1547

Preparation and Characterisation of Some Nitrogen-bridged Phosphorus Fluorides

By J. S. Harman, M. E. McCartney, and D. W. A. Sharp,* Department of Chemistry, University of Glasgow, Glasgow W.2

Difluorophosphino(tetrafluorophosphoranyl)methylamine, PF2·NMe·PF4, and difluorophosphino(difluorophosphoryl)methylamine, PF2•NMe•POF2, result from the action of difluorophosphino(trimethylsilyl)methylamine on phosphorus pentafluoride and phosphoryl trifluoride respectively. Difluorophosphino(trimethylsilyl)methylamine can be prepared in good yield from chlorodifluorophosphine and heptamethyldisilazane. An alternative route to difluorophosphino(difluorophosphoryl)methylamine is the reaction between methylaminophosphoryl difluoride and chlorodifluorophosphine in the presence of base. Some other routes for these derivatives are described with the properties of these nitrogen-bridged derivatives. Comparable reactions with thionyl fluoride and sulphur dioxide do not yield products containing nitrogen bridges between phosphorus and sulphur atoms. Spectroscopic data are presented for all of these compounds.

THE cleavage of silicon-nitrogen bonds by fluorophosphoranes has proved a useful route to amino-derivatives of quinquevalent phosphorus.¹ By using diffuorophosphino(trimethylsilyl)methylamine, Me₃Si•NMe•PF₂,² as a starting reagent we have extended this method to prepare some nitrogen-bridged phosphorus fluorides. The only previously known fluoro-substituted quinquevalent compounds of this type are bis(diffuorophosphoryl)methylamine and its thiophosphoryl analogue, $(F_2PX)_2NMe$ (X = O, S),³ and the 1,3,2,4-diazafluorodiphosphetidines, (F₃P·NR)₂.¹ The only compounds containing two fluorinated phosphorus nuclei in different valence states linked by a bridge, which are known to us, are $PF_2(X) \cdot X \cdot PF_2$ (X = O, S).⁴

Me₃Si·NMe·PF₂ has previously been produced in low yield by the fluorination of the corresponding chloride with SbF₃.² Schmutzler reported that no reaction takes place between phosphorus trifluoride and heptamethyldisilazane,⁵ while that between phosphorus trichloride and heptamethyldisilazane takes place below room temperature.² At 90 °C the P-Cl bond in PF₂Cl is readily cleaved by heptamethyldisilazane to give Me₃SiNMePF₂ in good yield [reaction (1)]. Me₃Si-NMe·PF₂ could be prepared in the presence of excess of

$$\frac{\text{Me}_{3}\text{Si}_{2}\text{NMe} + \text{PF}_{2}\text{Cl} \longrightarrow}{\text{Me}_{3}\text{Si}\cdot\text{NMe}\cdot\text{PF}_{2} + \text{Me}_{3}\text{Si}\text{Cl}} (1)$$

PF₂Cl without evidence for the cleavage of the second Si-N bond. It cannot be produced from the reaction between MeNHPF₂ and Me₃SiCl in the presence of a base.

 $Me_3Si \cdot NMe \cdot PF_2$ reacts readily with PF_5 below room temperature to give difluorophosphino(tetrafluorophosphoranyl)methylamine, $PF_2 \cdot NMe \cdot PF_4$ [reaction (2)].

$$\begin{array}{ll} \mathrm{Me_{3}Si}\cdot\mathrm{NMe}\cdot\mathrm{PF_{2}}+\mathrm{PF_{5}} &\longrightarrow\\ \mathrm{PF_{2}}\cdot\mathrm{NMe}\cdot\mathrm{PF_{4}}+\mathrm{Me_{3}SiF} & (2) \end{array}$$

The analogous reaction with POF₃ does not take place

at room temperature, and only partial conversion into difluorophosphino(difluorophosphoryl)methylamine,

PF₂·NMe·POF₂, takes place at 60 °C. At higher temperatures (POF₂)₂NMe and a small amount of PF₂.-NMe POF₂ are identified among the volatile products. The relative ease of these reactions is suggested to depend on both the Lewis acidity of the phosphorus fluoride and the Lewis basicity of the silicon-nitrogen compound.

