Influence of SO_4^{2-} anionic group substitution on the enhanced photoluminescence behaviour of red emitting CaMoO₄:Eu³⁺ phosphor

M.L.A. Letswalo, L. Reddy, A. Balakrishna, H.C. Swart, O.M. Ntwaeaborwa PII: S0925-8388(20)33386-7

DOI: https://doi.org/10.1016/i.jallcom.2020.157022

Reference: JALCOM 157022

To appear in: Journal of Alloys and Compounds

Received Date: 21 June 2020

Revised Date: 31 August 2020

Accepted Date: 2 September 2020

Please cite this article as: M.L.A. Letswalo, L. Reddy, A. Balakrishna, H.C. Swart, O.M. Ntwaeaborwa, Influence of SO₄²⁻ anionic group substitution on the enhanced photoluminescence behaviour of red emitting CaMoO₄:Eu³⁺ phosphor, *Journal of Alloys and Compounds* (2020), doi: https://doi.org/10.1016/j.jallcom.2020.157022.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V.

Sample CRediT author statement

M.L.A Letswalo: Writing - Original Draft, Conceptualization, Methodology, Software

L. Reddy: Resource, Data curation, Funding acquisition.

A. Balakrishna: Software, Validation, Conceptualization, Writing - Review & Editing

H.C. Swart: Resource, Conceptualization, Writing - Review & Editing

O.M. Ntwaeaborwa: Resource, Validation, Conceptualization, Visualization Writing - Review & Editing & Supervision

Graphical abstract:

Influence of SO₄²⁻ anionic group substitution on the enhanced photoluminescence behaviour of red emitting CaMoO₄:Eu³⁺ phosphor M.L.A Letswalo^{1*}, L. Reddy¹, A. Balakrishna^{1*}, H.C. Swart² and O.M. Ntwaeaborwa^{1*}

¹Department of Physics, University of the Free State, Bloemfontein, ZA 9300, South Africa

Abstract

CaMoO₄: $xEu^{3+}(x = 0.5, 1.0, 1.5, 2.0, and 2.5)$ powder phosphors incorporating SO₄²⁻ anions were synthesized at high temperature using the solid-state reaction technique. The structural, morphological and optical properties of these phosphors were analyzed using Xray diffraction (XRD), field emission scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and optical spectroscopy. The XRD results indicate that the incorporation of SO_4^{2-} anions and Eu^{3+} dopant ions did not affect the crystal structure of the CaMoO₄, but largely influenced the luminescence properties of the CaMoO₄-SO₄:Eu³⁺ phosphors.The optical properties of our materials were examined using the UV-vis absorption spectroscopy. The absorption edges of the phosphors with different concentrations of Eu^{3+} were less than the band gap energy of the CaMoO₄ and their values ranged from 3.30 to 4.75 eV. The intensity of the red photoluminescence (PL) from CaMoO₄:Eu³⁺ phosphors was enhanced considerably upon incorporation of SO₄²⁻ anions, suggesting that SO₄²⁻ acted to capture primary excitation energy and transfer it nonradiatively to Eu^{3+} ions. In addition, the incorporation of SO_4^{2-} ions also improved the fluorescence decay life-time values of the CaMoO₄:xEu³⁺ phosphors significantly. Tunable emission was observed when the Eu³⁺ concentration was varied. Our PL results indicated that the CaMoO₄-SO₄:Eu³⁺ phosphor exhibited the highest red emission intensity compared to CaMoO₄: Eu³⁺ phosphors, suggesting that CaMoO₄-SO₄:Eu³⁺ could be a promising red component material for potential application in white light-emitting diode devices.

Keywords: solid-state reaction, CaMoO₄phosphors, SO_4^{2-} anionic group systems, Eu³⁺ ion, photoluminescence and white light-emitting diode (W-LEDs)

*Corresponding Authors: E-mail, <u>leanyatsa.abram@gmail.com</u>, <u>bavula@uj.ac.za and</u> <u>ntwaeab@gmail.com</u>

1. Introduction:

Nowadays, host materials with good thermal and chemical stability [1–5], excellent optical properties, and ease of incorporation of dopant ions are widely used to prepare phosphors for lighting applications. In particular, phosphors that are used for solid state lighting (SSL) applications in white light-emitting diodes (WLEDs). As a result, attention has been focused on improving the efficiency and lifetime of these phosphors. Although W-LEDs have been found to have high efficacy, relatively longer excited state life times, high energy efficiency and high color stability; the quality of white light is low due to a lower colour rendering index (CRI) and higher correlated colour temperature (CCT) due to deficiency of the red light component in commercial tricolor LEDs[6-11]. This study was therefore aimed at developing advanced red phosphor with high CRI and relatively low CCT that could be used as a source of red light, which will in turn improve the quality of white light output in tri-colour LEDs. Thus, this study was set out to prepare and evaluate fundamental properties of red light emitting phosphors for such practical application.

