ions for 2,6-anhydroaldonic acids and derivatives

Compounds	$[2M + H]^+$	$[M + H]^+$	-ROH	-CO	$-H_2O$	$-H_2O$	Other
1a-4a, 13a 5a-12a 1b-4b, 13b 5b-12b	357 417 385 445	179 209/179° 193 223	161 ^a 191 ^a /161 ^c 161 ^b 191 ^b	133 163/133° 133 163	115 145/115 ^c 115 145	97 127/97 ^c not found 127	
Compounds	$[2M + H]^+$	$[M + H]^+$	-HCO ₂ Me	-HOAc	-HOAc	-CH ₂ CO	
1c-4c, 13c 5c-12c 1d-4d, 13d 5d-12d	637 781 355 415	319 391 178 208	259/577 ^g 331/721 ^g no further frag no further frag	199/517 ^g 271/661 ^g gmentation obs	97/415 ^g 169/559 ^g		

m/z for all values.

^a $\mathbf{R} = \mathbf{H}$.

^b R = Me.

^c Fragmentation after loss of HCHO.

^d $[2M + H_{-2}H_2O]^+$.

^e $[M+H-H_2O]^+$, no further fragmentation from this fragment observed.

 $[2M + H - 3H_2O]^+$.

^g Fragment of the dimer.

was added and the solution allowed to stand for 48 h at 20 °C. If the solution contained no peroxide after this time, further H_2O_2 (30%, aq, 5 mL) was added and the reaction time was extended for another 24 h. The excess of H₂O₂ was decomposed by addition of a small amount of MnO_2 (~1 mg) at 0 °C. After filtration, cation-exchange resin was added slowly until no further generation of CO₂ could be observed. The H₂O was distilled off at 30 °C and the crude anhydroaldonic acid dried under high vacuum overnight. The residue was dissolved in dry MeOH (100 mL) and heated for 16h under reflux. During the last hour activated charcoal (~ 0.1 g) was added. After cooling, the solution was filtered and the HNO₃ removed by addition of anion-exchange resin. The ion exchanger was filtered off, and cation-exchange resin used to achieve neutrality. The methyl 2,6-anhydroaldonate was dried in vacuo.

General procedure (g.p.) 2: Acetylation of methyl 2,6-anhydroaldonates.—The methyl 2,6anhydroaldonate (500 mg) in Ac₂O (1.5 mL) and abs. pyridine (2.2 mL) was stirred for 1 h at 0 °C, then allowed to warm to 20 °C. The progress of the reaction was monitored by TLC (*s.s.* 3). After complete conversion (6–16 h) the mixture was poured into ice–water (15 mL). After 2 h the solution was extracted with CH₂Cl₂, and the extract washed successively with HCl (5 M, aq), NaHCO₃ (satd, aq) and H₂O, dried (NaSO₄), and concentrated to a syrup. Residual traces of AcOH were removed by azeotropic distillation with toluene. The acetylated ester was crystallised in most cases from the solvent mentioned. Often prior purification by column chromatography was necessary.

General procedure (g.p.) 3: Synthesis of methyl 2,6-anhydroaldonates by deacetylation.—The fully O-acetylated methyl 2,6-anhydroaldonate (1 g) was kept for 1 h at 20 °C in dry MeOH (30 mL) containing NaOMe (1 M, 1 mL). The progress of the deacetylation was observed by TLC (*s.s.* 3). The solution was neutralised by addition of cation-exchange resin. The resin was filtered off and washed with MeOH. The combined eluates were concentrated to a syrup in vacuo.

General procedure (g.p.) 4: Synthesis of 2,6anhydroaldonic acids from methyl 2,6-anhydroaldonates.—The methyl 2,6-anhydroaldonate (10 mmol) in NaOH (0.5 M, aq, 22 mL) was heated for 2 h at 60 °C. After cooling the Na⁺-ions were removed by addition of cation-exchange resin. The resin was filtered off and washed with water. The solvent was removed by distillation at 35 °C.

General procedure (g.p.) 5: Synthesis of 2,6anhydroaldonic acid amides from methyl 2,6-anhydroaldonates.—The methyl 2,6-anhydroaldonate (100 mg) in MeOH (5 mL), satd with NH₃ was kept for 6 h at ~5 °C. The solvent was removed by distillation and the amide was crystallised in most cases directly from H₂O or MeOH.

General procedure (g.p.) 6: Synthesis of anhydroalditols from methyl 2,6-anhydroaldonates.—An ice-cooled solution of the methyl 2,6anhydroaldonate (2 mmol) in H₂O (20 mL) was

treated with cation-exchange resin ($\sim 5 \,\mathrm{mL}$ volume). Freshly prepared NaBH₄ (0.3 M, aq, 25 mL) was added slowly under vigorous stirring at 0 °C. Subsequently solid NaBH₄ (~200 mg) was added and stirring continued for 1 h. The pH value was adjusted to 8–9 by addition of cation-exchange resin or solid sodium borohydride. The solution was kept for 12 h at \sim 5 °C and the Na⁺-ions were removed by addition of cation-exchange resin. The resin was filtered off and washed with H₂O. The combined eluates were concentrated to dryness in vacuo. The solid was dissolved in MeOH and concentrated again to remove boric acid as trimethyl borate. This process was repeated until no trimethyl borate could be detected.

2,6-Anhydrohexonic acids.—Anal. Calcd for $C_6H_{10}O_6$ (178.14): C, 40.45; H, 5.66.

2,6-Anhydro-L-manno-hexonic acid (1a). Ester 1b [17] (500 mg, 2.6 mmol) was saponified as described in g.p. 4 to give 1a (460 mg, 99%): $[\alpha]_{\rm D}$ + 51.6°; R_f (s.s. 1) 0.29; CIMS: m/z (%) 357 (1), 179 (100), 161 (32), 133 (28), 115 (12), 97 (2). Anal. found: C, 40.30; H, 5.66.

2,6-Anhydro-D-galacto-hexonic acid (2a). Ester **2b** (400 mg, 2.08 mmol) was saponified as described in g.p. 4 to afford **2a** (326 mg, 88%): mp 152 °C (from H₂O); $[\alpha]_D$ -41.6°; R_f (s.s. 1) 0.30; IR (KBr): ν 3430 (O–H), 1720 (C=O), 1215, 1110, 1075 (C–O–C, C–O, C–C); CIMS: m/z (%) 357 (1), 179 (100), 161 (38), 133 (72), 115 (14), 97 (7). Anal. found: C, 40.43; H, 5.68.

2,6-Anhydro-D-altro-hexonic acid (13a).—(a) 2,6-Anhydro-1-deoxy-1-nitro-D-altro-hexitol [13,15] (500 mg, 2.59 mmol) was converted as described in g.p. 1. The work-up was terminated before the esterification was started. 13a crystallised directly after concentration of the mother liquor, containing HNO₃. Recrystallisation from H₂O afforded 13a (275 mg, 60%): mp 228 °C (from H₂O); $[\alpha]_{\rm D}$ -30.3°; R_f (s.s. 1) 0.19; IR (KBr): ν 3470 (O–H), 1690 (C=O), 1240, 1115, 980 (C–O–C, C–O, C–C); CIMS: m/z (%) 357 (1), 179 (100), 161 (13), 133 (18), 115 (4), 97 (1). Anal. found: C, 40.38; H, 5.67.

2,6-Anhydro-D-altro-hexonic acid (13a). (b) Ester 13b (150 mg, 0.78 mmol) was saponified as described in g.p. 4 to give 13a (123 mg, 89%). The experimental data matched the values mentioned in procedure (a).

2,6-Anhydro-D-allo-hexonic acid (**3a**). Ester **3b** (400 mg, 2.08 mmol) was saponified as described in g.p. 4 to afford **3a** (324 mg, 88%): mp 84 °C (from H₂O); $[\alpha]_{\rm D}$ -22.5°; $R_f(s.s. 1)$ 0.34; IR (KBr): v 3400

(O–H), 1720 (C=O), 1115, 1100, 1035 (C–O–C, C– O, C–C); CIMS: *m*/*z* (%) 357 (2), 179 (100), 161 (21), 133 (27), 115 (11), 97 (5). Anal. found: C, 40.36; H, 5.68.