While PF₂·NMe·POF₂ can also be prepared in low yield by the fluorination of PCl₂·NMe·POCl₂, the best route to this compound is through the reaction (3)between methylaminophosphoryl difluoride and chlorodiffuorophosphine in the presence of NN-dimethylaniline. While both this reaction and that between

$$MeNH \cdot POF_2 + PF_2Cl \xrightarrow{PhNMe_2} PF_2 \cdot NMe \cdot POF_2 \quad (3)$$

MeNH·POF₂ and POF₂Cl (ref. 3) only take place in the presence of a base, base is not required for reaction (4) between MeNHPF₂ and PF_5 from which PF_2 ·NMe·PF₄, MeNH·PF₄⁶ and $(PF_2)_2$ NMe⁷ can be isolated.

$$\begin{array}{c} \text{MeNH} \cdot \text{PF}_2 + \text{PF}_5 \longrightarrow \text{MeNH} \cdot \text{PF}_4 + \\ (\text{PF}_2)_2 \text{NMe} + \text{PF}_2 \cdot \text{NMe} \cdot \text{PF}_4 + \text{solids} \quad (4) \end{array}$$

Difluorophosphino(tetrafluorophosphoranyl)methylamine is a volatile compound which is stable for short periods at room temperature. However, deposition of solids takes place at 50 °C; the volatile products of the decomposition (5) are identified as PF_3 and $(F_3PNMe)_2$;

$$PF_2 \cdot NMe \cdot PF_4 \longrightarrow (F_3 PNMe)_2 + PF_3$$
 (5)

 $(F_3PNMe)_2$ has also been obtained from the reaction between Me₃Si·NMe·POF₂ and PF₅, which was postulated to proceed through the intermediate formation of POF₂·NMe·PF₄.⁸ The thermal instability of PF₂·- $NMe \cdot PF_4$ and the higher reaction temperature required on account of this compound's poor Lewis acidity precluded the further substitution of a second fluorine

- J. S. Harman and D. W. A. Sharp, to be published.
 J. F. Nixon, J. Chem. Soc. (A), 1968, 2689.
 J. S. Harman and W. E. Hill, unpublished work.

¹ M. Murray and R. Schmutzler, Z. Chem., 1968, 8, 241; R. Schmutzler, in 'Halogen Chemistry,' Academic Press, London and New York, 1967, vol. 2, p. 31.

² R. Keat and L. Stobbs, personal communication to be published.

³ T. L. Charlton and R. G. Cavell, Inorg. Chem., 1970, 9, 379.

⁴ T. L. Charlton and R. G. Cavell, Inorg. Chem., 1969, 8, 2436; D. D. DesMarteau, J. Amer. Chem. Soc., 1969, 91, 6211.
 ⁵ R. Schmutzler, Chem. Comm., 1965, 19.

atom by a difluorophosphino-group. I.r. spectroscopy shows that PF_2 ·NMe·PF₄ is readily hydrolysed by moist air to PF₃ and POF₃.⁹ A mass spectrum of PF₂·NMe-- PF_4 is mainly that of its hydrolysis products.

PF₂·NMe·POF₂ is thermally more stable than PF₂·-NMe·PF₄ and remains intact at 100 °C. A ca. 1:1molar ratio of PF2·NMe·POF2 and HCl react together at room temperature. An investigation of the volatile products shows that all the HCl is absorbed and that excess of PF2·NMe·POF2 is recovered along with POF_3 , POF_2Cl , $MeNH \cdot POF_2$, PF_3 , and PCl_3 (from the disproportionation of PF_2Cl). The reaction temperature is much lower than that required partially to cleave the P-N bonds in the quinquevalent PNP bridged compounds³ and close to that required to cleave both P-N bonds in $(PF_2)_2$ NMe⁷ (which presumably involves

or Me₃SiF but also a molecule of PF_3 [reaction (6)].

