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ABSTRACT: The density scaling behavior of dynamics and thermodynamics is investigated in 

ionic liquids. By comparing the scaling exponent of different dynamic quantities (dc-

conductivity, viscosity, and diffusion) of a series of homologous ionic liquids, we discover that 

longer alkyl chain in the cation provides lower scaling value. Additionally, a systematic study on 

the entropy scaling behavior is carried out based on various samples within different structures 

and strength of interactions between anions and cations. Interestingly, for all tested samples, a 

linear relationship between Grüneisen parameter (scaling exponent) and entropy was obtained, 

and more importantly, the generated slope shows a close relation to the typical interactions (van 

der Waals and Coulomb forces, and H-bonds). Therefore, we establish a new correlation for this 

group of compounds. 

INTRODUCTION 

A century has passed since the discovery of the first ionic liquid (IL) by Walden in 1914. 

The ionic liquids (ILs) research field continues to grow as more families of ILs are synthesized 

and developed. ILs are composed of discrete cations and anions that can be individually 

customized, allowing the design of ILs with tunable physical, chemical, and biological properties 

suitable for various applications, including green chemistry, energy storage, and pharmaceutical 

industry [1,2,3,4]. 

Because of their excellent glass-forming ability and superior thermal stability, ILs offer 

new opportunities to investigate long-standing problems i.e. the dynamics and thermodynamics 

of glass transition, as well as the corresponding ion transport properties, over extreme broad 

temperature and pressure ranges. For this reason, many studies on the dynamic and mechanical 

properties (e.g. structural and conductivity relaxation times, conductivity, and viscosity) of these 

unique materials have been carried out under different thermodynamic conditions. However, so 

far there is no generally accepted model and theory to either fully explain these properties or 

predict the key variables over the range from simple dynamics at high temperatures to complex 

dynamics at lower temperatures approaching Tg. An alternative solution to this problem can be 

offered by the concept of density scaling:  
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   (    )                                                                 (1) 

where x represents any of the physical variables such as the structural relaxation time quantifying 

the molecular dynamics, V is the specific volume, T is the temperature, and γx
 
is the scaling 

exponent.  

This approach assumes that dynamic quantities including viscosity, conductivity, relaxation time 

or diffusion coefficient can be scaled onto a single master-curve when plotted versus     γ  

[5,6,7].The magnitude of the parameter γx reflects the steepness of the repulsive part of the 

effective short-range intermolecular potential [8] and thus it is a material constant directly related 

to the structure of a given material. If the thermodynamic scaling is satisfied for a given system 

one can predict the dynamic properties at any temperature and pressure conditions. 

Thermodynamic scaling has been already confirmed for many van der Waals liquids and 

polymers [9,10]. Very recently, our group studied the density scaling of dc-conductivity on two 

ILs: 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide ([BMMIm][TFSI]) and 

1-butyl-3-methylimidazolium acetate ([BMIm][OAc]) [11]. For these ILs differing significantly 

in the strength of the interactions between the ionic species, the thermodynamic scaling law has 

been successfully verified over a broad density range with a state-point-independent value of γσ 

(scaling exponent for dc-conductivity, σdc).  

By using a revised entropy model of the glass transition dynamics originally proposed by 

Avramov [12], the authors of ref. [13] suggested that the entropy, S, for a supercooled liquid 

satisfies under some approximations a scaling law, 

 (   )   (    ),      (2) 

where the scaling exponent γG is the thermodynamic Grüneisen parameter [14,15].The entropy 

calculated from experimental data of molecular glass-formers under different T and V has 

confirmed approximately Eq.(2) [16,17,18,19]. Generally, for any model in which the relaxation 

time is a function of the entropy, the scaling exponent γx in Eq.(1) should be equal to γG 

according to the analysis presented in Refs. [13,16]. However, the value of the exponent γG is 

significantly smaller than the parameter γx. Therefore,
 
Grzybowska et al. [19] suggested that the 

system entropy S is not sufficient to govern the structural relaxation time  of molecular glass-

former. It has been also reported that the entropy of IL (1-butyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide [BMIm][TFSI]) conforms to density scaling, with the scaling 

exponent identified with the Grüneisen parameter [19]. Nevertheless, the calculations of S were 

made over a narrow range corresponding to temperature and pressure ranges of ΔT=30 K, 

ΔP=200 MPa. The data of S collapsed to a single master curve with relatively low precision by 

using a constant value of the scaling exponent [19].  