2,6-Anhydro-D-gulo-hexonic acid (4a). Ester 4b [16] (384 mg, 2 mmol) was saponified as described in g.p. 4 to give 4a (317 mg, 89%): mp 172 °C (from H₂O); [α]_D -9.2°; R_f (*s.s.* 1) 0.34; IR (KBr): ν 3360 (O–H), 1720 (C=O), 1095, 1055, 995 (C–O–C, C–O, C–C); CIMS: m/z (%) 357 (2), 179 (100), 161 (12), 133 (18), 115 (26), 97 (12). Anal. found: C, 40.44; H, 5.65.

2,6-Anhydroheptonic acids.—Anal. Calcd for $C_7H_{12}O_7$ (208.17): C, 40.39; H, 5.81.

2,6-Anhydro-D-glycero-D-allo-heptonic acid (**5a**).— Ester **5b** (444 mg, 2 mmol) was saponified as described in g.p. 4 to afford **5a** (358 mg, 86%): mp 110 °C (from H₂O); $[\alpha]_{D}$ + 13.4°; $R_f(s.s. 1)$ 0.32; IR (KBr): ν 3530, 3400 (O–H), 1725 (C=O), 1210, 1195, 1085, 1045 (C–O–C, C–O, C–C); CIMS: m/z (%) 417 (6), 381 (40), 209 (42), 191 (100), 163 (6), 145 (7), 127 (5), 179 (4), 161 (7), 133 (22), 115 (6), 97 (6). Anal. found: C, 40.30; H, 5.80.

2,6-Anhydro-D-glycero-D-gluco-heptonic acid (**6a**). Ester **6b** (444 mg, 2 mmol) was saponified as described in g.p. 4 to afford **6a** (342 mg, 82%): mp 155 °C (from H₂O); $[\alpha]_D$ + 58.2°; R_f (s.s. 1) 0.24; IR (KBr): ν 3490, 3360 (O–H), 1720 (C=O), 1220, 1080, 1065 (C–O–C, C–O, C–C); CIMS: m/z (%) 417 (1), 381 (1), 209 (32), 191 (100), 163 (32), 145 (27), 127 (7), 179 (76), 161 (3), 133 (5), 115 (7), 97 (3). Anal. found: C, 40.31; H, 5.83.

2,6-Anhydro-D-glycero-L-manno-heptonic acid (7a). Ester 7b [3,17,18] (1.11 g, 5.00 mmol) was saponified as described in g.p. 4 to give 7a (932 mg, 90%): mp 159 °C (from H₂O), lit. 177 °C [3,17]; $[\alpha]_{\rm D}$ + 53.8°, lit. $[\alpha]_{578}^{22}$ + 62.5° (*c* 1.0, H₂O) [3], lit. $[\alpha]_{\rm D}^{20}$ + 57.8° (*c* 0.86, H₂O) [17]; R_f (*s.s.* 1) 0.19; IR (KBr): ν 3500, 3380, 3180 (O–H), 1700 (C=O), 1405 (O–H), 1100, 1075 (C–O–C, C–O, C–C); CIMS: *m*/*z* (%) 417 (1), 381 (9), 209 (14), 191 (100), 163 (9), 145 (7), 127 (3), 179 (3), 161 (2), 133 (2), 115 (3), 97 (1). Anal. found: C, 40.26; H, 5.80.

2,6-Anhydro-D-glycero-D-gulo-heptonic acid (8a). Ester **8b** [3,19] (889 mg, 4 mmol) was saponified as described in g.p. 4 to give syrupy **8a** (830 mg, 100%): mp lit. 169 °C [3,19]; $[\alpha]_{\rm D}$ +18.9°, lit. $[\alpha]_{578}^{22}$ +25.0° (*c* 1.0, H₂O) [3]; R_f (*s.s.* 1) 0.27; CIMS: m/z (%) 417 (2), 381 (1), 209 (36), 191 (100), 163 (18), 145 (13), 127 (11), 179 (82), 161 (38), 133 (14), 115 (36), 97 (4). Anal. found: C, 40.26; H, 5.79. 2,6-Anhydro-D-glycero-L-talo-heptonic acid (**9a**). Ester **9b** (400 mg, 1.8 mmol) was saponified as described in g.p. 4 to afford **9a** (369 mg, 98%): $[\alpha]_D$ –0.4°; R_f (s.s. 1) 0.29; CIMS: m/z (%) 417 (1), 381 (58), 209 (6), 191 (100), 163 (5), 145 (4), 127 (8), 179 (2), 161 (2), 133 (2), 115 (2), 97 (16). Anal. found: C, 40.38; H, 5.82.

2,6-Anhydro-D-glycero-L-ido-heptonic acid (10a). Ester 10b (300 mg, 1.35 mmol) was saponified as described in g.p. 4 to give 10a (277 mg, 99%): $[\alpha]_{\rm D}$ + 24.4°; R_f (s.s. 1) 0.27; CIMS: m/z (%) 417 (1), 381 (89), 209 (6), 191 (100), 163 (19), 145 (22), 127 (11), 179 (52), 161 (5), 133 (6), 115 (10), 97 (3). Anal. found: C, 40.25; H, 5.83.

2,6-Anhydro-D-glycero-D-galacto-heptonic acid (11a). Ester 11b [19,20] (889 mg, 4 mmol) was saponified as described in g.p. 4 to afford 11a (737 mg, 89%): mp 184 °C (from H₂O); $[\alpha]_D$ + 1.7°; R_f (s.s. 1) 0.17; IR (KBr): ν 3380 (O–H), 1720 (C=O), 1235, 1160, 1110 (C–O–C, C–O, C–C); CIMS: m/z (%) 417 (3), 381 (8), 209 (59), 191 (100), 163 (26), 145 (13), 127 (4), 179 (36), 161 (2), 133 (5), 115 (5), 97 (2). Anal. found: C, 40.28; H, 5.80.

2,6-Anhydro-D-glycero-L-altro-heptonic acid (12a). Ester 12b (667 mg, 3 mmol) was saponified as described in g.p. 4 to give 12a (548 mg, 88%): mp 169 °C (from H₂O); $[\alpha]_D$ + 33.1°; R_f (s.s. 1) 0.15; IR (KBr): ν 3400 (O–H), 1750 (C=O), 1300 (O–H), 1250, 1225, 1140, 1120, 1100, 1035 (C–O–C, C–O, C–C); CIMS: m/z (%) 417 (2), 381 (9), 209 (32), 191 (100), 163 (13), 145 (6), 127 (2), 179 (22), 161 (2), 133 (3), 115 (5), 97 (2). Anal. found: C, 40.36; H, 5.83.

Methyl 2,6-anhydrohexonates.—Anal. Calcd for $C_7H_{12}O_6$ (192.17): C, 43.75; H, 6.29.

Methyl 2,6-anhydro-L-manno-hexonate (1b). Ester 1c (2 g, 6.28 mmol) was deacetylated as described in g.p. 3 to give 1b (1.05 g, 87%): mp 100 °C (from EtOH–MeOH), lit. 92 °C [17]; $[\alpha]_{\rm D}$ + 42.2°, lit. $[\alpha]_{\rm D}^{20}$ + 21.1° (c 0.54, MeOH) [17]; R_f (s.s. 3) 0.57; IR (KBr): ν 3420 (O–H), 1730 (C=O), 1235, 1105 (C–O–C, C–O, C–C); CIMS: m/z (%) 385 (9), 193 (100), 175 (2), 161 (2), 133 (5), 115 (3). Anal. found: C, 43.70; H, 6.31.

