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Stalactite basin structure of dynamical systems with transient chaos
in an invariant manifold

Vasily Dronova) and Edward Ott
Institute for Plasma Research, University of Maryland, College Park, Maryland 20742

~Received 1 September 1999; accepted for publication 22 February 2000!

Dynamical systems with invariant manifolds occur in a variety of situations~e.g., identical coupled
oscillators, and systems with a symmetry!. We consider the case where there is both a nonchaotic
attractor~e.g., a periodic orbit! and a nonattracting chaotic set~or chaotic repeller! in the invariant
manifold. We consider the character of the basins for the attracting nonchaotic set in the invariant
manifold and another attractor not in the invariant manifold. It is found that the boundary separating
these basins has an interesting structure: The basin of the attractor not in the invariant manifold is
characterized by thin cusp shaped regions~‘‘stalactites’’! extending down to touch the nonattracting
chaotic set in the invariant manifold. We also develop theoretical scalings applicable to these
systems, and compare with numerical experiments. ©2000 American Institute of Physics.
@S1054-1500~00!00502-4#

Dynamical systems that exhibit chaotic dynamics on an
invariant manifold embedded in their state space are of
interest in a variety of situations, and examples show that
these situations may yield novel dynamical behaviors.
One such situation is the case where the chaotic set in the
invariant manifold is attracting on average but has
within it invariant subsets that are repelling transverse to
the invariant manifold. In appropriate circumstances this
leads to so-called ‘‘riddling’’ of the basin of attraction. In
this paper we consider a related but different situation
where there is both a nonattracting chaotic set and an
attractor which is ‘‘absolutely attracting’’ in the invari-
ant manifold. Here, by ‘‘absolutely attracting’’ we mean
that the attractor is attracting for points in the invariant
manifold and contains no invariant subsets that are non-
attracting transversely „e.g., the absolutely attracting at-
tractor might be a stable periodic orbit…. Thus in the full
phase space there is an open neighborhood of the abso-
lutely attracting attractor that is part of its basin of at-
traction. It is found that in such a case the basin bound-
ary of the attractor in the invariant manifold may be
characterized by a thin stalactitelike structure emanating
from the nonattracting chaotic set in the invariant mani-
fold. We employ a Fokker–Planck type model which
shows that, near the invariant manifold, the state space
measure„volume… not in the basin of the attractor on the
invariant manifold scales as a power law of the displace-
ment from the invariant manifold. The solution to the
Fokker–Planck model for the power law exponent is in a
good agreement with numerical tests.

I. INTRODUCTION

Recently, physically important examples of dynamical
systems that have invariant manifolds embedded in their

phase space have been studied, and some important dynami-
cal consequences of this have been revealed. An important
class of systems that have invariant manifolds are those that
possess an appropriate symmetry. In this case any initial
state that has the same symmetry as the system evolves to
other states that also respect the symmetry of the system. The
set of such symmetric initial states then forms a manifold
that is invariant under the dynamics of the system. An ex-
ample of an invariant manifold not accompanied by a sym-
metry of the dynamical system is the case of one-way cou-
pling of two identical oscillators, for which the states where
the oscillators are synchronized form an invariant manifold.

An invariant manifold~whether induced by symmetry or
not! can also have the property that the dynamics restricted
to this manifold is chaotic, i.e., initial states in the manifold
can be attracted to some chaotic setA in the invariant mani-
fold. Thus A is an attractor for initial conditions in the in-
variant manifold. Note, however, thatA may or may not be
an attractor for the full system. Here, by an attractor for the
full system we mean that the setA attracts a set of initial
conditions of positive Lebesgue measure in the full phase
space.1 In what follows, if we say, without qualification, that
A is an attractor, then we mean that it is an attractor for the
full system.