$$\begin{array}{ccc} \mathbf{F_{2}P} & \mathbf{F} \\ \mathbf{Me} & \overset{\mathsf{I}}{\longrightarrow} \mathbf{S} = \mathbf{O} \longrightarrow \mathbf{XF} + \mathbf{MeNSO} + \mathbf{PF_{3}} \\ \overset{\mathsf{I}}{\underset{\mathbf{X}}{\overset{\mathsf{I}}{\mathsf{F}}}} & (\mathbf{X} = \mathbf{Me_{3}Si, H}) & (6) \end{array}$$

The inability to isolate PF₂·NMe·SOF presumably has its origin in the much higher strength of the P-F than the S-F bond [117 kcal/mol in PF_3^{14} as compared with 76 in SF_4 ¹⁵]. A similar migration of a fluorine atom to that postulated in this reaction takes place in POF₂-N=SF₂, which decomposes at room temperature to form POF₃ and NSF.¹⁶

Alkylamino-phosphoryl and -thiophosphoryl difluorides are well established.¹⁷ Both MeNH·POF,

TABLE 1

N.m.r. spectra of PF_2 ·NMe·PF ₂ X (X = O	. F.	and MeNH·PXF.	(X	= lone	pair.	Ο.	F_{a}) a	,b
--	------	---------------	----	--------	-------	----	-------------	----

	$\begin{array}{c} & \delta_{F(A)} \\ PF_2 \cdot NMe \cdot PF_4 & 70 \\ PF_2 \cdot NMe \cdot POF_2 & 71 \\ MeNH \cdot PF_3 \circ & 71 \\ MeNH \cdot POF_2 \\ MeNH \cdot PF_4 \bullet \end{array}$		70 71	$\begin{array}{ccc} \delta_{F(B)} & J(P_AF_A) \\ 61 & 1280 \\ 78 & 1272 \\ & 1193 \\ 79 \\ 74 \end{array}$		J(P _B F _B) 896 1039 1000 847	896 1039 1000		
PF₂•NMe•PF₄ PF₂•NMe•POF₂	$J(P_{B}F_{A}) = \begin{array}{c} 3 \cdot 7 \\ 8 \cdot 2 \end{array}$	$J({ m P_{A}F_{B}}) \ 87{\cdot}0 \ <1^{ o}$	J(F _А F _В) 9·8 4·5	δ _{Me} 2·9 2·9	J(P _A H) 2·2 1·7	J(P _B H) 15·2 12·0	J(F _A H) 2·7 f 1·7 f,h	J(F _B H) 2·01 0·5 *	

• δ_F and δ_H given with respect to internal CCl₃F and Me₄Si. • 'A ' represents PF₂ and 'B' represents POF₂ or PF₄. • Ref. 28. Recorded +70 °C; ref. 6. • Not resolvable in ¹⁹F n.m.r. spectrum. ¹ Obtained from ¹⁹F n.m.r. spectrum. ¹ Obtained from ¹H n.m.r. spectrum.

the formation of MeNH·PF₂ as an intermediate). The non-isolation of MeNH·PF₂ probably indicates the enhanced basicity of the nitrogen atom in the latter compound compared with that in MeNH·POF₂.

While thionyl fluoride reacts with either a secondary amine¹⁰ or a dialkylaminotrimethylsilane¹¹ to produce NN-dialkylfluorosulphinamides, R₂NSOF, the reactions between SOF₂ and MeNH·PF₂ or Me₃Si·NMe·PF₂ do not produce the expected PF₂·NMe·SOF. The volatile products from the reaction of SOF₂ or SO₂ with Me-NH·PF₂ were identified as PF₃, MeNSO, MeNH·POF₂, and MeNH·PSF₂. Previous work has shown that SO₂ is capable of oxidising P^{III} to P^v through initial nucleophilic attack by either the phosphorus or the oxygen atom on the sulphur or phosphorus atom respectively.^{12,13} It is suggested that in these reactions an additional mechanism involves nucleophilic attack by a nitrogen atom in either MeNH·PF₂ or Me₃Si·NMe·PF₂ on the sulphur atom in SOF₂. The intermediate adduct formed can then eliminate not only a molecule of HF (which is then removed by attacking the starting reagents)