Methyl 2,6-anhydro-D-galacto-hexonate (**2b**). 2,6-Anhydro-1-deoxy-1-nitro-D-galacto-hexitol [6,15,33] (1.5 g, 7.77 mmol) was converted as described in g.p. 1 to give **2b** (1.14 g, 76%): mp 171 °C (from MeOH); $[\alpha]_D - 30.4^\circ$; R_f (s.s. 3) 0.51; IR (KBr): ν 3380 (O–H), 1740 (C=O), 1260 (O–H), 1105, 1075 (C–O–C, C–O, C–C); CIMS: m/z (%) 385 (7), 193 (100), 175 (8), 161 (1), 133 (2), 115 (4). Anal. found: C, 43.76; H, 6.30.

Methyl 2,6-anhydro-D-altro-hexonate (13b). (a) One drop of conc. H₂SO₄ was added to a solution of 13a (178 mg, 1 mmol) in dry MeOH (5 mL) and heated for 12 h under reflux. After cooling to 20 °C the solution was neutralised with Amberlite IRA-400 (HCO₃⁻). The resin was filtered off, washed successively with H₂O and the combined solutions were concentrated to afford 13b (158 mg, 82%): mp 105 °C (from MeOH); $[\alpha]_D$ –31.5°; R_f (s.s. 3) 0.67; IR (KBr): ν 3400 (O-H), 1725 (C=O), 1225, 1100 (C–O–C, C–O, C–C); CIMS: m/z (%) 385 (93), 193 (100), 175 (2), 161 (4), 133 (8), 115 (2). Anal. found: C, 43.75; H, 6.31.

Methyl 2,6-anhydro-D-altro-hexonate (13b). (b) A mixture of 2,6-anhydro-1-deoxy-1-nitro-D-altrohexitol [13,15] and 2,6-anhydro-1-deoxy-1-nitro-Dallo-hexitol [13,15] (1 g, 5.18 mmol) was converted as described in g.p. 1. The syrup (915 mg), containing crude methyl 2,6-anhydro-D-altro-hexonate (13b) and methyl 2,6-anhydro-D-altro-hexonate (3b), was separated by MPLC with H₂O as eluent at a flow of 0.5 mL/min. The second fraction contained 13b (379 mg, 38%). The experimental data matched the values mentioned in procedure (a).

Methyl 2,6-*anhydro*-D-allo-*hexonate* (**3b**). (a) 2,6-Anhydro-1-deoxy-1-nitro-D-*allo*-hexitol [13,15] (579 mg, 3 mmol) was converted as described in g.p. 1. The crude ester was purified by MPLC with H₂O as eluent at a flow of 0.5 mL/min to give **3b** (407 mg, 71%): mp 82 °C (from H₂O); $[\alpha]_{\rm D}$ –29.9°; R_f (*s.s.* 3) 0.67; IR (KBr): ν 3390 (O–H), 1725 (C=O), 1095, 1035 (C–O–C, C–O, C–C); CIMS: *m*/*z* (%) 385 (87), 193 (100), 175 (11), 161 (9), 133 (5), 115 (2). Anal. found: C, 43.62; H, 6.28.

*Methyl 2,6-anhydro-*D-allo-*hexonate* (**3b**). (b) A mixture of 2,6-anhydro-1-deoxy-1-nitro-D-*allo*-hexitol [13,15] and 2,6-anhydro-1-deoxy-1-nitro-D-*altro*-hexitol [13,15] (1 g, 5.18 mmol) was converted as described for **13b**. The first MPLC-fraction contained **3b** (335 mg, 34%). The experimental data matched the values mentioned in procedure (a).

Methyl 2,6-anhydro-D-gulo-*hexonate* (4b). Ester 4c (3 g, 9.43 mmol) was deacetylated as described in g.p. 3 to afford 4b (1.65 g, 91%): mp 101 °C (from MeOH); $[\alpha]_D -25.8^\circ$; R_f (s.s. 3) 0.64; IR (KBr): ν 3380 (O–H), 1730 (C=O), 1220, 1090, 1055 (C–O–C, C–O, C–C); CIMS: m/z (%) 385 (99), 193 (100), 175 (8), 161 (1), 133 (3), 115 (5). Anal. found: C, 43.68; H, 6.29. *Methyl 2,6-anhydroheptonates.*—Anal. Calcd for $C_8H_{14}O_7$ (222.20): C, 43.24; H, 6.35.

Methyl 2,6-*anhydro*-D-glycero-D-allo-*heptonate* (**5b**). 2,6-Anhydro-1-deoxy-1-nitro-D-*glycero*-D-*allo*heptitol [15,19] (446 mg, 2 mmol) was converted as described in g.p. 1. The crude ester (400 mg) was purified by HPLC at a flow of 2 mL/min with H₂O as eluent to give **5b** (322 mg, 73%): mp 85 °C (from MeOH); $[\alpha]_{D}$ + 13.5°; R_f (*s.s.* 3) 0.51; IR (KBr): ν 3480, 3420 (O–H), 1675 (C=O), 1245, 1125, 1115, 1080, 945 (C–O–C, C–O, C–C); CIMS: *m/z* (%) 445 (19), 391 (14), 223 (100), 205 (3), 191 (85), 163 (3), 145 (5), 127 (3). Anal. found: C, 43.11; H, 6.37.

Methyl 2,6-*anhydro*-D-glycero-D-gluco-*heptonate* (**6b**). Ester **6c** (1 g, 2.56 mmol) was deacetylated as described in g.p. 3 to afford **6b** (520 mg, 91%): mp 141 °C (from H₂O); $[\alpha]_D + 63.8^\circ$; R_f (*s.s.* 3) 0.49; IR (KBr): ν 3450, 3330 (O–H), 1725 (C=O), 1220, 1145, 1070 (C–O–C, C–O, C–C); CIMS: *m/z* (%) 445 (92), 391 (27), 223 (100), 205 (10), 191 (5), 163 (3), 145 (4), 127 (3). Anal. found: C, 43.27; H, 6.37.

Methyl 2,6-anhydro-D-glycero-L-manno-*heptonate* (7b). Ester 7c (3 g, 7.69 mmol) was deacetylated as described in g.p. 3 to give 7b (1.53 g, 90%): mp 109 °C (from MeOH), lit. 141 °C [3,17], lit. 121–123 °C [18]; $[\alpha]_{\rm D}$ +48.4°, lit. $[\alpha]_{578}^{22}$ +56.5° (*c* 1.0, H₂O) [3], lit. $[\alpha]_{\rm D}^{20}$ +57.5° (*c* 1.11, H₂O) [17], lit. $[\alpha]_{\rm D}^{20}$ -32° (*c* 0.12, H₂O) [18]; R_f (*s.s.* 3) 0.44; IR (KBr): ν 3360 (O–H), 1730 (C=O), 1245, 1085 (C–O–C, C–O, C–C); CIMS: m/z (%) 445 (82), 391 (7), 223 (100), 205 (78), 191 (12), 163 (3), 145 (2), 127 (2). Anal. found: C, 43.22; H, 6.33.

Methyl 2,6-anhydro-D-glycero-D-gulo-heptonate (**8b**). Ester **8c** [1,19,26,31] (3 g, 7.69 mmol) was deacetylated as described in g.p. 3 to give **8b** (1.49 g, 87%): mp 121 °C (from H₂O–EtOH), lit. 119 °C [3], lit. 116 °C [19]; $[\alpha]_{D}$ + 14.7°, lit. $[\alpha]_{578}^{22}$ + 16.5° (*c* 1.0, H₂O) [3]; R_f (*s.s.* 3) 0.60; IR (KBr): ν 3400 (O–H), 1730 (C=O), 1100, 1075 (C–O–C, C–O, C–C); CIMS: *m*/*z* (%) 445 (88), 391 (13), 223 (100), 205 (8), 191 (14), 163 (3), 145 (4), 127 (4). Anal. found: C, 43.18; H, 6.34.

