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Dynamical systems with invariant manifolds occur in a variety of situatiert, identical coupled
oscillators, and systems with a symmetrWe consider the case where there is both a nonchaotic
attractor(e.g., a periodic orbjtand a nonattracting chaotic detr chaotic repellerin the invariant

manifold. We consider the character of the basins for the attracting nonchaotic set in the invariant
manifold and another attractor not in the invariant manifold. It is found that the boundary separating
these basins has an interesting structure: The basin of the attractor not in the invariant manifold is
characterized by thin cusp shaped regifissalactites”) extending down to touch the nonattracting
chaotic set in the invariant manifold. We also develop theoretical scalings applicable to these

systems, and compare with numerical experiments
[S1054-150000)00502-4

Dynamical systems that exhibit chaotic dynamics on an
invariant manifold embedded in their state space are of
interest in a variety of situations, and examples show that
these situations may yield novel dynamical behaviors.
One such situation is the case where the chaotic set in the
invariant manifold is attracting on average but has
within it invariant subsets that are repelling transverse to
the invariant manifold. In appropriate circumstances this
leads to so-called “riddling” of the basin of attraction. In
this paper we consider a related but different situation
where there is both a nonattracting chaotic set and an
attractor which is “absolutely attracting” in the invari-
ant manifold. Here, by “absolutely attracting” we mean
that the attractor is attracting for points in the invariant
manifold and contains no invariant subsets that are non-
attracting transversely (e.g., the absolutely attracting at-
tractor might be a stable periodic orbit). Thus in the full
phase space there is an open neighborhood of the abso-
lutely attracting attractor that is part of its basin of at-
traction. It is found that in such a case the basin bound-
ary of the attractor in the invariant manifold may be
characterized by a thin stalactitelike structure emanating
from the nonattracting chaotic set in the invariant mani-
fold. We employ a Fokker—Planck type model which
shows that, near the invariant manifold, the state space
measure(volume) not in the basin of the attractor on the
invariant manifold scales as a power law of the displace-
ment from the invariant manifold. The solution to the
Fokker—Planck model for the power law exponent is in a
good agreement with numerical tests.

I. INTRODUCTION

Recently, physically important examples of dynamical
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phase space have been studied, and some important dynami-
cal consequences of this have been revealed. An important
class of systems that have invariant manifolds are those that
possess an appropriate symmetry. In this case any initial
state that has the same symmetry as the system evolves to
other states that also respect the symmetry of the system. The
set of such symmetric initial states then forms a manifold
that is invariant under the dynamics of the system. An ex-
ample of an invariant manifold not accompanied by a sym-
metry of the dynamical system is the case of one-way cou-
pling of two identical oscillators, for which the states where
the oscillators are synchronized form an invariant manifold.

An invariant manifold(whether induced by symmetry or
not) can also have the property that the dynamics restricted
to this manifold is chaotic, i.e., initial states in the manifold
can be attracted to some chaotic ah the invariant mani-
fold. ThusA is an attractor for initial conditions in the in-
variant manifold. Note, however, that may or may not be
an attractor for the full system. Here, by an attractor for the
full system we mean that the sAtattracts a set of initial
conditions of positive Lebesgue measure in the full phase
space’ In what follows, if we say, without qualification, that
A is an attractor, then we mean that it is an attractor for the
full system.

Considering the case whereis an attractor, there are
typical cases where there is a small set of points in any
neighborhood of the invariant manifold that move away from
A as the dynamical system evolves. If the global dynamics of
the system is such that these repelled orbits are attracted to a
set other thar\, then the basin of attraction &fis riddled.?*