Due to their excellent optical and electromagnetic properties, and chemical stability, molybdate compounds are attractive host lattices for rare-earths (REs) dopant ions to prepare chemically stable phosphors that could be used in applications such as display technology, solid state lighting, Raman lasers, optical communication systems, and chemical catalysis[13,14]. Molybdates have therefore been investigated in different fields of research including production of advanced light emitting materials. In particular, the sheelite calcium molybdate is widely used as host for REs to prepare different types of phosphors. The sheelite structure of CaMoO₄ is composed of CaO₈ polyhedral and MoO₄ tetrahedron building blocks. The central Ca atom or Mo atom are properly aligned and are coordinated with eight or four O atoms, resulting in CaMoO₄ exhibiting compositional stability [15]. Moreover, CaMoO₄ has a broad higher absorption band range in the high energy region (i.e. ultraviolet or UV region), and can preferably emit high intensity blue or green light under UV excitation. When RE³⁺ ions are incorporated in the CaMoO₄ matrix and the material is excited by high energy photons, the captured primary excitation energy is transferred from the MoO_4^{2-} to the RE³⁺ ions, resulting in a dramatic increase in photoemission from the RE³⁺ ions [16]. In this study, we prepared red light emitting phosphor by doping CaMoO₄ with Eu^{3+} . In addition, we incorporated SO_4^{2-} anion group and we observed considerable improvement in the PL intensity of red emission from Eu^{3+} ions due to non radiative energy transfer from SO_4^{2-} and MoO_4^{2-} to the Eu³⁺ ions. Phosphors prepared from Eu³⁺ complexes

are used more often as sources of red light in a variety of displays and LEDs. These phosphors exhibit higher luminescence efficiency compared to other red light emitting materials [17] and they are being investigated by many researchers worldwide. For example, John Peteret.al.[18] investigated the PL properties of CaMoO₄:Eu³⁺ (0.1 mol%) excited using near-UV radiation, and they observed a strong emission at 615 nm which was due to the forced electric dipole transitions ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$, which resulted in increased research interest in order to fully understand the luminescence behavior of Eu^{3+} in the CaMoO₄ host. However, the relatively low brightness and efficiency of CaMoO₄:Eu³⁺ is not sufficient for application in commercial W-LEDs. Therefore, it is necessary to conduct further research to find away to enhance red emission from Eu³⁺ in the CaMoO₄ host. An investigation carried out by Wang et al. [19, 20] in which Eu³⁺ was co-doped with Bi³⁺ and Sm³⁺ showed an enhancement of the PL intensity of the Eu³⁺ ion. Recently, several studies have been conducted in which anions where used to substitute Mo^{6+} in the CaMoO₄ lattice sites. For example, a study carried out by Zhang et al. [21] showed an improvement in the red PL emission intensity of $NaEu(MoO_4)_2$ phosphor due to the incorporation of different anionic group systems. Furthermore, an enhanced red emission was observed from NaLa(MoO₄)₂:Eu³⁺ due to the incorporation of SO_4^{2-} and BO_3^{3-} anionic groups[22]. In this study, SO_4^{2-} anions, which substituted MoO_4^{2-} sites in CaMoO₄ were found to enhance the intensity of red emission from CaMoO₄:Eu³⁺. In addition, the effect of varying Eu³⁺ concentration on the intensity of the red PL emission was also investigated.

CaMoO₄-SO₄: xEu^{3+} (x = 0.5, 1, 1.5, 2, 2.5 mol. %) phosphor materials were synthesized via the solid state reaction route. SO₄²⁻ was incorporated into the MoO₄²⁻sites resulting in enhanced red PL due to energy transfer from SO₄²⁻ to Eu³⁺.We examined the structure, morphological, and optical properties of the CaMoO₄-SO₄: xEu^{3+} phosphors. A mechanism that explains the radiative transition is also discussed.

2. Experimental Procedure:

CaMoO₄-SO₄:xEu³⁺ (x = 0.5, 1.0, 1.5, 2.0, and 2.5) phosphors were prepared from highly pure chemical compounds, namely CaCO₃ (99.9% Sigma-Aldrich), MoO₃ (99.9% Sigma-Aldrich), (NH₄)₂SO₄ (99.9% Sigma-Aldrich) and Eu₂O₃ (99.99% Sigma-Aldrich). Stoichiometric amounts of the starting materials were mixed together in acetone using an agate mortar and pestle. The mixture was calcined at 1100 ^oC for 4 hours. The final mixture was ground thoroughly using an agate mortar and pestle. The chemical reaction for the synthesis is given by:

$$CaCO_3 + MoO_3 + (NH_4)_2HSO_4 + Eu_2O_3 \rightarrow CaMoO_4SO_4Eu_2 + CO_2 + H_2O + 7H_2 + 2N_2(1),$$

and the schematic representation of the synthesis procedure is given by:

Fig. 1: Schematic illustration of the sample preparation by the conventional solid-state reaction route.