Methyl 2,6-*anhydro*-D-glycero-L-talo-*heptonate* (**9b**). Ester **9c** (1 g, 2.56 mmol) was deacetylated as described in g.p. 3 to afford **9b** (563 mg, 99%): $[\alpha]_{\rm D}$ -5.3°; $R_f(s.s. 3) 0.57$; CIMS: m/z (%) 445 (97), 391 (7), 223 (100), 205 (60), 191 (57), 163 (5), 145 (4), 127 (3). Anal. found: C, 43.15; H, 6.36.

Methyl 2,6-anhydro-D-glycero-L-ido-heptonate (**10b**). 2,6-Anhydro-1-deoxy-1-nitro-D-glycero-L-idoheptitol [34] (2.23 g, 10 mmol) was converted as described in g.p. 1. The crude ester (1.9 g) was purified in several runs by HPLC at a flow of 4 mL/ min with H₂O as eluent to give **10b** (1.83 g, 82%): $[\alpha]_{\rm D}$ + 34.3°; *R_f* (*s.s.* 3) 0.60; CIMS: *m/z* (%) 445 (12), 391 (14), 223 (100), 205 (11), 191 (26), 163 (4), 145 (3), 127 (1). Anal. found: C, 43.33; H, 6.36.

Methyl 2,6-anhydro-D-glycero-D-galacto-*heptonate* (**11b**). 2,6-Anhydro-1-deoxy-1-nitro-D-*glycero*-D*galacto*-heptitol [6,15,19,27,33] (4.46 g, 20 mmol) was converted as described in g.p. 1 to afford **11b** (3.82 g, 86%): mp 158 °C (from MeOH), lit. 99 °C [19]; $[\alpha]_D$ + 5.1°; R_f (*s.s.* 3) 0.36; IR (KBr): ν 3470, 3380 (O–H), 1710 (C=O), 1095, 1065 (C–O–C, C– O, C–C); CIMS: m/z (%) 445 (81), 391 (22), 223 (100), 205 (13), 191 (7), 163 (3), 145 (3), 127 (2). Anal. found: C, 43.28; H, 6.37.

Methyl 2,6-anhydro-D-glycero-L-altro-heptonate (**12b**). 2,6-Anhydro-1-deoxy-1-nitro-D-glycero-Laltro-heptitol [34] (446 mg, 2 mmol) was converted as described in g.p. 1. The crude ester (420 mg) was purified by MPLC with H₂O as eluent at a flow of 0.5 mL/min to give **12b** (340 mg, 77%): mp 162 °C (from H₂O–MeOH); $[\alpha]_D$ + 35.5°; R_f (s.s. 3) 0.34; IR (KBr): ν 3400 (O–H), 1750 (C = O), 1250, 1145, 1120, 1095, 1035 (C–O–C, C–O, C–C); CIMS: m/z(%) 445 (95), 391 (12), 223 (100), 205 (53), 191 (14), 163 (2), 145 (3), 127 (1). Anal. found: C, 43.34; H, 6.36.

Methyl 3,4,5-*tri*-O-*acetyl*-2,6-*anhydrohexonates.*—Anal. Calcd for $C_{13}H_{18}O_9$ (318.28): C, 49.06; H, 5.70.

Methyl 3,4,5-tri-O-acetyl-2,6-anhydro-L-mannohexonate (1c).2,6-Anhydro-1-deoxy-1-nitro-Lmanno-hexitol [6,15,17,33] (1.93 g, 10 mmol) was converted as described in g.p. 1. The unprotected ester **1b** [17] (1.78 g) was acetylated as described in g.p. 2. Column chromatography on silica gel with s.s. 4 afforded 1c (2.26 g, 71%): mp 76 °C (from Et₂O); $[\alpha]_{D}$ +18.2°; R_{f} (s.s. 4) 0.48; ¹H NMR (CDCl₃): δ 1.995, 2.039, 2.100 (3s, 9 H, 3×Ac), cf. Table 3; ${}^{13}C$ NMR (CDCl₃): δ 20.6, 20.6, 20.8, 169.6, 169.7, 170.2 (3×Ac), cf. Table 2; IR (KBr): v 1750 (C=O), 1230, 1055 (C-O-C, C-O, C-C); CIMS: m/z (%) 637 (2), 577 (1), 517 (1), 457 (1), 415 (1), 319 (57), 259 (100), 199 (18), 139 (8), 97 (1). Anal. found: C, 48.87; H, 5.68.

Methyl 3,4,5-*tri*-O-*acetyl*-2,6-*anhydro*-D-galacto*hexonate* (**2c**). Ester **2b** (192 mg, 1 mmol) was acetylated as described in g.p. 2 to give **2c** (280 mg, 88%): mp 139 °C (from EtOAc–Et₂O); $[\alpha]_D$ –84.3°; R_f (*s.s.* 4) 0.31; ¹H NMR (CDCl₃): δ 1.983, 2.010, 2.075 (3s, 9 H, 3×Ac), *cf*. Table 3; ¹³C NMR (CDCl₃): δ 20.4, 20.5, 20.6, 169.6, 169.6, 169.9 $(3 \times Ac)$, cf. Table 2; IR (KBr): ν 1755 (C=O), 1250, 1210, 1060 (C–O–C, C–O, C–C); CIMS: m/z(%) 637 (5), 577 (1), 517 (1), 457 (1), 415 (1), 319 (100), 259 (79), 199 (12), 139 (5), 97 (1). Anal. found: C, 48.96; H, 5.70.

Methyl 3,4,5-*tri*-O-*acetyl*-2,6-*anhydro*-D-altro*hexonate* (13c). Ester 13b (192 mg, 1 mmol) was acetylated as described in g.p. 2 and then purified by column chromatography on silica gel with *s.s.* 5 giving 13c (265 mg, 83%): $[\alpha]_D$ +17.5°; R_f (*s.s.* 5) 0.44; ¹H NMR (CDCl₃): δ 1.959, 2.037, 2.072 (3s, 9 H, 3×Ac), *cf*. Table 3; ¹³C NMR (CDCl₃): δ 20.4, 20.4, 20.9, 169.5, 169.7, 170.3 (3×Ac), *cf*. Table 2; IR (CCl₄): ν 1730 (C=O), 1250, 1215 (C–O–C, C– O, C–C); CIMS: *m*/*z* (%) 637 (63), 577 (8), 517 (2), 457 (1), 415 (35), 319 (100), 259 (82), 199 (11), 139 (9), 97 (50). Anal. found: C, 49.10; H, 5.69.

Methyl 3,4,5-tri-O-acetyl-2,6-anhydro-D-allohexonate (**3c**). Ester **3b** (192 mg, 1 mmol) was acetylated as described in g.p. 2. Column chromatography on silica gel with s.s. 4 afforded **3c** (278 mg, 87%): $[\alpha]_D$ -14.9°; R_f (s.s. 4) 0.48; ¹H NMR (CDCl₃): δ 1.979, 1.981, 2.124 (3s, 9 H, 3×Ac), cf. Table 3; ¹³C NMR (CDCl₃): δ 20.4, 20.5, 20.6, 169.1, 169.3, 169.7 (3×Ac), cf. Table 2; IR (CCl₄): ν 1750 (C=O), 1220, 1050 (C–O–C, C–O, C–C); CIMS: m/z (%) 637 (7), 577 (1), 517 (1), 457 (1), 415 (1), 319 (100), 259 (12), 199 (2), 139 (4), 97 (1). Anal. found: C, 49.05; H, 5.72.