⁹ H. S. Gutowsky and A. D. Liehr, J. Chem. Phys., 1952, 20, 1652.

and MeNH·PSF₂ which are products of the above reactions have been prepared in good yield by the fluorination of the corresponding chlorides,18 and Roesky and Klocker have recently characterised MeNH·POF₂ by n.m.r. and i.r. spectroscopy.¹⁹ The additional spectroscopic properties of MeNH·POF₂ are described below and the properties of MeNH·PSF₂ will be detailed elsewhere.8

N.m.r. Spectra.—Both PF_2 ·NMe·POF₂ and PF_2 ·- $NMe \cdot PF_4$ give apparently complicated n.m.r. spectra, but these are readily interpreted on the basis of a firstorder analysis (Table 1). A variable-temperature n.m.r. study shows only one resonance for the tetrafluorophosphoranyl group in the ¹⁹F n.m.r. spectrum of PF_2 ·NMe·PF₄, which indicates that pseudorotational processes operate down to -80 °C and render the fluorine atoms equivalent. While the ¹⁹F chemical shifts are altered to a different extent, the values of ${}^{1}J(PF)$ are appreciably larger in both PF_{2} ·NMe·POF₂ and PF_2 ·NMe·PF₄ than in the corresponding parent methylamino-derivatives.

¹⁵ P. A. G. O'Hare, W. N. Hubbard, O. Glemser, and J. Wegener, J. Chem. Thermodynamics, 1970, 2, 71. ¹⁶ O. Glemser, H. W. Roesky, and P. R. Heinze, Angew. Chem.

Internat. Edn., 1967, 6, 710.

140.

¹⁰ M. Goehring and G. Voigt, Chem. Ber., 1956, 89, 1050.
¹¹ D. H. Brown, K. D. Crosbie, J. I. Darragh, D. S. Ross, and D. W. A. Sharp, J. Chem. Soc. (A), 1970, 914.
¹² B. C. Smith and G. H. Smith, J. Chem. Soc., 1965, 5516.
¹³ E. Fluck and H. Binder, Z. anorg. Chem., 1967, 354, 139.
¹⁴ S. B. Hartley, W. S. Holmes, J. K. Jacques, M. F. Mole, and J. C. McCoubrey, Quart. Rev., 1963, 17, 204.

R. Schmutzler, Adv. Fluorine Chem., 1965, 5, 31.
 G. Schrader, unpublished results; Houben-Weyl, 'Methoden der Organischen Chemie,' Georg Thieme Verlag, Stuttgart, 4th edn., 1965. ¹⁹ H. W. Roesky and W. Klocker, Z. anorg. Chem., 1970, 375,

In both its preparation and its cleavage reaction with HCl, PF_2 ·NMe·POF₂ is present with MeNH·POF₂. While $PF_2 \cdot NMe \cdot POF_2$ is appreciably more volatile than MeNH·POF₂, a mixture of these compounds is difficult to separate. Both this observation and an n.m.r. analysis of the mixture are in agreement with the formation of a weak adduct between these two compounds with interaction taking place at the difluorophosphino- end of the PF2·NMe·POF2 molecule. It is tentatively suggested that hydrogen bonding takes place between the fluorine atoms in the PF₂ group and the relatively acidic amino-proton in MeNH·POF₂ or that there is interaction between the lone pair on the nitrogen of MeNH·POF₂ and the phosphorus(III) of $PF_2 \cdot NMe \cdot POF_2$. The diffuorophosphoryl resonances of both MeNH $\cdot POF_2$ and $PF_2 \cdot NMe \cdot POF_2$ are essentially unaffected, but the diffuorophosphino- resonance in the ³¹P n.m.r. spectrum at -171 p.p.m. (with reference to external 85% H₃PO₄) is shifted downfield of the uncomplexed resonance (-135 p.p.m.) and is absent from the ¹⁹F n.m.r. spectrum indicating complete decoupling of the PIII and fluorine nuclei on the n.m.r. time-scale.