Considering the case whereA is an attractor, there are
typical cases where there is a small set of points in any
neighborhood of the invariant manifold that move away from
A as the dynamical system evolves. If the global dynamics of
the system is such that these repelled orbits are attracted to a
set other thanA, then the basin of attraction ofA is riddled.2,3

That is, if r is any point in the basin ofA, then, for everyn,
no matter how small, there is a displacementd,udu,n, such
that the pointr 1d is in the basin of another attractor, and the
set of such points,r 1d,udu,n, has nonzero phase space
volume ~i.e., positive Lebesgue measure!. This presents a
basic obstruction to determinism in such systems: If one does
an experiment by preparing an initial condition and observes
that the resulting orbit goes toA, then no matter how greata!Electronic mail: dronov@glue.umd.edu
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one’s precision in preparing the initial condition, one cannot
be sure that an attempted repeat of the experiment will result
in the same outcome.

The unusual properties of riddled basins have received
much attention. Recent work4–7 has investigated the transi-
tion to chaotic attractors with riddled basins and the effect of
noise and asymmetry on the dynamics of systems with
riddled basins. To treat the transition to chaotic attractors
with riddled basins, a simple analyzable diffusion model4

was proposed and scaling relations consistent with numerical
simulations were obtained.5

The main question addressed in this paper is what hap-
pens if, instead of a chaotic attractor embedded in the invari-
ant manifold, there is a chaotic repeller for the initial condi-
tions in the invariant manifold.8 By a chaotic repeller we
mean an invariant set on which the dynamics is chaotic, but
which does not attract a positive Lebesgue measure set of
initial conditions in the invariant manifold. Typically, such
nonattracting chaotic sets manifest themselves as chaotic
transients.9 For the case we consider, an initial condition in
the invariant manifold can experience a chaotic transient,
after which it is attracted to a periodic orbit in the invariant
manifold.

As we shall show, when a chaotic repeller is in the mani-
fold, the basin of the periodic orbit attractor in the invariant
manifold is no longer riddled, although it still has unusual
properties. This new situation is illustrated schematically in
Fig. 1, where we use a two-dimensionalx–y representation.
In Fig. 1,y50 represents the invariant manifold. The closed
circle represents the nonchaotic attractor in they50 invari-
ant manifold, and the vertical tic marks represent the chaotic
repeller in y50. From every point in the chaotic repeller
there emanates a cusp-shaped region~a stalactite! of the ba-
sin of the attractor inyÞ0. Only one of these cusp-shaped
regions is shown in Fig. 1, but we emphasize that such re-
gions exist for all points in the chaotic repeller. Note that
since the attractor~the closed circle in Fig. 1! attracts a
neighborhood of itself, its basin is not riddled. Nevertheless,
there is a remnant of the previously studied riddled behavior

in the infinite number of cusps of theyÞ0 attractor emanat-
ing from the invariant manifoldy50. To characterize this
situation we shall be interested in the scaling of the size of
the yÞ0 attractor’s basin in the region near the invariant
manifold (y50). In particular, we will consider a horizontal
line y5y1 ~see Fig. 1! and ask what is the Lebesgue measure
of x values in this line that are attracted to theyÞ0 attractor.
We find that for y1 small this measure, denotedP`(y1),
exhibits a power law scaling,P`(y);ya. To arrive at this
result, following Ref. 7, we modify the diffusion model of
Ref. 4 previously used for the riddled case to account for the
new situation pictured in Fig. 1, and we use it to derive
results for the scaling exponenta. We claim that these re-
sults are universal in the sense that they are valid for the
class of dynamical systems of the type considered previ-
ously.

In order to check our scaling relations numerically we
studied three dynamical systems. The first two are repre-
sented by two-dimensional maps. In the first two-
dimensional map case the dynamics in the invariant manifold
is described by the well-known logistic map, and we will be
interested in parameter values in the vicinity of a type-one
intermittency transition.10 In the second two-dimensional
map case the logistic map is replaced with a map11 exhibiting
type-three intermittency.10 The third example is a system of
ordinary differential equations~a flow! which is a modifica-
tion of a previously studied system3 that describes the motion
of a particle in a two-dimensional potential well. As before,
we are interested in parameter values near an intermittency
transition. Our predicted scaling relations were tested for all
three numerical models and reasonably good agreement with
the theory was observed.