Methyl 3,4,5-tri-O-acetyl-2,6-anhydro-D-gulohexonate (4c). 1,5-Anhydro-6-deoxy-6-nitro-L-glucohexitol [15,22] (1.93 g, 10 mmol) was converted as described in g.p. 1. The unprotected ester 4b [16] (1.85 g) was acetylated as described in g.p. 2. Column chromatography on silica gel with s.s. 5 gave 4c (2.24 g, 70%): mp 113 °C (from EtOAc–Et₂O); $[\alpha]_{\rm D}$ -40.1°; R_f (s.s. 5) 0.72; ¹H NMR (CDCl₃): δ 2.008, 2.012, 2.013 (3s, 9 H, 3 × Ac), cf. Table 3; ¹³C NMR (CDCl₃): δ 20.5, 20.6, 20.6, 169.5, 169.6, 169.9 (3×Ac), cf. Table 2; IR (KBr): v 1750 (C=O), 1230, 1055 (C-O-C, C-O, C-C); CIMS: m/z (%) 637 (21), 577 (16), 517 (4), 457 (2), 415 (3), 319 (81), 259 (100), 199 (20), 139 (13), 97 (2). Anal. found: C, 48.92; H, 5.70.

Methyl 3,4,5,7-*tetra*-O-*acetyl*-2,6-*anhydroheptonates*.—Anal. Calcd for $C_{16}H_{22}O_{11}$ (390.34): C, 49.23; H, 5.68.

Methyl 3,4,5,7-*tetra*-O-*acetyl*-2,6-*anhydro*-D-glycero-D-allo-*heptonate* (**5c**). Ester **5b** (667 mg, 3 mmol) was acetylated as described in g.p. 2 and purified by column chromatography on silica gel with *s.s.* 5 to give **5c** (911 mg, 78%): mp 75 °C (from MeOH– Et₂O); $[\alpha]_D$ + 6.3°; R_f (s.s. 5) 0.67; ¹H NMR (CDCl₃): δ 1.978, 2.049, 2.139, 2.150 (4s, 12 H, 4×Ac), cf. Table 3; ¹³C NMR (CDCl₃): δ 20.4, 20.5, 20.7, 20.8, 168.9, 169.0, 169.7, 170.7 (4×Ac), cf. Table 2; IR (KBr): ν 1750 (C=O), 1230, 1050 (C–O–C, C–O, C–C); CIMS: m/z (%) 781 (19), 721 (67), 661 (84), 601 (22), 559 (18), 391 (100), 331 (31), 271 (18), 211 (8), 169 (2). Anal. found: C, 49.06; H, 5.66.

Methyl 3,4,5,7-*tetra*-O-*acetyl*-2,6-*anhydro*-D-glycero-D-gluco-heptonate (6c). 2,6-Anhydro-1-deoxy-1-nitro-D-glycero-D-gluco-heptitol [34] (1.34 g, 6 mmol) was converted as described in g.p. 1. The unprotected crude ester 6b (1.22 g) was first acetylated as described in g.p. 2 and then purified by column chromatography on silica gel with s.s. 4. The eluate crystallised in needles after concentration of the column fraction giving 6c (1.65 g, 71%): mp 119 °C; $[\alpha]_{\rm D}$ –10.3°; R_f (s.s. 4) 0.27; ¹H NMR (CDCl₃): δ 1.868, 1.962, 1.995, 2.042 (4s, 12 H, 4×Ac), cf. Table 3; ¹³C NMR (CDCl₃): δ 20.2, 20.3, 20.4, 20.5, 168.6, 168.8, 169.0, 170.4 (4×Ac), *cf.* Table 2; IR (KBr): v 1740 (C=O), 1250, 1225, 1150, 1050 (C–O–C, C–O, C–C); CIMS: m/z (%) 781 (20), 721 (23), 661 (4), 601 (2), 559 (3), 391 (100), 331 (41), 271 (5), 211 (9), 169 (2). Anal. found: C, 49.05; H, 5.67.

Methyl 3,4,5,7-tetra-O-acetyl-2,6-anhydro-D-glycero-L-manno-heptonate (7c).—2,6-Anhydro-7-deoxy-7-nitro-L-glycero-L-galacto-heptitol [15,17,35,36] (4.46 g, 20 mmol) was converted as described in g.p. 1. The unprotected ester **7b** [3,17,18] (4.12 g) was acetylated as described in g.p. 2. 7c (4.13g) crystallised directly from Et₂O. Column chromatography on silica gel with s.s. 7 and crystallisation from Et_2O afforded another 1.62 g of 7c (5.75 g, 74%): mp 150 °C; $[\alpha]_{\rm D}$ +17.4°; R_f (s.s. 7) 0.50; ¹H NMR (CDCl₃): δ 1.971, 2.017, 2.023, 2.144 (4s, 12 H, 4×Ac), cf. Table 3; ¹³C NMR (CDCl₃): δ 20.6, 20.6, 20.6, 20.6, 169.6, 170.0, 170.2, 170.4 (4×Ac), cf. Table 2; IR (KBr): v 1740 (C=O), 1265, 1230 (C-O-C, C-O, C-C); CIMS: m/z (%) 781 (5), 721 (7), 661 (2), 601 (1), 559 (4), 391 (100), 331 (87),271 (18), 211 (14), 169 (8). Anal. found: C, 49.11; H, 5.66.

Methyl 3,4,5,7-tetra-O-acetyl-2,6-anhydro-D-glycero-D-gulo-heptonate (8c).—2,6-Anhydro-1-deoxy-1-nitro-D-glycero-D-gulo-heptitol [15,19,36,37] (4.46 g, 20 mmol) was converted as described in g.p. 1. The unprotected ester **8b** [3,19] (4.23 g) was acetylated as described in g.p. 2. Column chromatography on silica gel with s.s. 7 afforded 8c (5.84 g, 75%): mp 152 °C (from EtOAc–Et₂O), lit. 107– 109 °C [1], lit. 142 °C [19], lit. 145–146 °C [26], lit. 149 °C [31]; $[\alpha]_{\rm D}$ + 3.7°, lit. $[\alpha]_{\rm D}^{20}$ + 20.18° (*c* ~4, CHCl₃) [1], lit. $[\alpha]_{\rm D}^{20}$ + 5° (*c* 5, CHCl₃) [26], lit. $[\alpha]_{589}^{23}$ –23° (*c* 0.2, CHCl₃) [31]; R_f (*s.s.* 7) 0.52; ¹H NMR (CDCl₃): δ 1.993, 2.001, 2.006, 2.065 (4s, 12 H, 4×Ac), *cf*. Table 3; ¹³C NMR (CDCl₃): δ 20.5, 20.6, 20.6, 20.7, 169.3, 169.3, 170.2, 170.6 (4×Ac), *cf*. Table 2; IR (KBr): ν 1740 (C=O), 1250, 1220 (C–O–C, C–O, C–C); CIMS: *m*/*z* (%) 781 (11), 721 (7), 661 (2), 601 (1), 559 (2), 391 (100), 331 (72), 271 (9), 211 (10), 169 (7). Anal. found: C, 49.08; H, 5.67.

Methyl 3,4,5,7-tetra-O-acetyl-2,6-anhydro-D-glycero-L-talo-*heptonate* (9c).—2,6-Anhydro-7-deoxy-7-nitro-L-glycero-L-gluco-heptitol [34] (2.23 g, 10 mmol) was converted as described in g.p. 1. The unprotected ester 9b (2.05g) was acetylated as described in g.p. 2. Column chromatography on silica gel with s.s. 4 afforded 9c (3.05 g, 78%): $[\alpha]_{\rm D}$ +8.8°; R_f (s.s. 4) 0.42; ¹H NMR (CDCl₃): δ 1.949, 2.001, 2.118, 2.121 (4s, 12 H, 4×Ac), cf. Table 3; ¹³C NMR (CDCl₃): δ 20.4, 20.7, 20.7, 20.7, 168.8, 169.1, 169.4, 170.4 (4×Ac), cf. Table 2; IR (CCl₄): v 1745 (C=O), 1260, 1225, 1055 (C-O-C, C-O, C-C); CIMS: m/z (%) 781 (19), 721 (6), 661 (7), 601 (3), 559 (2), 391 (100), 331 (69), 271 (16), 211 (13), 169 (3). Anal. found: C, 49.08; H, 5.66.