I.r. Spectra.—The assignments given in Table 2 for

TABLE 2

Gas-phase i.r. spectra of PF_2 ·NMe·POF₂ and PF₂·NMe·PF₄

PF₂•NMe·POF₂	PF ₂ ·NMe·PF ₄	Assignments
2970w	3035w	ν(CH)
2910vw	2988w	()
2842vw	2925vw.sh	
	2862vw	
1436vw	1477w	δ(CH)
1370s		$\nu(\mathbf{P}=\mathbf{O})$
1226w	1208m	p(Me)
1215w.sh		,
1096m,br	1121ms	$\nu(CN)$
	973s	ν [as. $PF_2(e)$]
937vs		ν [PF ₂ (O)]
927vs,sh	954vs	v(as. PNP)
	888s	ν [sym. PF ₂ (e)] and
		ν [as. PF ₂ (a)]
888w		Combination
840]	838]	
837 >vs PQR	833 >vs PQR	$\nu(as. P^{III}F_2)$
832	828	
811ms	817s	$\nu(\text{sym. PIII}\mathbf{F}_2)$
66 4 w	663w	ν (sym. PNP)
	613w	$\nu[\text{sym. PF}_2(a)]$
517	570w	1
514 ms PQR	538ms	δ (PNP) and δ (PF)
508	429w	
480w	399m	j
400m		

 PF_2 ·NMe·POF₂ and PF_2 ·NMe·PF₄ are made by comparison with the i.r. spectra of Me2N·PF2,20 MeNH-- POF_2 ,¹⁹ MeNH·PF₄,⁶ (PF₂)₂NMe,⁷ and (POF₂)₂NMe.³

²⁰ Sr. M. A. Fleming, R. J. Wyma, and R. C. Taylor, Spectro-chim. Acta, 1965, **21**, 1189.

²¹ R. Keat, J. Chem. Soc. (A), 1970, 2732.

²² C. G. Barlow, R. Jefferson, and J. F. Nixon, J. Chem. Soc. (A), 1968, 2692. ²³ R. G. Cavell, J. Chem. Soc., 1964, 1992.

Charlton and Cavell have suggested that a large increase in the value of $v_{as,PNP}$ takes place on replacing both the PF_2 groups in $(PF_2)_2NMe$ by POF_2 groups.³ Since a less drastic change is observed for this mode in the chloro-compounds (PCl₂)₂NMe,⁷ PCl₂·NMe·POCl₂, and (POCl₂)₂NMe,²¹ v_{as.PNP} is assigned to a peak at a lower frequency in PF2. NMe. POF2 and PF2. NMe. PF4 than that previously assigned for (POF₂)₂NMe. The value of v_{sym.PNP} is less dependent on the oxidation state of the phosphorus atoms.

Bands at 1100 cm⁻¹ and 1200 cm⁻¹ are present in all the compounds containing a PNP skeleton and in $Me_3Si \cdot NMe \cdot PXF_2$ (X = lone pair, O, or S), where these were assigned to ν_{CN} and ρ_{Me} respectively.8 The PF stretching modes for PF2·NMe·PF4 and PF2·NMe·POF2 are at slightly greater frequencies than in MeNH·PF₂,²² MeNH·POF₂ (gas phase 935 and 919 cm.⁻¹), and $MeNH \cdot PF_4$.

Mass Spectra.—The mass spectrum of PF₂·NMe·PF₄ is that of its volatile hydrolysis products PF₃, POF₃, and PF2. NMe. POF2. The mass spectrum of PF2. NMe·POF₂ shows similar species to those observed for (POF₂)₂NMe³ and has a relatively weak molecular ion and a strong $[M - H]^+$ ion.