In a recent paper, Lai and Grebogi12 consider the same
situation that we consider here. A main claim in that paper is
that the basin is of a mixed type with the property that, in the
vicinity of the saddle, the basin is riddled, while in the region
of the attracting periodic orbit in the invariant manifold, the
basin is solid~i.e., it consists of open volumes and is not
riddled!. Such a mixed basin cannot occur, and the basin
cannot be riddled anywhere. In general, if a basin is open in
any neighborhoodN of the attractor, it must be open every-
where. A simple argument showing this is as follows. Sayp
is a point in the basin. Evolvingp forward, it must eventually
approach the attractor. Thus, at some finite time, the orbit
from p must eventually enterN, say at pointp8. The point
p8 in N necessarily has an open neighborhood in the basin.
Sincep iterates top8 in a finite number of iterates,p must
also have an open neighborhood in the basin. Hence, in con-
tradiction to the claim of Ref. 12, the basin cannot be riddled
anywhere. Lai and Grebogi12 also attempt to obtain the scal-
ing P`(y);ya. However, they use a crude model for the
chaotic transient; in particular, in their model all points in the
chaotic transient phase abruptly leave the transient at a fixed
time equal to the average transient lifetime. In fact, there is a
continuous long-time exponential decay of orbits in the cha-
otic transient, and it is necessary to include this in the model
to obtain the correct scaling and the correct exponenta.

FIG. 1. Schematic of the situation where there is a chaotic repeller~vertical
tic marks! and a periodic orbit~closed circle! in the invariant manifold (y
50).
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II. THE MODEL

Consider a smooth two-dimensional map of the form

yn115N~xn ,yn ,e!, ~1!

xn115M ~xn ,r !, ~2!

wheree and r are parameters. Suppose thatN(x,0,e)50 so
that there is an invariant manifold aty50. We also assume
that N(•) is such that ifuynu.yc then all subsequenty iter-
ates are also inuyu.yc ; in particular, the orbit never comes
back close to they50 plane. Thus there is another attractor
~or attractors! in uyu.yc . Without loss of generality we let
yc51.

Following Ref. 7 we refer toe as a ‘‘normal’’ parameter
since it affects the dynamics normal to they50 invariant
manifold, but has no influence on the dynamics in they50
invariant manifold@the dynamics iny50 is governed by Eq.
~2!#. Similarly,7 we refer tor as a ‘‘non-normal parameter.’’

Suppose that for some value ofr, M (x,r ) has a chaotic
attractor inx ande is such that riddling occurs. In this case
y50 is an attractor and its Lyapunov exponent, which we
denoteh' @calculated by taking a differentialy variation of
Eq. ~1!#, is negative,h',0. In the riddled case, in any neigh-
borhood of they50 attractor there are initial conditions that
stay in the neighborhood and go to the attractor, as well as
other initial conditions that leave the neighborhood ofy
50, possibly moving to theuyu.yc attractor. What will hap-
pen if we changer in such a way that, for a typical initial
condition x0 , M (•) generates a chaotic transient instead?
@For example, ifM (•) is the logistic map we can imagine a
change ofr such that we enter a periodic window, e.g., the
period-three window on the bifurcation diagram of the logis-
tic map; see Fig. 2.# This means that the original chaotic
attractor in the invariant planey50 does not exist any more
and typical initial conditions iny50 eventually go to a non-
chaotic attractor~e.g., a periodic orbit or a fixed point! asn
→`. There will still exist, however, an infinite nonattracting
set of initial conditions$x0

inv% ~representing the ghost of the
former chaotic attractor! for which infinitely long chaotic
orbits can be generated, and this set has zero Lebesgue mea-
sure inx.

Let ^h'& denote they-Lyapunov exponent for a typical
orbit on they50 chaotic invariant set. Here, by ‘‘typical’’
we mean with respect to the natural transient measure for the
x map. In this casêh'& is calculated by sprinklingN0 initial
conditions iny50, iterating them forn iterates, discarding
those that are near the nonchaotic orbit~say, further than
some appropriate distancel!, calculating theh' exponents
over the time interval 0 ton for each orbit not near the
nonchaotic orbit at timen, and averaging these values. In the
limit N0→`, n→`, this average iŝh'&, the y-Lyapunov
exponent, calculated with respect to the natural transient
measure for thex map.