In this work, we investigate the density scaling behavior of dc-conductivity and entropy 

of 1-ethyl-3-methylimidazolium diethylphosphate ([EMIm][DEP]) over a broad range of T, P, 

and V. We find that density scaling exponent of dc-conductivity is state-point independent. It 

fluctuates around the average of 2.15±0.03 when the volume changes of 13%. We also find a 

relationship between the Grüneisen parameter and the entropy for the studied IL, from which a 

single master curve can be constructed. Furthermore, due to the wealth of PVT data for ILs in the 
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literature [20], we have selected 15 additional systems to investigate the density scaling of 

entropy. In this way, the effects of strength of various intermolecular interactions between 

cations and anions can be systematically analyzed and a general conclusion may be drawn from 

the results.  

METHODS 

 

Materials.  

Anhydrous solvents, such as N-methylimidazole (CAS number: 616-47-7; purity: 99%+), triethyl 

phosphate (CAS number: 78-40-0; purity: 99.8%), dimethyl sulfoxide-d6 (CAS number: 2206-

27-1; purity: 99%+ with 99.96 atom %D), diethyl ether (CAS number: 60-29-7; purity: 99.7%+), 

were supplied by Sigma Aldrich and used directly as received.  

Synthesis of the [EMIm][DEP]. 1-Ethyl-3-methylimidazolium diethylphosphate (CAS number 

848641-69-0; purity >98%) was synthesized at QUILL (Queen's University Ionic Liquid 

Laboratories) by following the methodology reported below which is comparable to that 

reported originally in the literature [21,22]. 

Briefly, N-methylimidazole (8.2 g, 0.1 mol) and an equimolar amount of triethyl phosphate (18.2 

g, 0.1 mol) were added to a Carius tube and flushed with nitrogen. After sealing and covering in 

aluminium foil the tube was then heated to 373.15 K for 24 hrs. The resulting liquid was washed 

with diethyl ether (3×20 cm
3
) at room temperature followed by drying under reduced pressure  

(1 Pa) at 353 K overnight to remove starting materials and solvent residues. After washing and 

drying the ionic liquid resulting yield was 21.9 g, 83%. Before measurements, the sample was 

again dried and degassed under low pressure (1 Pa) at temperatures not exceeding 373 K.  IL was 

kept under a nitrogen atmosphere and then used without any further purification. The purity of 

the sample was firstly estimated by considering the water level in the sample (lower than 0.01 

wt/wt% (or 100 ppm) by Karl Fischer Coulometric titration using an 899 Coulometer, Metrohm) 

and by comparing 
1
H and 

13
C NMR spectra recorded at 293 K on a Bruker Avance DPX 

spectrometer at respectively 300 MHz and 75 MHz with those published by either Kuhlmann et 

al. [22] or Hiraga et al. [23] as shown in the Figs S1 and S2 of the supporting information (SI). 

The purity of the sample was then assessed by comparing systematically density (), speed of 

sound (c), viscosity () and molar isobaric heat capacity (Cp) datasets collected during this work 

at 0.1 MPa with those available in the literature reported in the Tables S1-S4 of the SI.  

Density, speed of sound, and viscosity measurements. The density and the speed of sound of 

the [EMIm][DEP] were simultaneously determined from 293.15 to 363.15 K (u(T) = 0.01 K) at 

atmospheric pressure using a DSA 5000 M from Anton Paar. An extended calibration of this 

equipment was done by following the recommendations of the manufacturer with dry air and 

redistilled water. Furthermore, great care was also given during the interpretation of speed of 

sound data [24], as the [EMIm][DEP] was reported as a nondispersive media for temperature 
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higher than 308.15 K (i.e. with a similar transducer operating at a frequency of 3 MHz) [25]. The 

uncertainty of each property and stated conditions, reported in the footnote of Tables S1-S2 in 

SI, were determined by the following advice reported in the literature [26]. 

The viscosity of the IL was measured using a Bohlin Gemini Rotonetic Drive 2 cone and plate 

rheometer (± 1% repeatability) from 293.15 to 373.15 K (u(T) = 0.01 K) at atmospheric pressure. 