That is, ifr is any point in the basin oA, then, for everyy,

no matter how small, there is a displacemérjs| < », such
that the point + § is in the basin of another attractor, and the
set of such pointsy+ 6,|8|<v, has nonzero phase space
volume (i.e., positive Lebesgue measur&his presents a

systems that have invariant manifolds embedded in theip,qjc opstruction to determinism in such systems: If one does
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an experiment by preparing an initial condition and observes
that the resulting orbit goes t4, then no matter how great
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4 y in the infinite number of cusps of the# 0 attractor emanat-
ing from the invariant manifold/=0. To characterize this
situation we shall be interested in the scaling of the size of
the y#0 attractor's basin in the region near the invariant
manifold (y=0). In particular, we will consider a horizontal
Y liney=y, (see Fig. 1and ask what is the Lebesgue measure
1 of x values in this line that are attracted to § 0 attractor.
We find that fory,; small this measure, denotd®l,(y,),
exhibits a power law scalind?..(y)~y“. To arrive at this
\ ] / result, following Ref. 7, we modify the diffusion model of
Ref. 4 previously used for the riddled case to account for the
new situation pictured in Fig. 1, and we use it to derive
/ f \ x results for the scaling exponeat We claim that these re-
sults are universal in the sense that they are valid for the
class of dynamical systems of the type considered previ-
FIG. 1. Schematic o_f the situgtion where thgre is a cha_otic rer(ql%tical ously.
tl_cor)nark9 and a periodic orbifclosed circlg in the invariant manifold y In order to check our scaling relations numerically we
e studied three dynamical systems. The first two are repre-
sented by two-dimensional maps. In the first two-
one’s precision in preparing the initial condition, one cannotdlmensu.Jnal map case the dynamlgs n the invariant mameId
' $ described by the well-known logistic map, and we will be

be sure that an attempted repeat of the experiment will resu!nt rested in parameter val in the vicinity of a t N
in the same outcome. ereste parameter values e vicinity of a type-one

The unusual properties of riddled basins have receiV(::J:Ptermittency traps!tioﬁ? Ip the seconq two-dimgq;ional
much attention. Recent wat¢ has investigated the transi- Map case the logistic map is replaced with a'?'ﬁammbnmg
tion to chaotic attractors with riddled basins and the effect ofYP&-three mterm.lttenc}f? The third example is a system of
noise and asymmetry on the dynamics of systems wittprdinary differential equation& flow) which is a modifica-
riddled basins. To treat the transition to chaofic attractordion of a previously studied systéfthat describes the motion
with riddled basins, a simple analyzable diffusion médel Of & particle in a two-dimensional potential well. As before,
was proposed and scaling relations consistent with numericd¥e are interested in parameter values near an intermittency
simulations were obtainet. transition. Our predicted scaling relations were tested for all

The main question addressed in this paper is what haghree numerical models and reasonably good agreement with
pens if, instead of a chaotic attractor embedded in the invarithe theory was observed.
ant manifold, there is a chaotic repeller for the initial condi- In a recent paper, Lai and Greb&gtonsider the same
tions in the invariant manifolf.By a chaotic repeller we situation that we consider here. A main claim in that paper is
mean an invariant set on which the dynamics is chaotic, buthat the basin is of a mixed type with the property that, in the
which does not attract a positive Lebesgue measure set gfcinity of the saddle, the basin is riddled, while in the region
initial conditions in the invariant manifold. Typically, such of the attracting periodic orbit in the invariant manifold, the
nonattracting chaotic sets manifest themselves as chaotigasin is solid(i.e., it consists of open volumes and is not
tran§ient§. For the_case we consiqler, an initial c_ondition_ in riddled. Such a mixed basin cannot occur, and the basin
the invariant manifold can experience a chaotic transienigannot be riddled anywhere. In general, if a basin is open in
after_ which it is attracted to a periodic orbit in the invariant any neighborhood\ of the attractor, it must be open every-
manifold. where. A simple argument showing this is as follows. pay

ol dAtiWi shall s],chtcr)]w, Wh.er(;_a chstt)tlc;treptelle.r 'Str']n t_he m_amt-is a point in the basin. Evolving forward, it must eventually
01d, e basin of the penodic orbit attractor In e invarian approach the attractor. Thus, at some finite time, the orbit

manifold is no longer riddled, although it still has unusualfrorn b must eventually ente, say at pointp’. The point