EXPERIMENTAL

The practical details are those previously described.¹³ Products were identified by i.r., n.m.r., or mass spectro-SCODV.

Heptamethyldisilazane-Chlorodifluorophosphine.-- Chlorodiffuorophosphine²³ (2.19 g, 21 mmol) and heptamethyldisilazane²⁴ (2.7 g, 15.5 mmol) were condensed together into an ampoule and slowly warmed to 90 °C and then left overnight. The products were purified by fractional distillation and identified by i.r. spectroscopy. Difluorophosphino(trimethylsilyl)methylamine⁸ (2.19 g, indicating 85% yield), passed a -23 °C bath but was trapped out at -45 °C, thus removing (Me₃Si)₂O ²⁵ (trapped at -65 °C), MeSiF ²⁶ (trapped at -126 °C), excess of PF₂Cl ²⁷ (trapped at -110 °C), and a trace of PF₃⁹ (trapped at -196 °C). Slight decomposition occurred if the reaction mixture was heated beyond 90 °C.

Trimethylchlorosilane-Methylaminodifluorophosphine.-Methylaminodifluorophosphine²⁸ (1.44 g, 14.4 mmol), trimethylchlorosilane (3.078 g, 28.5 mmol) (Midland Silicones Ltd.), and trimethylamine (1.268 g, 21.4 mmol) (Matheson Co.) were condensed together into an ampoule and warmed to room temperature. The mixture was shaken to complete the reaction. A white solid was formed together with Me₃SiF.^{26,29} There was no n.m.r. evidence² for the production of any Me₃Si·NMe·PF₂.

Difluorophosphino(trimethylsilyl)methylamine-Phosphorus

- ²⁴ R. C. Osthoff and S. W. Kantor, Inorg. Synth., 1957, 5, 55.

- ²⁵ H. Bürger, Organometallic Chem. Rev. (A), 1968, 3, 425.
 ²⁶ H. Kriegsmann, Z. anorg. Chem., 1958, 294, 113.
 ²⁷ A. Müller, E. Niecke, B. Krebs, and O. Glemser, Z. Natur-volumetallic Chem. 2007. forsch., 1968, 23b, 588.
- ²⁸ J. S. Harman and D. W. A. Sharp, J. Chem. Soc. (A), 1970, 1935.
- ²⁹ H. Vahrenkamp and H. Nöth, J. Organometallic Chem., 1968, **12**, 281; S. S. Danyla, J. Amer. Chem. Soc., 1964, **86**, 4504; H. Schmidbauer, J. Amer. Chem. Soc., 1963, **85**, 2336.

Pentafluoride .-- Difluorophosphino(trimethylsilyl)methylamine (0.585 g, 3.4 mmol) and phosphorus pentafluoride (0.45 g, 4.2 mmol) (Matheson Co., purified by low-temperature distillation) were condensed into a reaction vessel at -196 °C and allowed to warm slowly to room temperature. The volatile components were removed to leave a very small amount of solid product. Me₃SiF and excess of PF_5 were both removed by passing the mixture through a trap held at -90 °C to leave a volatile liquid, difluorophosphino(tetrafluorophosphoranyl) methylamine

[Found: C, 5.8; H, 1.5; F, 55.6; N, 6.8; P, 30.3%; M, 206 (vapour density; average of three readings). CH₃F₆NP₂ requires: C, 5.7; H, 1.6; F, 55.3; N, 6.6; P, 29.9%; M, 205].