The rheometer was calibrated using ultra-pure water and an oil viscosity standard (ASTM Oil 

Standard S600, Cannon, 1053 mPa·s at 298.15 K). From this study, the relative uncertainty of 

the reported viscosity measurements, ur() did not exceed 3%. 

Conductivity Measurements. The dielectric measurements at ambient pressure for 

[EMIm][DEP] series were carried out in a nitrogen atmosphere over a frequency range from 10
-1

 

Hz to 10
7
 Hz using Novo-Control GMBH Alpha dielectric spectrometer. At the beginning of 

measurements each sample was equilibrated in active sample cell (two stainless steel electrodes 

of diameter, d = 15 mm separated by quartz ring; distance between plates of the capacitor was 

constant and equal to 0.08 mm) for 1 h at 373 K. Then, the material was cooled down to the 

glassy state. The applied cooling rate was 5 K·min
-1

. The temperature was controlled by the 

Novo-control Quattro system with a nitrogen gas cryostat. The temperature stability was within ±0.1 

K. The errors from calibration, temperature (u(T) = 0.1 K), and pressure (u(p) = 2 kPa) control 

yield an uncertainty of 5% of dc-conductivity determined herein.  

High-pressure conductivity measurements. The conductivity measurements under high-

pressure conditions were carried out with the use of capacitor Φ = 10 mm, filled with the studied 

sample. The capacitor was hermetically closed and placed in the high-pressure chamber. 

Compression was achieved by using the silicone oil, however without any contact between 

sample and oil. The pressure was measured by the Unipress setup with the pressure resolution of 

1 MPa. The temperature was stabilized by means of a Weiss fridge with an error of 0.1 K. The 

errors from calibration, temperature (u(T) = 0.1 K), and pressure (u(p) = 1 MPa) control yield an 

uncertainty of 7% of dc-conductivity determined herein. 

Temperature Modulated Differential Scanning Calorimetry (TMDSC). Calorimetric 

experiments were performed by a Mettler Toledo DSC1STAR System equipped with a liquid 

nitrogen cooling accessory and an HSS8 ceramic sensor with 120 thermocouples. Enthalpy and 

temperature calibrations were performed using indium and zinc standards. During these 

measurements, the tested samples (about 25mg) were placed in aluminum crucibles with a 40 μL 

volume and the flow of nitrogen was 60 mL·min
–1

. The measurements were performed in the 

temperature range from 220 to 373 K with a heating rate of 0.5 K·min
-1

 and the temperature 

amplitude of the pulses equal to 1 K.  
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RESULTS AND DISCUSSION 

 

Density scaling of dynamic quantities 

The conductivity of [EMIm][DEP] under isobar 0.1 MPa and five isotherms were studied 

by means of broadband dielectric spectroscopy (see Methods for details). Representative 

dielectric spectra collected in the frequency interval ranging from 10
−1

 to 10
6
 Hz are 

demonstrated in the conductivity formalism, σ′(f) in Fig. S3 of the SI. Three distinctly visible 

regions can be observed in spectra i.e., i. a low-frequency deviation from the plateau attributed to 

the polarization effect, typical for ion-conducting materials; ii. a frequency-independent region 

known as the dc-conductivity, σdc; and iii. the power-law behavior observed at higher 

frequencies. The key quantity considered in this work is dc-conductivity.  

For our purpose to present the dc-conductivity as a function of T and V, the modified 

Tait-equation (Eq. 3) is applied to analyze the high-pressure density dataset reported in Ref. [23].  

 (   )  (   
        ) {      [  

 

     (    )
]}                (3) 

where A0, A1, A2, C, b0, and b1 are parameters. According to the determined parameters of Eq. 3, 

the requested PVT data were extrapolated to the same T and P conditions as those applied during 

dc-conductivity measurements. Consequently, we have transformed the σdc(T,P) data determined 

in this work to T-V representation. The results are shown in a 3D plot (Fig. S4A in SI). These 

data cover both the supercooled and normal liquid states of [EMIm][DEP]. As a result, the ion 

dynamics represented by σdc can be followed over 13 orders of magnitude corresponding to 

volume fluctuations of 13%. As seen from Fig. S3 in SI, the σdc data decrease with either isobaric 

cooling or isothermal compression.  