Methyl 3,4,5,7-*tetra*-O-*acetyl*-2,6-*anhydro*-D-glycero-L-ido-*heptonate* (**10c**).—Ester **10b** (300 mg, 1.35 mmol) was acetylated as described in g.p. 2 and purified by column chromatography on silica gel with *s.s.* 6 to afford **10c** (412 mg, 79%): mp 119 °C (from Et₂O); $[\alpha]_D$ –13.1°; R_f (*s.s.* 6) 0.69; ¹H NMR (CDCl₃): δ 2.024, 2.031, 2.067, 2.127 (4s, 12 H, 4×Ac), *cf.* Table 3; ¹³C NMR (CDCl₃): δ 20.5, 20.6, 20.7, 20.7, 167.9, 169.1, 169.4, 170.5 (4×Ac), *cf.* Table 2; IR (KBr): ν 1740 (C=O), 1240, 1210, 1050 (C–O–C, C–O, C–C); CIMS: *m*/*z* (%) 781 (8), 721 (6), 661 (2), 601 (1), 559 (1), 391 (100), 331 (95), 271 (22), 211 (15), 169 (17). Anal. found: C, 49.11; H, 5.68.

Methyl 3,4,5,7-*tetra*-O-*acetyl*-2,6-*anhydro*-D-glycero-D-galacto-*heptonate* (**11c**).—Ester **11b** [19,20] (300 mg, 1.35 mmol) was acetylated as described in g.p. 2. **11c** (290 mg) crystallised directly from 1:1 EtOAc–Et₂O. The remaining syrup was purified by column chromatography on silica gel with *s.s.* 2 and crystallised from 1:1 EtOAc–Et₂O to give another 166 mg of **11c** (456 mg, 87%): mp 102 °C, lit. 93 °C [19]; $[\alpha]_D$ –42.2°, lit. $[\alpha]_D^{25}$ –44.0° (*c* not indicated, CHCl₃) [32]; R_f (*s.s.* 2) 0.54; ¹H NMR (CDCl₃): δ 1.920, 1.979, 2.020, 2.047 (4s, 12 H, 4×Ac), *cf*. Table 3; ¹³C NMR (CDCl₃): δ 20.4, 20.4, 20.5, 20.6, 169.4, 169.6, 169.8, 170.5 (4×Ac), *cf*. Table 2; IR (KBr): ν 1745 (C=O), 1230, 1060 (C-O-C, C-O, C-C); CIMS: *m*/*z* (%) 781 (16), 721 (4), 661 (1), 601 (1), 559 (2), 391 (100), 331 (68), 271 (9), 211 (9), 169 (7). Anal. found: C, 49.04; H, 5.68.

Methyl 3,4,5,7-*tetra*-O-*acetyl*-2,6-*anhydro*-D-glycero-L-altro-*heptonate* (**12c**).—Ester **12b** (222 mg, 1 mmol) was acetylated as described in g.p. 2 and purified by column chromatography on silica gel with *s.s.* 7 to afford **12c** (333 mg, 85%): mp 119 °C (from EtOAc); $[\alpha]_{D}$ + 35.5°, lit. $[\alpha]_{D}^{25}$ -24.0° (*c* not indicated, CHCl₃) [32]; R_f (*s.s.* 7) 0.47; ¹H NMR (CDCl₃): δ 1.910, 1.973, 2.005, 2.045 (4s, 12 H, 4×Ac), *cf*. Table 3; ¹³C NMR (CDCl₃): ° 20.3, 20.4, 20.4, 20.5, 169.3, 169.5, 170.0, 170.3 (4×Ac), *cf*. Table 2; IR (KBr): ν 1730 (C=O), 1220, 1060 (C–O–C, C–O, C–C); CIMS: m/z (%) 781 (3), 721 (1), 661 (1), 601 (1), 559 (1), 391 (100), 331 (29), 271 (4), 211 (6), 169 (4). Anal. found: C, 49.23; H, 5.68.

2,6-Anhydrohexonamides.—Anal. Calcd for $C_6H_{11}NO_5$ (177.16): C, 40.68; H, 6.26; N, 7.91.

2,6-Anhydro-L-manno-hexonamide (1d). Ester 1b [17] (100 mg, 0.52 mmol) was converted as described in g.p. 5 giving 1d (90 mg, 98%): $[\alpha]_{\rm D} - 70.7^{\circ}$; R_f (s.s. 3) 0.24; CIMS: m/z (%) 355 (6), 178 (100). Anal. found: C, 40.52; H, 6.24; N, 7.93.

2,6-Anhydro-D-galacto-hexonamide (2d). Ester 2b (200 mg, 1.04 mmol) was converted as described in g.p. 5 to afford 2d (172 mg, 93%): mp 177 °C (from aq MeOH); $[\alpha]_D - 4.4^\circ$; R_f (*s.s.* 3) 0.32; IR (KBr): ν 3400, 3360, 3300, 3200 (O–H, N–H), 1670 (C = O), 1105, 1080 (C–O–C, C–O, C–C); CIMS: *m*/*z* (%) 355 (94), 178 (100). Anal. found: C, 40.60; H, 6.25; N, 7.89.

2,6-Anhydro-D-altro-hexonamide (13d). Ester 13b (100 mg, 0.52 mmol) was converted as described in g.p. 5 giving 13d (92 mg, 100%): $[\alpha]_{\rm D}$ -65.2°; R_f (s.s. 3) 0.41; CIMS: m/z (%) 355 (69), 178 (100). Anal. found: C, 40.80; H, 6.26; N, 7.94.

2,6-Anhydro-D-allo-hexonamide (3d). Ester 3b (100 mg, 0.52 mmol) was converted as described in g.p. 5 affording 3d (90 mg, 98%): $[\alpha]_{\rm D} -13.8^{\circ}$; R_f (s.s. 3) 0.36; CIMS: m/z (%) 355 (70), 178 (100). Anal. found: C, 40.60; H, 6.24; N, 7.93.

2,6-Anhydro-D-gulo-hexonamide (4d). Ester 4b [16] (200 mg, 1.04 mmol) was converted as described in g.p. 5 to afford 4d (175 mg, 95%): mp 172 °C (from H₂O–MeOH); $[\alpha]_{\rm D}$ –11.9°; R_f (*s.s.* 3) 0.36;

IR (KBr): v 3390 (O–H, N–H), 1620 (C=O), 1110, 1080 (C–O–C, C–O, C–C); CIMS: *m*/*z* (%) 355 (32), 178 (100). Anal. found: C, 40.58; H, 6.27; N, 7.90.

2,6-Anhydroheptonamides.—Anal. Calcd for $C_7H_{13}NO_6$ (207.18): C, 40.58; H, 6.32; N, 6.76.

2,6-Anhydro-D-glycero-D-allo-heptonamide (5d). Ester 5b (100 mg, 0.45 mmol) was converted as described in g.p. 5 to afford 5d (81 mg, 87%): mp 182 °C (from H₂O); $[\alpha]_D + 21.0^\circ$; R_f (s.s. 3) 0.30; IR (KBr): ν 3380, 3200 (O–H, N–H), 1675 (C=O), 1065, 1035 (C–O–C, C–O, C–C); CIMS: m/z (%) 415 (12), 208 (100). Anal. found: C, 40.44; H, 6.33; N, 6.73.

2,6-Anhydro-D-glycero-D-gluco-heptonamide (6d). Ester 6b (200 mg, 0.9 mmol) was converted as described in g.p. 5 to give 6d (173 mg, 93%): mp 183 °C (from H₂O); $[\alpha]_D$ +154.6°; R_f (s.s. 3) 0.27; IR (KBr): ν 3300 (O–H, N–H), 1660 (C=O), 1125, 1110, 1070 (C–O–C, C–O, C–C); CIMS: m/z (%) 415 (6), 208 (100). Anal. found: C, 40.47; H, 6.32; N, 6.76.