We show in the following that the basin ofuyu.yc can
be in the form of an infinite set of cusp-shaped regions ema-
nating from the chaotic transient invariant set in the plane
y50. We call these cusp-shaped regions stalactites. We
show for our examples that the Lebesgue measure inx of
these tongues in ay5y1 cross section scales asy1

a , where
a.1. We also give a theory for determininga and obtain
good agreement of the theory with numerical experiments.
We note that stalactite boundaries can occur for both^h'&
.0 and^h'&,0. For stalactites in the case^h'&,0, how-
ever, it is also required that the chaotic saddle~although
transversely attracting! have embedded periodic orbits with
positive transverse Lyapunov exponents.12

III. DIFFUSION APPROXIMATION

Consider the map~1!–~2! and assume that there is a
fixed point attractorx5x* for almost any initial condition in
y50. Also assume that there is a chaotic transient set iny
50. The transverse tangent map~evolving differentialy dis-
placements from the invariant sety50! is

dyn115Ny~0, xn!dyn ,

where Ny(0, x) denotes]N/]y evaluated aty50. For an
initial condition x0 precisely on the chaotic transient set, the
orbit xn is typically chaotic. Forx1 on the nonchaotic attrac-
tor in y50 ~i.e., x5x* !, we haveuNy(0, xn)u,1. Let dzn

52 ln udyn u. Then the change indz is given by dzn11

5dzn1Dn , whereDn52 ln uNy(0, xn)u. During the chaotic
transientxn is chaotic, and henceDn varies in a random
manner. After the chaotic transientDn> lnuNy(0, x* )u,0.
We follow Ref. 7 and model this situation as follows:Dn is
taken to be of constant magnitudeuDnu5D when the orbit is
on the chaotic transient and fluctuations inDn are modeled
by random assignment of its signDn56D, and we assume
that the linearized dynamics is a good approximation to the
actual dynamics for finitey in a neighborhood ofy50. Thus
on any givenȳ[ ln 1/uyu an iterate is represented by the step
ȳ→ ȳ6D, with ȳ51`(dy50) corresponding toy50. We
consider a Markov chain model described by a semi-infinite
chain of statesSi , i 50,1,2,...~see Fig. 3!. We call the chain
Si the ‘‘chaotic chain.’’ The model has three parametersb1 ,
b2 , andh, which represent the probabilities of the follow-
ing transitions:

FIG. 2. Period-three window in the bifurcation diagram of the logistic map,
xn115rxn(12xn).
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b1 :Si 11→Si and S1→X,

b2 :Si→Si 11 ,

h:Si→Q.

The transitionSi 11→Si(Si→Si 11) represents a step iny
away from~toward! the invariant surfacey50, and inȳ it is
represented by a stepȳ→ ȳ2D( ȳ→ ȳ1D). X represents the
conditionuyu.yc for which the orbit goes to an attractor~or
attractors! not in y50. After the transitionSi→Q(S1→X)
the orbit is assumed to move uniformly inx ~in y! toward the
periodic attractor iny50 ~the attractor inuyu.yc!. Once the
chaotic chain is exited by transmission toQ or X, the chaotic
transient is considered to be ended. We identify the trans-
verse Lyapunov exponent with the random walk parameters
via ^h'&5(b12b2)D. The question now becomes what is
the probability of reaching the stateX if starting at the state
Si . Our purpose in introducing this Markov model is to ob-
tain a result for the scaling of the size of theyÞ0 attractor
basin in the region neary50. In particular, consider the
horizontal liney5y1 . Different initial conditionsx5x1 on
this line produce orbits, some of which go to they50 at-
tractor, and some of which go to theyÞ0 attractor. We ask
what fraction of thex-Lebesgue measure ony5y1 goes to
the yÞ0 attractor. Denote this fractionP`(y1). The above-
mentioned Markov model is relevant to this question in the
following way. If we choose a pointx1 at random on the line
y5y1 , then the probability thatx1 is in the basin of they
Þ0 attractor isP`(y1). Furthermore, as argued in Ref. 4,
while the orbit is chaotic, the orbit generated for randomx1