Different approaches to determine the dc-conductivity scaling parameter are reported in 

the literature [18, 27,28]. Herein, we employed a model-independent procedure [29]. Namely, 

based on the experimental -log10σdc(T, V) data presented in Fig. S4A in SI, we have determined a 

set of log10T(-log10V) dependences at each constant -log10σdc (i.e.,-log10σdc=3,4,5,…, 13). It can 

be seen in the inset of Fig. S4A that each obtained iso-conductivity log10T(-log10V) dependence 

can be well described by s simple linear fit. According to Eq.1, the yielding slope is equal to the 

scaling exponent γσ. In Fig. S4A in SI, two planes perpendicular to the -log10σdc axis are chosen 

to show the method as examples. By following this methodology, the averaged γσ
 
coefficient is 

close to 2.15±0.03 for the tested IL. By using this value, a superposed single master curve is 

obtained by plotting σdc vs.    γσ with high precision (Fig. S4B in SI). 

Interestingly, it has been reported that other dynamic quantities of ILs, such as viscosity, 

relaxation times, and diffusion coefficient, also satisfied this density scaling law, i.e. the scaling 

exponent is a state-point-independent parameter. Herein, we collect the scaling exponents of 

various ILs [11,30,31,32] having different strength of interionic interactions (Fig. 1).  
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Fig. 1. The density scaling exponents of dynamic properties (dc-conductivity, viscosity, and diffusion 

coefficient) of several ILs having different dominant interactions. Data are taken from: ref. [11] 

([BMMIm][TFSI] and [BMIm][OAc]); ref. [30] ([BMIm][BF4], [HMIm][BF4], [OMIm][BF4], [BMIm][PF6], 

[HMIm][PF6], [OMIm][PF6], and [HMIm][TFSI]); ref. [32] ([OMIm][TFSI); ref. [30] ([BMIm][TFSI]-

visocosity and diffusion coefficient); ref. [31] ([BMIm][TFSI]-dc-conductivity). 

As seen from Fig. 1, the exponents obtained from scaling of different dynamic quantities 

within the single ionic liquid are not the same. However, at the same time, the ratio of γσ /γη 

(where γη is the scaling exponent of viscosity) is close to unity which results from the coupling 

between ion transport dynamics and structural relaxation in aprotic ionic liquids. Interestingly, in 

each homologous series, a clear decrease of dynamic scaling exponent with an increase of alkyl 

chain length is observed. To explain this result, we return to the relationship between scaling 

exponent and intermolecular potential. In general, the intermolecular potential is composed of an 

attractive part and a repulsive part represented by a two-body power law [8,33,34] and the 

scaling exponent is determined by the steepness of the resultant intermolecular potential at a 

short distance where the repulsive part dominates. From this point of view, the effect of the 

attractive part on the scaling exponent cannot be ignored, especially, in terms of ILs where 

electrostatic attractions are dominated. Moreover, based on the analysis of the single-component 

Lennard-Jones system, the attractive term increases the steepness of the effective repulsive part, 

and thus increases the power-law exponent [35]. For imidazolium-based ILs, longer alkyl chain 

attached onto the imidazolium ring is more effective in screening the electrostatic forces and then 

results in weaker attractive interaction which contributes to a lower value of the power-law 

exponent. 

Density scaling of entropy and its relation to the structure of ILs 

Based on the PVT data, we can investigate the total entropy under different 

thermodynamic conditions by using the well-known thermodynamic relation, 
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 (   )     ∫   (    )
 

  
𝑑    ∫ (𝜕 (   ) 𝜕⁄  ) 𝑑 

 

  
                     (4) 

where Sr is the entropy under the reference condition. The Cp is the molar isobaric heat capacity 

at 0.1 MPa obtained from the Temperature Modulated Differential Scanning Calorimetry (TM-

DSC). 

 
Fig. 2. A) The isothermal and isobaric values of S-Sr of [EMIm][DEP] plotted in a 3D plane in terms of T and 

V. B) Density scaling plots of S-Sr of [EMIm][DEP]. Inset of A: the results from the horizontal crossing of the 

S-Sr data of [EMIm][DEP]. Inset of B: the linear variation of the entropy scaling exponent for [EMIm][DEP] 

calculated from the slope of the lines in the inset of A. 