After heating PF_2 ·NMe·PF₄ for 4 h in an n.m.r. tube at 50 °C, slight solid deposition and the formation of a small quantity of PF_3^{17} were noted. On increasing the temperature to 80 °C, PF₃ formation took place at a faster rate, but in addition a doublet of peaks appeared in the ¹⁹F spectrum owing to the formation of (F₃PNMe)₂³⁰ (confirmed by i.r.).³¹

Phosphorus Pentafluoride-Methylaminodifluorophosphine. -Excess of phosphorus pentafluoride and methylaminodifluorophosphine (0.51 g, 5.2 mmol) were slowly warmed from -196 °C. After being left at room temperature for a short time, the mixture was held at -90 °C and the excess of PF_5 together with POF_3 and PF_3 (identified by i.r.) were pumped off to show that less than 5.2 mmol of PF₅ had reacted. A white solid (0.33 g) was left after pumping off the remaining volatile material. The latter contained a mixture of PF₃,⁹ PF₅,⁹ POF₃,⁹ (PF₂)₂NMe,⁷ and PF₂. NMe·PF₄. The solid residue was heated to 100 °C and the volatile components POF₃,⁹ (PF₂)₂NMe,⁷ PF₂·NMe·PF₄, and MeNH·PF₄ ⁶ trapped at -196 °C.

Chlorodifluorophosphine-Methylaminophosphoryl Difluoride.—Methylaminophosphoryl difluoride 18 (7.35 g, 63.5 mmol) and chlorodifluorophosphine (7.078 g, 67.8 mmol) were condensed together with an isopentane solution of NN-dimethylaniline (7.088 g, 61.5 mmol) (B.D.H.) into a reaction vessel and the mixture was shaken. The volatile material was freed from isopentane and a considerable quantity of PF₃ (identified by its i.r. spectrum ⁹) by passage through a -60 °C trap. The mixture remaining was shown by its n.m.r. spectrum to consist of a mixture of unchanged MeNH·POF₂ and PF₂·NMe·POF₂. While pure MeNH·POF₂ only passed a -23 °C trap with difficulty and pure PF2. NMe POF2 was only partially stopped at -44 °C, complete separation using these traps was a lengthy process and was not attempted for the whole mixture. A pure sample of diffuorophosphino(diffuorophosphoryl)methylamine [Found: C, 6.7; H, 1.8; F, 41.7; N, 7.5; O, 8.6; P, 33.7%; M (vapour density), 186. CH₃F₄NOP₂ requires C, 6.6; H, 1.6; F, 41.5; N, 7.7; O, 8.7; P, 33.9%; M, 183; v.p. 24 mmHg at 25 °C] (0.2 g, 1.2 mmol) was recovered and finally trapped at −60 °C.

Difluorophosphino(trimethylsilyl)methylamine-Phosphoryl Fluoride.-- Difluorophosphino(trimethylsilyl)methylamine and excess of phosphoryl fluoride (Ozark-Mahoning) did not

30 R. K. Harris and C. M. Woodman, Mol. Phys., 1966, 10,

437. ³¹ G. C. Demitras and A. G. MacDiarmid, *Inorg. Chem.*, 1967, **6**, 1903; M. P. Yagupsky, *Inorg. Chem.*, 1967, **6**, 1770 A. J. Downs, *Chem. Comm.*, 1967, 628.

J. Chem. Soc. (A), 1971

react in a closed vessel at room temperature. The temperature was slowly raised to 60 °C and the system kept at this temperature for several hours. Fractionation of the products gave some PF₃, POF₃, and Me₃SiF (which passed through a -65 °C trap) and a mixture of PF_2 ·NMe·POF₂ and Me₃Si·NMe·PF₂ which was retained in the -65 °C trap. On performing the reaction at 110 °C the products were traces of PF2. NMe. POF2 along with (POF2)2 NMe (n.m.r.).³² A viscous oil was left in the reaction vessel.

Fluorination of Dichlorophosphino(dichlorophosphoryl)-Dichlorophosphino(dichlorophosphoryl)methylamine. methylamine²¹ was heated at 60 °C in a closed vessel with a slurry of excess of sodium fluoride in sulpholan. A large quantity of PF₃ and a small trace of POF₃⁹ could be separated from PF2. NMe POF2 which was formed in low vield.