can be regarded as random and as a stochastic process cor-
responding to a random walk on theSi chain. However, the
orbits following the chaotic transient can leave theSi chain
either by repulsion into thex region where the orbit moves
toward the nonchaotic orbit (x5x* on y50; i.e.,Si→Q) or
by repulsion iny into the regionuyu.yc ~i.e., S1→X!. Thus
we can identifyP`(y1) with a random walker’s probability
p( i ) of reachingX starting ati;D21 ln uyc /y1u. In particular,
the largei scaling ofp( i ),

p~ i !;e2Ki ,

and the smally1 scaling ofP`(y1),

P`~yi !;uy1ua,

are connected. Thus we now attempt to estimateK from the
Markov model. Once this is accomplished, we will be in a
position to use this to conjecture a general result fora, which
we will compare with numerical experiments in Sec. IV.

For the purposes of obtaining a solution forp( i ), we
will apply the diffusion approximation, valid for (b12b2)
small,4 to the Markov model. Then the basic parameters of
the diffusion model are the following:

~1! the average drift along theSi chain per iterate,v
5^d ȳ&, whered ȳ is the increment inȳ in one time step;
by definition of the transverse Lyapunov exponentv
52^h'&;

~2! the diffusion per iterate,D5 1
2^(d ȳ2^ ȳ&)2&, where^¯&

denotes an average over the initial random values ofx1 ;
~3! and an average lifetime of a typical chaotic transientt.

Let P( ȳ,ȳ1 ,n) be the probability distribution function
for ȳ ~given thatx1 is randomly chosen on the horizontal line
segmenty5y1!. Consideringn to be approximated by a con-
tinuous variable~valid for n@1!, P( ȳ,ȳ1 ,n) obeys the fol-
lowing drift-diffusion equation:

]P

]n
1v

]P

] ȳ
52

P

t
1D

]2P

] ȳ2 . ~3!

Since we imagine initial conditions all to start aty5y1 , we
have

P~ ȳ,ȳ1,0!5d~ ȳ2 ȳ1!,ȳ1.0. ~4!

Since any orbit which crossesy5yc[1 (ȳ50) is lost to the
y.1 attractor, we have

P~0, ȳ1 , n!50. ~5!

As discussed in Ref. 4, for this diffusion approximation to be
valid we require two conditions:

~1! Many steps must be taken to reachy51 ~corresponding
to ȳ50!, or ȳ1@1.

~2! The drift on each iterate must be small, which means that
u^h'&u!1.

In order to solve Eq.~3! we will introduce the Laplace
transform ofP( ȳ,ȳ1 ,n) with respect to the continuous time
variablen,

P̄~ ȳ,ȳ1 ,s!5E
0

`

e2snP dn. ~6!

Equations~3!–~5! yield

Dd2P̄/dȳ22vdP̄/dȳ2~s11/t!P̄52d~ ȳ2 ȳ1! ~7!

with the boundary conditionP̄(0,ȳ1 ,s)50. Solving Eq.~7!
is straightforward~see the Appendix!.

In Eq. ~3!, the termP/t is the rate at which orbits leave
the chaotic transient to move toward the attractor iny50.
Thus the probability of going to the attractor in the invariant
manifold is

Py505
1

t E0

`E
0

`

P~ ȳ,ȳ1 ,n!dȳ dn ~8!

and, therefore, the probability of getting attracted to the
y.1 attractor is

P`512Py50512
1

t E0

`E
0

`

P~ ȳ,ȳ1 ,n!dȳ dn. ~9!

FIG. 3. Markov chain.
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Performing the integration we finally get

P`5y1
a ,a5@A^h'&214D/t2^h'&#/2D. ~10!

The special case of smallD(D/^h'&2t!1) yields

a>H ~^h'&t!21 for ^h'&.0

2^h'&/D for ^h'&,0
. ~11!

Note that, as expected, the result for^h'&,0 and t→`
agrees with the result for the exponent in the case of a
riddled basin attractor, Ref. 4. In the examples that follow
^h'&.0.

IV. NUMERICAL EXPERIMENTS

The universality of the phenomena addressed in this pa-
per implies that very general results may be extracted from
simple models that incorporate the essential features respon-
sible for this phenomena. In this spirit we introduce three
illustrative examples.