Moreover, it has been derived that the entropy can be well represented by: 

 (   )          (  
  )                                                (5) 

where CV is the molar isochoric heat capacity which could be easily calculated using the 

thermodynamic relationship between Cp and CV. However, the scaling exponent γS for S is 

different from γσ for conductivity [11] and γS is supposed to be γG defined as Grüneisen parameter 

and given by [13] 

   
    

    
                                                                    (6) 

where Vm is the molar volume, αp the isobaric thermal expansion, and κT the isothermal 

compressibility. According to the definition of γG, one can anticipate that its value should change 

with the thermodynamic conditions since the thermodynamic variables (Vm, αp, and κT) are in 

general functions of temperature and pressure. Therefore, the collapse of all data into a single 

curve cannot be achieved using a constant value of γG.  

Having the generated PVT data in the same wide density regime as dc-conductivity, we 

calculated the values of S(T,P) using Eq. 4 with the Cp from TMDSC. For our purpose, we 

converted S(T,P) to S(T,V) and determined the values of γG applying the same method as in the 

case of dc-conductivity i.e., the model-independent procedure. Based on the S(T,V) data 

presented in Fig. 2A, we chose six different values of entropy covering all the investigated 

thermodynamic range. Two of them are presented in Fig. 2A as examples. Consequently, six 

log10T(-log10V) dependencies are determined. It can be seen in the inset of Fig. 2A that each of 

them can be well described by simple linear fit with a slope yielding the exponent γG, and it is 
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denoted herein by γG(S) to indicate that Grüneisen parameter is a function of entropy. A 

monotonic decrease of γG(S) with increasing S-Sr was obtained. This simple change of γG(S) with 

entropy draws our attention to assume that there may be a linear relationship between these two 

quantities. Therefore, we plotted γG(S) as a function of S-Sr. As expected, we obtained a linear 

function with high precision. The results are shown in the inset of Fig. 2B. But now the question 

is whether the γG(S) obtained in this way can satisfy the density scaling of entropy in ILs? How it 

works in practice is illustrated in Fig. 2B. It is evident that all isothermal and isobaric curves can 

be collapsed into a perfect master curve using a γG(S) as a function of S-Sr.  

Importantly, we have chosen more ionic liquids with various combinations of anions and 

cations to confirm the behaviour pattern reported above. Specifically, a reasonably good scaling 

curve S-Sr vs.    γ ( ) can be obtained for each selected IL over a broad thermodynamic range 

with γG(S) being a linear function of S-Sr. The entropy scaling results of these ILs are present in 

Fig. 3A and 3B. The data of PVT data and Cp at ambient pressure for these ILs are taken from the 

literature [36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62]. 

 
Fig. 3. A) The linear relation between γG(S) and S-Sr of chosen ILs having distinct compositions of ions. B) 

The density scaling superposed curves of entropy of the chosen ILs. The corresponding PVT and Cp data 

are taken from: a. ref. [39] and [46]; b. ref. [47] and [48]; c. ref. [39] and [49]; d. ref. [43] and [50]; e. ref. 

[42] and [53]; f. ref. [40] and [51]; g. ref. [41] and [52]; h. ref. [37] and [57]; i. ref. [38] and [57]; j. ref. 

[45] and [54]; k. ref. [55] and [55]; l. ref. [62] and  [57]; m. ref. [61] and  [60]; n. ref. [58] and [60]; o. ref. 

[56] and [60]. 

The chosen ILs have different ions and thus different intermolecular interactions. 

Consequently, the slope k of the linear function connecting the scaling exponent with the entropy 

varies in a broad range from -3.71×10
-3

 to -0.91×10
-3

, and the absolute values are shown in Fig. 4. 