properties. This new situation is illustrated schematically in_,". . . . .
Fig. 1, where we use a two-dimensioxaty representation. b n N'necessarlly has an open nelghbor'hood in the basin,
In Fig. 1,y=0 represents the invariant manifold. The closedSlncep lterates top ina finite number of ltgrates) mugt

also have an open neighborhood in the basin. Hence, in con-

circle represents the nonchaotic attractor in yixe0 invari- o ) X .
ant manifold, and the vertical tic marks represent the chaotiffadiction to the claim of Ref. 12, the basin cannot be riddled

repeller iny=0. From every point in the chaotic repeller aywhere. Lai and Grebofialso attempt to obtain the scal-
there emanates a cusp-shaped regiostalactite of the ba- N9 P(y)~y®. However, they use a crude model for the
sin of the attractor iny#0. Only one of these cusp-shaped chaotic transient; in particular, in their model all points in the
regions is shown in Fig. 1, but we emphasize that such rechaotic transient phase abruptly leave the transient at a fixed
gions exist for all points in the chaotic repeller. Note thattime equal to the average transient lifetime. In fact, there is a
since the attractofthe closed circle in Fig. )Lattracts a continuous long-time exponential decay of orbits in the cha-
neighborhood of itself, its basin is not riddled. Neverthelessptic transient, and it is necessary to include this in the model
there is a remnant of the previously studied riddled behavioto obtain the correct scaling and the correct exporent
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Let (h, ) denote they-Lyapunov exponent for a typical
orbit on they=0 chaotic invariant set. Here, by “typical”
we mean with respect to the natural transient measure for the
x map. In this caséh, ) is calculated by sprinklingy, initial
conditions iny=0, iterating them fom iterates, discarding
those that are near the nonchaotic orisiay, further than
some appropriate distandg calculating theh, exponents
over the time interval O tm for each orbit not near the
nonchaotic orbit at tim@, and averaging these values. In the
limit Ng—o, n—o, this average igh, ), the y-Lyapunov
exponent, calculated with respect to the natural transient
measure for the map.

We show in the following that the basin of| >y, can
be in the form of an infinite set of cusp-shaped regions ema-
nating from the chaotic transient invariant set in the plane
FIG. 2. Period-three window in the bifurcation diagram of the logistic map,y=0. We call these cusp-shaped regions stalactites. We
Xn 1= (1= Xn). show for our examples that the Lebesgue measune df

these tongues in §=y, cross section scales 8§, where
Il. THE MODEL a>1. We also give a theory for determiningand obtain
good agreement of the theory with numerical experiments.

Consider a smooth two-dimensional map of the form e note that stalactite boundaries can occur for Hbth)

8.8 3.82 3.84 3.I86 3.88 3.9
r

Vo1 =N(X,Yns6), (1) >0 and(h,)<0. For stalactites in the cagé,)<0, how-
ever, it is also required that the chaotic sad¢éthough
Xn+1=M(Xp,T), (2)  transversely attractinghave embedded periodic orbits with

where e andr are parameters. Suppose thix,0,€)=0 so  Positive transverse Lyapunov exponefts.
that there is an invariant manifold gt=0. We also assume
that N(-) is such that ifly,|>y. then all subsequentiter-
ates are also ify|>vy,; in particular, the orbit never comes
back close to thgg=0 plane. Thus there is another attractor
(or attractorsin |y|>y.. Without loss of generality we let
ye=1

Following Ref. 7 we refer t& as a “normal” parameter
since it affects the dynamics normal to thie=0 invariant
manifold, but has no influence on the dynamics in yie0
invariant manifoldthe dynamics iry=0 is governed by Eq.
(2)]. Similarly,” we refer tor as a “non-normal parameter.”