Example 1: The first example is the following two-
dimensional map:

xn115M1~xn ,r !5rxn~12xn!, ~12!

yn115N1~xn ,yn ,e,e8!

5$11e2e8@12cos~2pxn!#%yn1yn
3. ~13!

This system hasN1(x,0,e,e8)50. Therefore,y50 is an in-
variant manifold for the map. The dynamics on this invariant
manifold are generated by the logistic map and are indepen-
dent of the parameterse ande8. Therefore, the parameterse
and e8 are normal parameters for the system~12! and ~13!.
The value oft was chosen to be 3.837, which corresponds to
the case of a period-three attractor in the period-three win-
dow of the logistic map~see Fig. 2!. This implies that typical
initial conditions in 0,x0,1 andy050 may generate cha-
otic transients. The average lifetimet of such a transient
depends onr and in our case is numerically determined to be

t521.41. Note that ifyn.@ 1
3(2e82e)#1/2 then yn11.yn

and the orbit evolves towardy5}, which we regard as the
attractor not iny50. A numerical approximation to the ba-
sins of attraction is shown in Figs. 4~a! and 4~b!. To generate
this figure we use a 500035000 grid of initial conditions,
and we iterate each initial condition until it either reachesy

.@ 1
3(2e82e)#1/2 ~in which case we plot a closed circle at the

location of the initial condition! or else reaches a very small
value of y,y,231025. In the latter case we presume that,
with high probability, the orbit will go to they50 attractor.
~This is justified by the scalingP`;ya!. We see in Figs. 4~a!
and 4~b! that there are many thin downward pointing black
regions. From numerical examination of some of them by
magnification of the horizontal scale we find that these thin
black regions apparently extend down and touch the invari-
ant set. They are the stalactites referred to in Sec. I. The
reason the stalactites appear in Figs. 4~a! and 4~b! to termi-
nate before reachingy50 is that they become so thin asy is
decreased that they eventually fail to be resolved by our grid
of initial conditions. In our simulations we tooke850.8 and
varied the value ofe. For each value ofe we calculated̂h'&,
D, a th , andaexp. The data are presented in Table I.

To obtain the values of̂h'& for the chaotic transient set
~the second column of Table I! we first uniformly sprinkle
many initial conditions iny050, 0,x0,1. We then iterate
these initial conditionsM iterates. At timeM@1 most of the
sprinkled orbits will be close to the attractor~say within a
distance of 0.1!. However, if the number of sprinkled orbits
is large, there will still be orbits that are not near the attrac-
tor. We make the number of initial conditions sprinkled large
enough so that there are still many initial conditions not near
the attractor at timeM. We then approximatêh'& by

^h'&>K 1

M (
n51

M

u ln N1y~xn,0!u L
IC

,

where N1y(x,y)5]N1 /]y and ^¯& IC denotes an average
over those initial conditions whose orbits are not near the
attractor iny50 at timeM. The value ofD ~the third column
of Table I! was obtained by noting that the quantity

zn5 (
m51

n

~ lnuN1y~xm,0!u2^h'&!

FIG. 4. ~a!, ~b! Basins of attraction for Eqs.~12! and~13! for e50.926 and
0.928, respectively. To obtain~c! we uniformly sprinkleL51.53106 initial
conditions iny050, 0,x0,1. We then iterate them 200 iterates and find
that there arel 5950 orbits which still stay at a distance larger than 0.1 from
the period-three attractor. Then we plot 1/2^zn

2& IC versusn, where ^¯& IC

denotes an average over thel 5950 orbits still not near the period-three
attractor. The value ofD is then estimated as the slope of the straight line fit
to the numerical data;~d! the fraction of initial conditions going toy5` as
a function ofy. aexp is obtained as the slope of the straight line fit to the data
in a log–log scale.~c!, ~d! Correspond to the situation wheree50.926.