2,6-Anhydro-D-glycero-L-manno-heptonamide (7d). Ester 7b [3,17,18] (200 mg, 0.9 mmol) was converted as described in g.p. 5 to afford 7d (172 mg, 92 %): mp 194 °C (from H₂O), lit. 196–197 °C [18]; $[\alpha]_{\rm D}$ + 59.1°, lit. $[\alpha]_{\rm D}^{20}$ + 67.8° (*c* 1.15, H₂O) [18]; *R_f* (*s.s.* 3) 0.21; IR (KBr): ν 3390, 3310 (O–H, N–H), 1655 (C=O), 1105, 1075, 1055 (C–O–C, C–O, C–C); CIMS: *m/z* (%) 415 (15), 208 (100). Anal. found: C, 40.49; H, 6.32; N, 6.75.

2,6-Anhydro-D-glycero-D-gulo-heptonamide (8d). Ester 8b [3,19] (200 mg, 0.9 mmol) was converted as described in g.p. 5 to afford 8d (160 mg, 86%): mp 205 °C (from H₂O–MeOH); $[\alpha]_D$ + 29.0°; $R_f(s.s.$ 3) 0.27; IR (KBr): ν 3400, 3260, 3140 (O–H, N–H), 1655 (C=O), 1080, 1055 (C–O–C, C–O, C–C); CIMS: m/z (%) 415 (10), 208 (100). Anal. found: C, 40.51; H, 6.30; N, 6.77.

2,6-Anhydro-D-glycero-L-talo-heptonamide (9d). Ester 9b (100 mg, 0.45 mmol) was converted as described in g.p. 5 giving 9d (88 mg, 96%): $[\alpha]_{\rm D}$ + 1.5°; R_f (s.s. 3) 0.24; CIMS: m/z (%) 415 (12), 208 (100). Anal. found: C, 40.58; H, 6.33; N, 6.76.

2,6-Anhydro-D-glycero-L-ido-heptonamide (10d). Ester 10b (200 mg, 0.9 mmol) was converted as described in g.p. 5 affording 10d (185 mg, 99%): $[\alpha]_{\rm D}$ + 72.7°; R_f (s.s. 3) 0.43; CIMS: m/z (%) 415 (20), 208 (100). Anal. found: C, 40.66; H, 6.35; N, 6.79.

*2,6-Anhydro-*D-glycero-D-galacto-*heptonamide* (11d). Ester 11b [19,20] (200 mg, 0.9 mmol) was converted as described in g.p. 5 to afford **11d** (169 mg, 91%): mp 218 °C (from H₂O); $[\alpha]_D$ + 39.4°; R_f (*s.s.* 3) 0.18; IR (KBr): ν 3390, 3320, 3230 (O–H, N–H), 1670 (C=O), 1105, 1065 (C–O–C, C–O, C–C); CIMS: m/z (%) 415 (18), 208 (100). Anal. found: C, 40.54; H, 6.34; N, 6.73.

2,6-Anhydro-D-glycero-L-altro-*heptonamide* (12d). Ester 12b (200 mg, 0.9 mmol) was converted as described in g.p. 5 to afford 12d (172 mg, 92%): mp 210 °C (from H₂O); $[\alpha]_{\rm D}$ + 74.7°; R_f (*s.s.* 3) 0.14; IR (KBr): ν 3430, 3330, 3250 (O–H, N–H), 1675 (C=O), 1105, 1070 (C–O–C, C–O, C–C); CIMS: m/z (%) 415 (14), 208 (100). Anal. found: C, 40.52; H, 6.30; N, 6.75.

Anhydrohexitol.—Anal. Calcd for $C_6H_{12}O_5$ (164.16): C, 43.90; H, 7.37.

1,5-Anhydro-L-gluco-hexitol (4e). Ester 4b [16] (500 mg, 2.6 mmol) was converted as described in g.p. 6 to afford 4e (385 mg, 90%): mp 140 °C (from MeOH), lit. 141–142 °C [22]; $[\alpha]_{\rm D}$ –40.6°, lit. $[\alpha]_{\rm D}^{25}$ -40.4° (c 2.6, H₂O) [22]; R_f (s.s. 3) 0.36; ¹H NMR (D₂O): δ 3.134 (dd, 1 H, $J_{1a,1b}$ –11.2 Hz, $J_{1a,2}$ 10.8 Hz, H-1a), 3.182–3.234 (dd, 1 H, J_{4.5} ABX, H-4), 3.182–3.234 (ddd, 1 H, *J*_{5.6a} 5.6 Hz, *J*_{5.6b} 1.9 Hz, H-5), 3.292 (dd, 1 H, J_{3.4} 8.9 Hz, H-3), 3.448 (ddd, 1 H, $J_{2,3}$ 9.1 Hz, H-2), 3.541 (dd, 1 H, $J_{6a,6b}$ -12.1 Hz, H-6a), 3.738 (dd, 1 H, H-6b), 3.840 (dd, 1 H, *J*_{1b.2} 5.4 Hz, H-1b); IR (KBr): v 3410, 3340, 3240 (O-H), 1105, 1075, 1010 (C-O-C, C-O, C-C); CIMS: m/z (%) 329 (88), 311 (1), 293 (2), 165 (100), 147 (4), 129 (46). Anal. found: C, 43.73; H, 7.37.

Anhydroheptitols.—Anal. Calcd for $C_7H_{14}O_6$ (194.19): C, 43.30; H, 7.27.

2,6-Anhydro-L-glycero-L-galacto-heptitol (7e). Ester 7b [3,17,18] (500 mg, 2.25 mmol) was converted as described in g.p. 6 to afford 7e (377 mg, 86%): mp 140 °C (from EtOH-MeOH), lit. 121-122 °C (hemihydrate) [18,23]; $[\alpha]_{\rm D}$ + 33.1°, lit. $[\alpha]_{\rm D}^{20}$ +29.0° (c 1.92, H₂O) [18], lit. $[\alpha]_{D}^{20}$ +32.6° (c 1.32, H₂O) [23]; R_f (s.s. 3) 0.20; ¹H NMR (D₂O): δ 3.228 (ddd, 1 H, $J_{2,3}$ 9.8 Hz, H-2), 3.421 (dd, 1 H, $J_{3,4}$ 9.5 Hz, H-3), 3.501 (dd, 1 H, J_{4.5} 3.2 Hz, H-4), 3.516 (ddd, 1 H, J_{6,7a} 8.2 Hz, J_{6,7b} 3.9 Hz, H-6), 3.563 (dd, 1 H, *J*_{1a,1b} –12.1 Hz, *J*_{1a,2} 6.6 Hz, H-1a), 3.571 (dd, 1 H, H-7b), 3.631 (dd, 1 H, J_{7a,7b} -11.6 Hz, H-7a), 3.786 (dd, 1 H, J_{1b.2} 2.2 Hz, H-1b), 3.813 (dd, 1 H, J_{5.6} 1.3 Hz, H-5); IR (KBr): v 3400 (O-H), 1105, 1085, 1050, 1010 (C-O-C, C-O, C–C); CIMS: *m*/*z* (%) 389 (19), 195 (100), 177 (3), 159 (22), 141 (2), 123 (12). Anal. found: C, 43.21; H, 7.24.

2,6-Anhydro-meso-D-glycero-D-gulo-heptitol (8e). Ester **8b** [3,19] (500 mg, 2.25 mmol) was converted as described in g.p. 6 to give 8e (388 mg, 89%): mp 199 °C (from aq EtOH), lit. 199–201 °C [24], lit. 203–205 °C [25], lit. 204–205 °C [26]; $[\alpha]_{\rm D} 0 \pm 0.1^{\circ}$, lit. $[\alpha]_{D}^{20} + 3.1^{\circ} (c 5.87, H_2O)$ [24], lit. $[\alpha]_{D}^{20} 0^{\circ} (c 2, A_2)$ H₂O) [25], lit. $[\alpha]_{D}^{20} 0 \pm 0.1^{\circ}$ (c and solvent not indicated) [26]; $R_f(s.s. 3) 0.30$; ¹H NMR (D₂O): δ 3.219 $(dd, 2 H, J_{3,4} = J_{4,5} 8.9 Hz, H-3, H-5), 3.281 (ddd, 2 H, J_{3,4} = J_{4,5} 8.9 Hz, H-3, H-5)$ H, *J*_{2,3} = *J*_{5,6} 9.8 Hz, H-2, H-6), 3.355 (dd, 1 H, H-4), 3.564 (dd, 2 H, $J_{1a,1b} = J_{7a,7b} - 12.2$ Hz, $J_{1a,2} = J_{6,7a}$ 5.9 Hz, H-1a, H-7a), 3.767 (dd, 2 H, $J_{1b,2} = J_{6.7b}$ 2.2 Hz, H-1b, H-7b); IR (KBr): v 3450, 3260 (O–H), 1100, 1080, 1030, 1010 (C-O-C, C-O, C-C); CIMS: m/z (%) 389 (57), 195 (100), 177 (5), 159 (34), 141 (7), 123 (18). Anal. found: C, 43.23; H, 7.26.