Supppse that f_or some valu_e lofM(x,r) has a chaotlc Y+ 1=Ny(0, X1) Y,
attractor inx and e is such that riddling occurs. In this case
y=0 is an attractor and its Lyapunov exponent, which wewhere N,(0, x) denotesdN/dy evaluated aty=0. For an
denoteh, [calculated by taking a differential variation of initial condition x, precisely on the chaotic transient set, the
Eqg.(1)], is negativeh, <0. In the riddled case, in any neigh- orbit x,, is typically chaotic. Fox; on the nonchaotic attrac-
borhood of they=0 attractor there are initial conditions that tor in y=0 (i.e., x=x, ), we have|Ny(0, x,)|<1. Let 6z,
stay in the neighborhood and go to the attractor, as well as= —In|dy,|. Then the change inSz is given by 6z,
other initial conditions that leave the neighborhood yof = é6z,+A,, whereA,=—In|Ny(0, x,)|. During the chaotic
=0, possibly moving to théy|>y, attractor. What will hap- transientx, is chaotic, and hencd, varies in a random
pen if we change in such a way that, for a typical initial manner. After the chaotic transiemnsln|Ny(0, X, )| <0.
condition Xy, M(-) generates a chaotic transient instead?Ve follow Ref. 7 and model this situation as follows;, is
[For example, ifM(-) is the logistic map we can imagine a taken to be of constant magnitufie,|=A when the orbit is
change ofr such that we enter a periodic window, e.g., theon the chaotic transient and fluctuationsAp are modeled
period-three window on the bifurcation diagram of the logis-by random assignment of its sigyy,= * A, and we assume
tic map; see Fig. 2.This means that the original chaotic that the linearized dynamics is a good approximation to the
attractor in the invariant plang=0 does not exist any more actual dynamics for finitg in a neighborhood oy =0. Thus
and typical initial conditions iry=0 eventually go to a non- on any givery=In 1/|y| an iterate is represented by the step
chaotic attractofe.qg., a periodic orbit or a fixed pojnasn  y—y=A, with y=+0o(8y=0) corresponding ty=0. We
—o. There will still exist, however, an infinite nonattracting consider a Markov chain model described by a semi-infinite
set of initial conditions{xy"} (representing the ghost of the chain of states;, i=0,1,2,...(see Fig. 3. We call the chain
former chaotic attractgrfor which infinitely long chaotic S; the “chaotic chain.” The model has three paramej@rs,
orbits can be generated, and this set has zero Lebesgue mga-, and », which represent the probabilities of the follow-
sure inx. ing transitions:

lll. DIFFUSION APPROXIMATION

Consider the magl)—(2) and assume that there is a
fixed point attractox=x, for almost any initial condition in
y=0. Also assume that there is a chaotic transient set in
=0. The transverse tangent m@olving differentialy dis-
placements from the invariant sgt0) is
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For the purposes of obtaining a solution fofi), we
will apply the diffusion approximation, valid forg, —8_)
small? to the Markov model. Then the basic parameters of
the diffusion model are the following:

(1) the average drift along thé& chain per iteratew
=( 8y}, wheredy is the increment iry in one time step;
by definition of the transverse Lyapunov exponent
=—(h.);

FIG. 3. Markov chain. (2) the diffusion per iterateD = 3((8y— (y))?), where(: --)
denotes an average over the initial random values, of

(3) and an average lifetime of a typical chaotic transient

B+ St1—S and $;—X, Let P(y,y1,n) be the probability distribution function

B_:S—S.q, for'y (given thatx, is randomly chosen on the horizontal line
_ segment/=y,). Consideringn to be approximated by a con-
: . tinuous variablegvalid for n>1), P(y,y,n) obeys the fol-
7:5—Q i iablg(valid f 1), P(Y,y1,n) ob he fol
The transitionS,, ;—S(S—S.,) represents a step ip  lowing drift-diffusion equation:
away from(toward th irllariant sgfacgco, and iny it is P IP =) 2P
represented by a stgp—~y—A(y—y+A). X represents the o +v {9—7= - +D N (3

condition|y| >y, for which the orbit goes to an attracttor
attractorg not in y=0. After the transitionS,— Q(S;— X) Since we imagine initial conditions all to startyty,, we
the orbit is assumed to move uniformlyxr(in y) toward the  have

periodic attractor iry=0 (the attractor ify|>y.). Once the e — —

chaotic chain is exited by transmissionQoor X, the chaotic P(y:yn0 =0y =yu),y1>0. @
transient is considered to be ended. We identify the transSince any orbit which crossgs=y.=1 (y=0) is lost to the
verse Lyapunov exponent with the random walk parameterg>1 attractor, we have

via (h,)=(B.—B_)A. The question now becomes what is P(0,V;, N)=0 )

the probability of reaching the sta¥€if starting at the state b ’