TABLE I. Data for example 1.

e ^h'& D a th aexp

0.920 0.0164 0.000 920 2.49 2.14
0.923 0.0200 0.000 917 2.12 2.16
0.926 0.0233 0.000 885 1.87 1.93
0.928 0.0256 0.000 864 1.72 1.74

295Chaos, Vol. 10, No. 2, 2000 Stalactite basin structure

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.18.123.11 On: Sun, 21 Dec 2014 17:26:19



undergoes unbiased diffusion while the orbit is in the chaotic
transient. Thus we plot12^zn

2& IC vs n, and estimateD as the
slope of a straight line fit to the data@see Fig. 4~c! for an
example of such a plot#. The fourth column of Table I.a th ,
is then given by insertinĝh'& andD, as found above, into
Eq. ~10!. The value of the experimental exponentaexp ~the
fifth column of Table I! was obtained by estimating the frac-
tion of ‘‘black’’ dots in the basin of attraction~those that
lead toy→`! as a function ofy, and plotting this fraction as
a function ofy using a log–log scale. We find that, for suf-
ficiently smally, such plots are, in accord with the predicted
ya dependence, well-fit by a straight line@see Fig. 4~d!, for
example#. The slope of such a fit givesaexp. One can see
from Table I thataexp agrees reasonably well with its pre-
dicted valuea th .

Example 2: We consider the two-dimensional map,

xn115M2~xn ,r !

5xn@r ~12.327r !xn
42r ~11.327r !xn

21xn
22r #,

~14!

yn115N2~xn ,yn ,e,e8!

5$11e2e8@11cos~pxn!#%yn1yn
3. ~15!

This system has the same general properties as in the map of
the previous example. However,M2(xn ,r ), the map in the
invariant manifold, is an example11 exhibiting type-iii
intermittency.10 The bifurcation diagram forM2(•) is shown
in Fig. 5. This map has a period-one orbit atx50. As the
parameterr increases throughr c51, this period-one orbit
becomes unstable, experiencing an inverse period doubling
bifurcation. The map has a chaotic attractor forr .1. The
parameterr was taken to be equal to 0.95;M2(•) is contract-
ing at the fixed pointx50 and repelling on a transient. For
this value ofr, we obtaint528.0. The basin of attraction is
shown in Fig. 6. Table II gives the values of^h'&, D, a th ,
and aexp for e850.1, and two different values of the other
normal parametere.

Example 3: The third system we studied is a modifica-
tion of a flow that describes the motion of a particle in a
two-dimensional ~x,y! double potential well3 V(r )5(1
2x2)21(x1 x̄)y2. The particle is a subject to friction and
time harmonic forcing,

d2r /dt252gdr /dt2¹V~r !1 f 0 sin~vt !x̂. ~16!

Here x̂ is the unit vector in thex direction andg, f 0 , v, and
x̄ are parameters. For appropriate (g, f 0 ,v,x̄) this system is
known to exhibit a riddled basin.3 The phase space of this
problem is five dimensional with coordinatesx, dx/dt, y,
dy/dt, andu5(vt) mod 2p. From the symmetry of the po-
tential the problem is invariant with respect toy→2y, and,
therefore,y5dy/dt50 specifies a three-dimensional invari-
ant hyperplane in the full five-dimensional phase space. The
dynamics in this invariant hyperplane is obtained by settingy
anddy/dt equal to zero in Eq.~16!. This yields

d2x/dt21g dx/dt24x~12x2!5 f 0 sin~vt !. ~17!

FIG. 5. Bifurcation diagram for Eq.~14!.

FIG. 6. Basin of attraction for Eqs.~14! and ~15! obtained on a 2000
32000 grid of initial conditions.r 50.95,e50.135,e850.1. FIG. 7. Bifurcation diagram for Eq.~17!.

TABLE II. Data for example 2.

e ^h'& D a th aexp

0.150 0.005 0.011 1.59 1.62
0.155 0.010 0.011 1.40 1.42
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We analyzed Eq.~16! in terms of a stroboscopic Poincare´
section corresponding to the period of the forcing, i.e., we
consider the timesvt mod 2p50. This lead to a four-
dimensional discrete-time mapping.