2,6-Anhydro-D-glycero-D-galacto-heptitol (11e). Ester 11b [19,20] (500 mg, 2.25 mmol) was converted as described in g.p. 6 to give **11e** (381 mg, 87%): mp 141 °C (from aq EtOH), lit. 142–144 °C [27], lit. 129–130 °C [28]; $[\alpha]_{\rm D}$ –33.5°, lit. $[\alpha]_{\rm D}^{25}$ -33.6° (c 1.5, H₂O) [27], lit. $[\alpha]_{D}^{25} -33.4^{\circ}$ (c 1.5, H₂O) [28]; R_f (s.s. 3) 0.20; ¹H NMR (D₂O): δ 3.228 (ddd, 1 H, J_{6,7a} 6.6 Hz, J_{6,7b} 2.2 Hz, H-6), 3.421 (dd, 1 H, J_{5.6} 9.8 Hz, H-5), 3.501 (dd, 1 H, J_{4.5} 9.5 Hz, H-4), 3.516 (ddd, 1 H, J_{2.3} 1.3 Hz, H-2), 3.563 (dd, 1 H, *J*_{7a,7b} –12.1 Hz, H-7a), 3.571 (dd, 1 H, *J*_{1b.2} 3.9 Hz, H-1b), 3.631 (dd, 1 H, *J*_{1a,1b} –11.6 Hz, J_{1a.2} 8.2 Hz, H-1a), 3.786 (dd, 1 H, H-7b), 3.813 (dd, 1 H, J_{3.4} 3.2 Hz, H-3); IR (KBr): v 3400 (O–H), 1105, 1085, 1050, 1010 (C-O-C, C-O, C-C); CIMS: m/z (%) 389 (33), 195 (100), 177 (5), 159 (29), 141 (4), 123 (23). Anal. found: C, 43.15; H, 7.25.

Acknowledgements

The authors thank Prof. R. J. Ferrier for assistance with the preparation of this manuscript.

References

- B. Helferich and K.L. Bettin, *Chem. Ber.*, 104 (1971) 1701–1702.
- [2] B. Helferich and K.L. Bettin, *Chem. Ber.*, 94 (1961) 1159–1160; R.W. Myers and Y.C. Lee, *Carbohydr. Res.*, 132 (1984) 61–82.
- [3] E.-F. Fuchs and J. Lehmann, Chem. Ber., 108 (1975) 2254–2260.
- [4] F.G. de las Heras and P. Fernández-Resa, J. Chem. Soc. Perkin Trans. 1, (1982) 903–907;

K. Utimoto, and T. Horiie, *Tetrahedron Lett.*, 23 (1982) 237–238.

- [5] P. Köll and A. Förtsch, Carbohydr. Res., 171 (1987) 301–315.
- [6] A. Förtsch, H. Kogelberg, and P. Köll, *Carbohydr. Res.*, 164 (1987) 391–402.
- [7] P. Köll, C. Stenns, W. Seelhorst, and H. Brandenburg, *Liebigs Ann. Chem.*, (1991) 201– 206 and literature cited therein; P. Köll, H. Brandenburg, W. Seelhorst, C. Stenns, and H. Kogelberg, *Liebigs Ann. Chem.*, (1991) 207–211 and literature cited therein.
- [8] V. Bilik, Collect. Czech. Chem. Commun., 39 (1974) 1621–1624.
- [9] J.U. Nef, Justus Liebigs Ann. Chem., 280 (1894) 263–291.
- [10] V. Bílik, L. Petruš, and J. Zemek, *Chem. Zvesti*, 30 (1976) 693–697.
- [11] G.A. Olah, M. Arvanaghi, Y.D. Vankar, and G.K.S. Prakash, Synthesis, (1980) 662–663.
- [12] P. Köll and M. Dromowicz, *Abstr. Eur. Carbohydr. Symp.*, *6th*, *Edinburgh*, 1991, B56.
- [13] M. Dromowicz, PhD thesis, University of Oldenburg, Germany, 1995.
- [14] G. Zemplén and E. Pacsu, Ber. Dtsch. Chem. Ges., 62 (1929) 1613–1614.
- [15] H. Brandenburg, PhD thesis, University of Oldenburg, Germany, 1990.
- [16] J.-M. Beau, S. Aburaki, J.-R. Pougny, and P. Sinaÿ, J. Am. Chem. Soc., 105 (1983) 621–622.
- [17] G. Papert, PhD thesis, University of Oldenburg, Germany, 1989.
- [18] J.N. BeMiller, M.P. Yadav, V.N. Kalabokis, and R.W. Myers, *Carbohydr. Res.*, 200 (1990) 111–126.
- [19] C. Stenns, PhD thesis, University of Oldenburg, Germany, 1991.
- [20] M. Chmielewski, J.N. BeMiller, and D.P. Cerretti, *Carbohydr. Res.*, 97 (1981) C1–C4.
- [21] M.L. Wolfrom and A. Thompson, *Methods Carbohydr. Chem.*, 2 (1963), 65–68.
- [22] J.C. Sowden and M.L. Oftedahl, J. Org. Chem., 26 (1961) 1974–1977.
- [23] B. Coxon and H.G. Fletcher, Jr., J. Am. Chem. Soc., 86 (1964) 922–926.
- [24] B. Coxon and H.G. Fletcher, Jr., J. Am. Chem. Soc., 85 (1963) 2637–2642.
- [25] A. Rosenthal and D. Abson, *Carbohydr. Res.*, 3 (1966) 112–116.
- [26] A. Fiecchi, M.A.G. Galli, and P. Gariboldi, J. Org. Chem., 46 (1981) 1511.
- [27] J.C. Sowden, C.H. Bowers, and K.O. Lloyd, J. Org. Chem., 29 (1964) 130–132.
- [28] F. Baumberger and A. Vasella, *Helv. Chim. Acta*, 66 (1983) 2210–2222.
- [29] A.M. Hogg and T.L. Nagabhushan, *Tetrahedron Lett.*, 47 (1972) 4827–4830.

- [30] V.I. Kadentsev, A.A. Solov'yov, and O.S. Chizhov, *Adv. Mass Spectrom.*, 7B (1976) 1465–1473.
- [31] W. Weiser, J. Lehmann, C.F. Brewer, and E.J. Hehre, *Carbohydr. Res.*, 183 (1988) 287–299.
- [32] M. Chmielewski, J.N. BeMiller, and D.P. Cerretti, J. Org. Chem., 46 (1981) 3903–3908.
- [33] A. Förtsch, PhD thesis, University of Oldenburg, Germany, 1986.
- [34] W. Seelhorst, PhD thesis, University of Oldenburg, Germany, 1994.
- [35] L. Hough and S.H. Shute, J. Chem. Soc., (1962) 4633–4637.
- [36] L. Petruš, S. Bystrický, T. Sticzay, and V. Bílik, *Chem. Zvesti*, 36 (1982) 103–110.
- [37] J.C. Sowden and H.O.L. Fischer, J. Am. Chem. Soc., 68 (1946) 1511–1513.