Interestingly, the change of these values is not random but closely related to the typical 

interactions: van der Waals forces, Coulomb forces, and H-bonds. Specifically, the slope 

decreases with increasing carbon chain length in anion or cation. Such behavior has been found 

for [C2SO4]
-
 and [C8SO4]

-
 (absolute value of k decrease from 3.35×10

-3
 to 0.91×10

-3
), and is also 

0 100 200 300 400

0.6

0.9

1.2

1.5

100 200 300 400

0

150

300

450

a [BMIm][C8SO4]
b [BMIm][BF4]

c [BMIm][Cl]       d [BMIm][FAP]
e [BMIm][TFSI]   f [BMIm][PF6]

g [N1114][TFSI]    h BMMIm][TFSI]

i [BMIm][OAc]    j [BMIm][SCN]
k [BMIm][BETI]  l [EMIm][C2SO4]

m [BMPyr][TFSI] n [EMIm][TFSI]
o [OMIm][TFSI]

S
-S

r/
 J

×m
o

l-
1

×K
-1

S-Sr/ J×mol-1×K-1

A

0

TVg
G
(S)/K×cm3g

G
(S)×g-g

G
(S)

g G
(S

)

B

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

9 
 

observed for [EMIm]
+
, [BMIm]

+
 and [OMIm]

+
 (Fig. 4). Thus, the slope decreases as van der 

Waals interactions increase with the length of the alkyl chain and Coulomb forces decrease at the 

same time. Additionally, we find that for ILs with TFSI anion, in which van der Waals and 

electrostatic forces are very similar (i.e., [BMpyr][TFSI], [BMMIm][TFSI], [N4111][TFSI], 

[BMIm][TFSI]), the slope decreases with increasing of hydrogen bonds contribution. The 

highest values were obtained for [BMPyr][TFSI], [BMMIm][TFSI] with negligible donor-

acceptor capabilities, and the lowest was determined for [BMIm][TFSI] which easily forms 

hydrogen bonds between cation and anion. We can also assume that strong electrostatic 

intermolecular interactions drive the high value of |k| e.g., for [BMIm][SCN] > [BMIm][BF4] > 

[BMIm][BETI] > [BMIm][FAP] where H-bond contribution is small and the van der Waals 

forces are similar due to the same butyl chain in both structures, therefore it is possible to 

compare only electrostatic forces (voluminous and heavy anions only weakly interact, whereas 

small and light anions provide strong Coulomb interaction potential due to their higher surface 

charge density). The situation is more complicated for ILs in the last group in Fig. 4, as two 

interactions change significantly: H-bonds and Coulomb forces. Since both abovementioned 

contributions change in the row: [BMIm]Cl > [BMIm][OAc] > [BMIm][PF6] > [BMIm][TFSI] 

and as k decreases in the same way, one can think that electrostatic forces are decisive and 

dominant even if the [BMIm][Cl] or [BMIm][OAc] form one of the strongest hydrogen bonds 

between cation and anion, strong enough to disrupt the structure of cellulose [63,64].  

 

Fig. 4. The absolute values of the slope of the linear fitting. 

 

CONCLUSION 

 

Summarizing, in this paper, we analyzed the density scaling of the dc-conductivity of 

[EMIm][DEP]. In a broad thermodynamic range, the conductivity data, covering 13 orders of 

magnitude, collapse onto a single master curve when plotted versus     , with a constant scaling 

exponent γ. At the same time, the density scaling of other dynamic properties, e.g., viscosity, 

relaxation time, and diffusion, is recalled to show its general validity in the class of ILs. On the 
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other hand, we found that the entropy of ILs can be scaled by      well with γS= γG(S), being a 

linear function of the entropy. From this point, the superposition of entropy data onto a single 

master curve was successfully demonstrated. Since ILs with various dominant interactions are 

investigated herein (using literature PVT data), the scaling behavior of entropy reported in this 

work should be treated as universal. Additionally, we have made a systematic investigation of 

the relationship between the strength of intermolecular interactions (Coulombic and van der 

Waals interactions, and H-bonds) and the obtained slope, k. The delicate balance between all 

these intermolecular interactions makes it difficult to generalize the role of each force in the 

obtained slope. Nevertheless, we have extracted some important information including the 

following. (i) As the contribution of electrostatic forces increases, a higher absolute value of k is 

observed. (ii) A decrease of |k| is detected when van der Waals and hydrogen-bonding 

interactions increase. 

In addition to improve our knowledge on the thermodynamic and dynamics properties of 

ILs, this work demonstrates how their physicochemical properties can be predicted for 

conditions beyond those measured. This has obvious utility in the design and development of 

new products and applications. 
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Highlights 

• Density scaling of the dc-conductivity and entropy in ionic liquids was investigated. 

• Longer alkyl chain in the cation provides lower scaling value. 

• Linear relationship between Grüneisen parameter (scaling exponent) and entropy was 

determined. 
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