In previous work using model~16!, the parametersg, f 0 ,
andv were chosen so that Eq.~17! had a chaotic attractor. In
this case, appropriate choice of the parameterx̄ yields basin
riddling for they50 attractor. Here we consider a modifica-
tion of Eq. ~16! such that the dynamics iny50 is such that
the attractor is periodic, but there is also a chaotic transient.
In particular, we replacex̄ by a time periodic quantityx̄
5 x̄01 x̄1 sin(vt2f) and set the parameters atx̄054.4, x̄1

52.9,f50.15,g50.05, andv53.5. Varying the remaining
parameterf 0 we obtain a bifurcation diagram for Eq.~17!
~see Fig. 7!. As f 0 is decreased there is a type-iii intermit-
tency transition to chaos@similar to the map~15!#. For f 0

54.0 the average lifetime of a chaotic transient ist512.0.
In order to estimatêh'& we integrated the equations for the
tangent vector representing the infinitesimal variations from
the invariant plane y5vy50:ddy/dt52gdvy22(x
1 x̄)dy, ddy/dt5dvy , wheredy and dvy are infinitesimal
variations~Fig. 8!. The results are presented in Table III and
we again find reasonably good agreement between our esti-
mates ofa th andaexp.

V. CONCLUSION

In this paper we have considered systems with an invari-
ant manifold in which are located both a nonattracting cha-
otic set and a nonchaotic attractor~e.g., a periodic orbit!.
Thus, in this situation, typical initial conditions in the invari-
ant manifold may yield orbits that experience chaotic tran-
sients before approaching the chaotic attractor. It is found

that the basin boundary separating the basins of the attractor
in the invariant manifold and another attractor not in the
invariant manifold is characterized by stalactitelike structure,
thin cusp-shaped regions extending down to touch the invari-
ant manifold at the location of points in the nonattracting
chaotic set. Using a random walk model, we have obtained a
scaling relation for the variation of the measure of the basin
of the attractor not in the invariant manifold. In particular,
we show that this basin’s measure in a surface at a small
distancey from the invariant manifold scales as a power law
ya, and we have obtained a theoretical prediction for the
scaling exponenta. This prediction has been tested with
good results by comparison with various numerical experi-
ments.
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APPENDIX: DERIVATION OF EQ. „10…

The solution to Eq.~7! subject to the boundary condition
P̄(0,ȳ1 ,s)50 is

P̄~ ȳ,ȳ1 ,s!5H A~exp@kaȳ#2exp@kbȳ# !, 0, ȳ, ȳ1

B exp@2kaȳ# ȳ. ȳ1,
~A1!

where

ka5
1

2D
~A^h'&214D~s11/t!1^h'&!,

kb5
1

2D
~A^h'&214D~s11/t!2^h'&!,

A52
exp@2kbȳ1#

~ka1kb!D
,

B52
exp@2kbȳ1#2exp@kaȳ1#

~ka1kb!D
.

Thus

E
0

`

P̄~ ȳ,ȳ1 ,s!dȳ5E
0

ȳ1
P̄ dȳ1E

ȳ1

`

P̄ dȳ

5A@~12exp@2kaȳ1# !/

ka2~exp@kbȳ1#21!/kb#

1B exp@2kaȳ1#)/ka

5
12exp@2kbȳ1#

s11/t
.

Finally,

FIG. 8. Numerical basin for Eq.~16! obtained on 100031000 initial con-
ditions. Following Ref. 4 we iterate each initial condition forward in time
until the trajectory either gets very close to the invariant planey50 (uyu
,1028, uvyu,1029, andyvy,0!, or else is definitely in the repelling re-
gion (uyu.20, uvyu.100, andyvy.0!. Closed circles correspond to initial
conditions eventually attracted tò.

TABLE III. Data for example 3.

^h'& D a th aexp

0.030 0.0285 1.26 1.29

297Chaos, Vol. 10, No. 2, 2000 Stalactite basin structure

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.18.123.11 On: Sun, 21 Dec 2014 17:26:19



Py505
1

t E0

`E
0

`

P~ ȳ,ȳ1 ,n!dȳ dn

5
1

t E0

`

P̄~ ȳ,ȳ1,0!dȳ

512exp@2a ȳ1#512y1
a ,

wherea is kb with s set equal to zero. Thus

P`512Py505y1
a ,

which is Eq.~10!.
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