S.. Our purpose in introducing this Markov model is to ob- As discussed in Ref. 4, for this diffusion approximation to be
tain a result for the scaling of the size of tie: 0 attractor  valid we require two conditions:

basin in the region neay=0. In particular, consider the (1) Many steps must be taken to reach 1 (corresponding
horizontal liney=y,. Different initial conditionsx=x; on t0y=0), ory;> 1.

this line produce orbits, some of which go to the-0 at- (2) The drift on each iterate must be small, which means that

tractor, and some of which go to tlye~ 0 attractor. We ask (h, )| <1
what fraction of thex-Lebesgue measure gn=y,; goes to + '
they# 0 attractor. Denote this fractioR..(y;). The above- In order to solve Eq(3) we will introduce the Laplace

mentioned Markov model is relevant to this question in thetransform ofP(y,y;,n) with respect to the continuous time
following way. If we choose a poirk; at random on the line  yariablen,

y=Y;, then the probability thax, is in the basin of they

#Q attractor.is.Pw(yl)._Furtherm_ore, as argued in Ref. 4, E(Iﬂ,s)zj'we*S”P dn. (6)
while the orbit is chaotic, the orbit generated for random 0

can be regarded as random and as a stochastic process cor- _.. _ :

responding to a random walk on ti$e chain. However, the Clgquatlon_s(3) ® y|_e|d o

orbits following the chaotic transient can leave $echain Dd?P/dy?—vdP/dy— (s+ 1/7)P=—8(y—Y;) (7)
either by repulsion into th& region where the orbit moves = )

toward the nonchaotic orbikEx, ony=0; i.e.,S—Q) or  With the boundary conditiof?(0y;,s)=0. Solving Eq.(7)
by repulsion iny into the regionly| >y, (i.e., S,—X). Thus IS Straightforwardsee the Appendix

we can identifyP..(y,) with a random walker’s probability In Eq._(3), the_ termP/ 7 is the rate at which orbits_leave
p(i) of reachingX starting af ~A ~1In |y, /y,|. In particular, the chaotic transient to move toward the attractoly 0.
the largei scaling ofp(i), Thus the probability of going to the attractor in the invariant
. manifold is
p(i)~e™ ", 1
and the smaly, scaling ofP..(y,), Pyzo=;fo Jo P(y,y1,n)dydn (8)
Poo(yi) ~yal®,

and, therefore, the probability of getting attracted to the
are connected. Thus we now attempt to estinafeom the  y>1 attractor is

Markov model. Once this is accomplished, we will be in a 1
p03|t|pn to use thls_to conjecyure a gen_eral res_ulhf,on/hlch P.=1-P,_o=1— _J' f P(V.y;,n)dydn. 9)
we will compare with numerical experiments in Sec. IV. 7Jo Jo
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Performing the integration we finally get