Difluorophosphino(trimethylsilyl)methylamine-Difluoro-

phosphino(tetrafluorophosphoranyl)methylamine.-- Approximately equivalent quantities of diffuorophosphino(trimethylsilyl)methylamine and difluorophosphino(tetrafluorophosphoranyl)methylamine were condensed together into an n.m.r. tube. No reaction was observed at room temperature but on raising the temperature to 50 °C deposition of solids was noted and PF₃,¹⁷ (F₃PNMe)₂,³⁰ and Me₃SiF ²⁹ were formed.

Difluorophosphino(difluorophosphoryl)methylamine-

Hvdrogen Chloride .--- Difluorophosphino (difluorophosphoryl)methylamine (0.899 g, 4.91 mmol) was condensed together with hydrogen chloride (0.174 g, 4.76 mmol) and left to warm to room temperature; 0.088 g of solid product was formed. PF_3 (0.257 g, 2.92 mmol) passed a -126 °C trap and a mixture of POF₂Cl and POF₃ (0.108 g, shown by its n.m.r. spectrum to contain ca. 0.34 mmol POF, Cl 17 and 0.65 mmol POF_3^{17}) passed a -65 °C trap to leave 0.611 g of a mixture of MeNH.POF₂, PCl₃ (identified by its i.r. spectrum ²⁸) and unchanged PF₂·NMe·POF₂.

Fluoride-Methylaminodifluorophosphine.--Me-Thionyl thylaminodifluorophosphine (1.739 g, 17.0 mmol) was condensed with thionyl fluoride (0.786 g, 9.2 mmol) ³³ in an ampoule and left to warm to room temperature. The volatile products were small quantities of PF₃⁹ and SO₂³⁴ together with a larger quantity of MeNSO,35 which all passed a -75 °C trap. The major part of the less volatile components was $MeNH \cdot PSF_2$ ¹⁸ (3.0 mmol) together with a small amount of MeNH·POF₂ (2.0 mmol); these can be separated by trapping the latter in a -23 °C bath. Unidentified solid (0.689 g) was recovered. In the presence of an excess of SOF₂, less MeNH·POF₂ and more PF₃ was produced.

Dioxide-Methylaminodifluorophosphine.--Me-Sulphur thylaminodifluorophosphine (0.349 g, 3.53 mmol) was condensed with an excess of SO₂ (B.D.H.) and left to warm to room temperature. After removal of PF3 (0.025 g, 0.28 mmol) and excess of SO₂, 0.175 g of an approximately 1:1 mixture of MeNH·POF₂ and MeNH·PSF₂, was recovered. An unidentified viscous liquid (0.167 g) remained.

Difluorophosphino(trimethylsilyl)methylamine-Thionyl Fluoride.-Thionyl fluoride (1.024 g, 11.9 mmol) and di-

³² R. Keat and L. Stobbs, unpublished observations.

³³ C. W. Tullock and D. D. Coffman, J. Org. Chem., 1960, 25,

<sup>2016.
&</sup>lt;sup>34</sup> K. Nakamoto, 'Infrared Spectra of Inorganic and Co-ordination Compounds,' Wiley, New York and London, 1963.
³⁵ W. K. Glass and A. D. E. Pullin, Trans. Faraday Soc., 1961.

1551

fluorophosphino(trimethylsilyl)methylamine (0.616 g, 3.6 mmol) were heated in a closed vessel for 24 h at 100 °C (no reaction took place at room temperature). After the volatile material had been pumped off, a viscous yellow liquid (0.047 g) was left in the reaction flask. The volatile fraction contained $PF_{3,9} SOF_{2,34} Me_3 SiF_{2,7}^{27} MeNSO_{35}^{35}$ and a mixture of compounds which were trapped at -65 °C. Most of the SOF₂ was recovered. The less volatile fraction

contained Me_3Si•NMe•PF2, MeNSO (<1 mmol) and a trace of PF2•NMe•POF2 (n.m.r.).

We thank the Ministry of Defence for financial support, and R. Keat and Midland Silicones Ltd. for the gift of some starting reagents.

[0/1694 Received, October 5th, 1970]