3
x 10
o« _ 001 ‘l” 1\‘“ “ “w‘ H‘ | H u‘ ‘H
P.=vy7 ,a’—[\/<hl>§+4D/T—<hL>]/2D. (10 ‘ it 4 I ‘
The special case of smdll(D/(h, )?7<1) yields ‘ sill [Il ‘
(hyn) ™t for (n,)>0 - 0005 | =2 |
= . 11
« —(h,}/D for (h,)<0 (D 1 | 1
Note that, as expected, the result fdr,)<0 and 7— 0 0
; . 0 0.5 1 0 05 1
agrees with the result for the exponent in the case of a (@ x b x
riddled basin attractor, Ref. 4. In the examples that follow 0 D 0
(hp)>0. -
IV. NUMERICAL EXPERIMENTS Z¥-4
The universality of the phenomena addressed in this pa- 75
per implies that very general results may be extracted from 2.6 o, p=1.93
simple models that incorporate the essential features respon- 7
sible for this phenomena. In this spirit we introduce three 60 80 100 120 140 -8 -7 -6
illustrative examples. (o (ime,n @ log(y, )
Example 1 The first example is the following two-
dimensional map: FIG. 4. (a), (b) Basins of attraction for Eq$12) and(13) for e=0.926 and
0.928, respectively. To obtai) we uniformly sprinkleL = 1.5x 1¢f initial
Xnt1=M1(X,,r) =X (1—X,), (12)  conditions iny,=0, 0<x,<1. We then iterate them 200 iterates and find
that there aré= 950 orbits which still stay at a distance larger than 0.1 from
Yn+1=N7(X, 1yn,€,€’) the period-three attractor. Then we pIot<:I21€aIC versusn, where(:-+),c
3 denotes an average over the 950 orbits still not near the period-three
={1+e—€'[1—cog2mXy)|}YntVYp- (13 attractor. The value db is then estimated as the slope of the straight line fit

. , . . to the numerical datdg) the fraction of initial conditions going tg=~ as
Th'§ system had;(x,0,e,€")=0. Therefor-ey= 0 IS @n IN- " 3 function ofy. aey,is obtained as the slope of the straight line fit to the data
variant manifold for the map. The dynamics on this invariantin a log—log scale(c), (d) Correspond to the situation wheee=0.926.

manifold are generated by the logistic map and are indepen-
dent of the parametersand ¢'. Therefore, the parametees
and € are normal parameters for the systéh®) and (13). To obtain the values dfh, ) for the chaotic transient set
The value ofr was chosen to be 3.837, which corresponds tdthe second column of Table Wwe first uniformly sprinkle
the case of a period-three attractor in the period-three winmany initial conditions iny,=0, 0<xy<1. We then iterate
dow of the logistic magsee Fig. 2. This implies that typical these initial condition$/ iterates. At timeM>1 most of the
initial conditions in 0<x,<1 andy,=0 may generate cha- sprinkled orbits will be close to the attract(ay within a
otic transients. The average lifetimeof such a transient distance of 0.1 However, if the number of sprinkled orbits
depends om and in our case is numerically determined to beis large, there will still be orbits that are not near the attrac-
7=21.41. Note that ify,>[%(2¢' —€)]Y2 theny,,,>y, (O We make the number of initial conditions sprinkled large
and the orbit evolves towarg= =, which we regard as the €nough so that t_here are still many initi_al conditions not near
attractor not iny=0. A numerical approximation to the ba- the attractor at timé/. We then approximateh, ) by

sins of attraction is shown in Figs(a and 4b). To generate 1 M

this figure we use a 50005000 grid of initial conditions, (h )= v > In le(xn,O)|> ,
and we iterate each initial condition until it either reaclyes n=1 Ic

>[(2€’ — €)]¥2 (in which case we plot a closed circle at the where N1y(x,y)=dN;/dy and (---),c denotes an average
location of the initial conditionor else reaches a very small over those initial conditions whose orbits are not near the
value ofy,y<2x10"°. In the latter case we presume that, attractor iny=0 at timeM. The value oD (the third column
with high probability, the orbit will go to thegg=0 attractor.  of Table ) was obtained by noting that the quantity

(This is justified by the scaling..~y“). We see in Figs. @) n

and 4b) that there are many thin downward pointing black _ _

regions. From numerical examination of some of them by Zn_mzzl (In|le(Xm’0)| (h.))

magnification of the horizontal scale we find that these thin

black regions apparently extend down and touch the invari-

ant set. They are the stalactites referred to in Sec. |. ThABLE |. Data for example 1.

reason the stalactites appear in Fig&) 4nd 4b) to termi- . (h) D N N
nate before reaching=0 is that they become so thin gss . o oo
decreased that they eventually fail to be resolved by our grid-920 0.0164 0.000 920 2.49 2.14
of initial conditions. In our simulations we took =0.8 and 0.0200 0.000917 2.12 2.16
. 0.926 0.0233 0.000 885 1.87 1.93
varied the value o&. For each value of we calculatedh, ), 9.8 0.0256 0.000 864 172 174

D, ay, andaey,. The data are presented in Table I.
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FIG. 5. Bifurcation diagram for Eq.14).
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TABLE Il. Data for example 2.

€ <hJ.> D Ath Qexp
0.150 0.005 0.011 1.59 1.62
0.155 0.010 0.011 1.40 1.42

This system has the same general properties as in the map of
the previous example. Howevey] ,(x,,,r), the map in the
invariant manifold, is an exampfe exhibiting type-iii
intermittency'® The bifurcation diagram foM,(-) is shown

in Fig. 5. This map has a period-one orbitxat 0. As the
parameterr increases through.=1, this period-one orbit
becomes unstable, experiencing an inverse period doubling
bifurcation. The map has a chaotic attractor for1. The
parameter was taken to be equal to 0.99;,(-) is contract-

undergoes unbiased diffusion while the orbit is in the chaotidd at the fixed poink=0 and repelling on a transient. For

transient. Thus we plo}(z2),c vs n, and estimatd as the
slope of a straight line fit to the dafaee Fig. 4c) for an
example of such a plgtThe fourth column of Table lay,,

is then given by insertingh, ) andD, as found above, into
Eqg. (10). The value of the experimental exponent,, (the
fifth column of Table ] was obtained by estimating the frac-
tion of “black” dots in the basin of attractiorithose that
lead toy—<c) as a function ofy, and plotting this fraction as
a function ofy using a log—log scale. We find that, for suf-

ficiently smally, such plots are, in accord with the predicted

y“ dependence, well-fit by a straight lifisee Fig. 4d), for
exampld. The slope of such a fit gives,,,. One can see
from Table | thatae,, agrees reasonably well with its pre-
dicted valueay, .

Example 2 We consider the two-dimensional map,

Xn+1=Ma(Xp,1)
=Xa[F(12.3-7r)X3—r(11.3-7r)x3+x2—r],
(14
Yn+1=Na(Xn,Yn, €,€")

={1+e—€'[1+cod mxy) ]} yntY>. (15)

0.257
0.2r
0.15¢
0.1y

0.05r

%

FIG. 6. Basin of attraction for Eq914) and (15) obtained on a 2000
X 2000 grid of initial conditionsr =0.95,€=0.135,¢’' =0.1.

this value ofr, we obtainT=28.0. The basin of attraction is
shown in Fig. 6. Table Il gives the values @i, ), D, ay,,
and aey, for €'=0.1, and two different values of the other
normal parametee.

Example 3 The third system we studied is a modifica-
tion of a flow that describes the motion of a particle in a
two-dimensional (x,y) double potential well V(r)=(1
—x?)24+ (x+X)y2. The particle is a subject to friction and
time harmonic forcing,

d?r/dt?= — ydr/dt—VV(r) + fo sin(wt)X. (16
HereX is the unit vector in the direction andy, fy, o, and
X are parameters. For appropriatg {;,®,x) this system is
known to exhibit a riddled basihThe phase space of this
problem is five dimensional with coordinates dx/dt, vy,
dy/dt, and = (wt) mod 2. From the symmetry of the po-
tential the problem is invariant with respectyte~ —y, and,
therefore,y=dy/dt=0 specifies a three-dimensional invari-
ant hyperplane in the full five-dimensional phase space. The
dynamics in this invariant hyperplane is obtained by setying
anddy/dt equal to zero in Eq(16). This yields

d2x/dt2+ y dx/dt—4x(1—x2) =f, sin(wt). (17)

.3 . 3.5
Amplitude of driving force, f0

FIG. 7. Bifurcation diagram for Eq17).
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that the basin boundary separating the basins of the attractor
in the invariant manifold and another attractor not in the
invariant manifold is characterized by stalactitelike structure,
thin cusp-shaped regions extending down to touch the invari-
ant manifold at the location of points in the nonattracting
chaotic set. Using a random walk model, we have obtained a
scaling relation for the variation of the measure of the basin
of the attractor not in the invariant manifold. In particular,
we show that this basin’s measure in a surface at a small
distancey from the invariant manifold scales as a power law

S L ks y“, and we have obtained a theoretical prediction for the
0 . : : e scaling exponentr. This prediction has been tested with

0 02 04 06 08 1 1.2 : ) . . .
X, good results by comparison with various numerical experi-
ments.

FIG. 8. Numerical basin for Eq16) obtained on 1008 1000 initial con-
ditions. Following Ref. 4 we iterate each initial condition forward in time
until the trajectory either gets very close to the invariant plged (|y|

<10°%, |vy|<10°°, andyv,<0), or else is definitely in the repelling re- A CKNOWLEDGMENT
gion (ly|>20, |v,|>100, andyv,>0). Closed circles correspond to initial

conditions eventually attracted ta The work was supported by the Office of Naval Re-

search(Physics.

We analyzed Eq(16) in terms of a stroboscopic Poincare
section corresponding to the period of the forcing, i.e., we
consider the timeswtmod27=0. This lead to a four- APPENDIX: DERIVATION OF EQ. (10)
dimensional discrete-time mapping.
In previous work using modélL6), the parameters, f, - The solution to Eq(7) subject to the boundary condition
andw were chosen so that E(L7) had a chaotic attractor. In  P(0,y;,s)=0 is
this case, appropriate choice of the paramgtgields basin
riddling for they=0 attractor. Here we consider a modifica-  — A(exd kay]—exd kpy]), 0<y<y
tion of Eq. (16) such that the dynamics =0 is such that P(y.y1.5)=1 5 exd — kY] VoYL,
the attractor is periodic, but there is also a chaotic transient. (A1)
In particular, we replace by a time periodic quantity
=X+ X, sin(wt—¢) and set the parameters ®§=4.4,x;  Where
=2.9,$=0.15,y=0.05, andw= 3.5. Varying the remaining
parameterf, we obtain a bifurcation diagram for E¢L7) =i(\/<h Y2+4D(s+ U +(h,))
(see Fig. J. As f, is decreased there is a type-iii intermit- 2 2D + T L
tency transition to chaogsimilar to the map(15)]. For fq
=4.0 the average lifetime of a chaotic transientris12.0. 1
In order to estimatéh, Y we integrated the equations for the ALETY
tangent vector representing the infinitesimal variations from

(V(h)>+4D(s+ 1) —(h,)),

the invariant plane y=v,=0:ddy/dt=—ydv,—2(x exf — xpy1]
+X) 8y, ddy/dt=dv,, wheredy and v, are infinitesimal A=-— (kat kp)D
variations(Fig. 8). The results are presented in Table Il and
we again find reasonably good agreement between our esti- ext — kpy1l—exd koY1l
mates ofay, and aeyp. B=—

(kat Kkp)D
V. CONCLUSION Thus

In this paper we have considered systems with an invari- . _ B
ant manifold in which are located both a nonattracting cha- J P(Y,y;,5)dy= J ylEd7+ f Pdy
otic set and a nonchaotic attract@.g., a periodic orbjt 0 0 V1
Thus, in this situation, typical initial conditions in the invari- _ B =
ant manifold may yield orbits that experience chaotic tran- AL(1—exfd — kay1])/
sients before approaching the chaotic attractor. It is found Ka— (exd kpy1]— 1)/ kp]

+Bexd —k.y1])/ ka
TABLE Ill. Data for example 3.

1-—exd— Kbm]
(hy) D Qth Qexp s+1/7
0.030 0.0285 1.26 1.29

Finally,
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1 ® foo
Py-o=> | | PEwLmayan
TJo Jo
1o
=;J P(y.y1,0dy

0
=1-exf —ay;]=1-y5,
wherea is k;, with s set equal to zero. Thus
P.=1-Py_o=Y7,
which is Eq.(10).
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