2.1 Characterization techniques:

Various techniques were used to characterize the samples. The crystal structure was analysed using X-ray powder diffraction (XRD) using a Bruker AXS D8 X-ray diffractometer with Cuk_{α} (1.5406Å). The data were recorded in 2 θ range from 10⁰ to 80⁰. The particle morphology and the chemical composition were examined using a field emission scanning electron microscopy (FE-SEM) coupled with an Oxford Aztec 350 X-Max80 energy-

dispersive X-ray spectroscopy (EDS). The ultraviolet visible (UV-Vis) reflectance spectra were measured using a Perkin Elmer Lambda 950 spectrophotometer. Fourier transform infrared spectra (FTIR) were recorded using a Nicolet 6700 FTIR spectrometer in the spectral range of 4000– 400 cm⁻¹. The PL and the lifetime measurements were recorded in the fluorescence mode using the Cary eclipse spectrofluorometer using a 150W monochromatized xenon lamp as the excitation source. All characterizations were measured at room temperature.

3. Results and Discussion

3.1 Powder X-Ray diffraction analysis:

Fig 2 (a) shows the XRD profiles of CaMoO₄ and CaMoO₄-SO₄:xEu³⁺ (x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol. %) measured in the range of 10-80°. All the diffraction peaks resemble those of the standard scheelite tetragonal structure of CaMoO₄. The peaks were indexed according to a standard XRD spectrum referenced in JCPDS file no. 29-351[23] of a pure tetragonal phase of CaMoO₄. The crystal structure as determined using the diamond software confirmed that our materials resemble the scheelite structure of CaMoO₄ with space group I41/a (no.88) as shown in Fig. 2(b). The crystal structure shows Ca^{2+} and MoO_4^{2-} ionic sites, which can be occupied by Eu³⁺ and SO₄²⁻ ions, respectively, as reported elsewhere [24]. The enlarged version of the (112) reflection for different concentrations of Eu^{3+} , shown in Fig. 2(c), illustrates the peak shift for varying concentration of Eu^{3+} . At 1.5 and 2.0 mol.% of Eu^{3+} , the peaks became narrow, with increased intensity and reduced widths. The narrowing of the diffraction peaks and increased intensity indicate an improvement in crystallinity. In addition, anion groups have also been reported to contribute positively tocrystallization of CaMoO₄[25]. The shift in the peak positions was most likely due to micro strains resulting from the incorporation of Eu^{3+} and SO_4^{2-} . The average crystallite size (D) of the CaMoO₄ and CaMoO₄-SO₄: xEu^{3+} phosphors were calculated for the prominent (112) XRD peak using Scherrer's formula [26]. The average crystallite size of CaMoO₄ was ~ 46 nm, the sizes of Eu³⁺ doped CaMoO₄-SO₄ phosphors increased from ~50 nm to ~70 nm, and the FWHM of the diffraction peak decreased with increasing Eu^{3+} concentration as shown in Fig. 2(c).

5

Fig.2: (a) X-ray diffraction patterns of CaMoO₄ and CaMoO₄-SO₄: xEu^{3+} phosphors and (b) crystal structure of CaMoO₄-SO₄: Eu^{3+} and (c) magnified view of the (112) diffraction peak.

3.2 Particle Morphology and Chemical composition analyses:

Fig 3(a) shows the EDS spectrum of $CaMoO_4$ -SO₄:Eu³⁺ confirming the presence of all the elements including Mo, O, Ca, S and Eu and the inset, Fig 3(b), shows the weight

percentages of these elements. The weight percentage of Mo is greater than that of O, Ca, Eu and S. Fig. 3(c) shows the SEM image of the CaMoO₄-SO₄:(1 mol%) Eu³⁺ powder phosphor The powder was made of irregularly shaped particles agglomerated together, with different sizes and well-defined grain boundaries. The need for prolonged heat treatment in the solid-state route leads to aggressive grain growth and agglomeration, thus forming large micrometric particles [27].

Fig. 3: (a) EDS spectra of $CaMoO_4$ -SO₄: Eu^{3+} phosphor b) Map sum spectra and (c) SEM image showing the morphology.

3.3 Fourier-transformation infrared analysis:

The FT-IR spectra of the CaMoO₄, CaMoO₄:Eu³⁺ and CaMoO₄-SO₄:Eu³⁺ phosphors are displayed in Fig. 4 (a). All the spectra have a broad band around 1131 cm⁻¹ which is attributed to O-H-O absorption. Weak absorption peaks at 1798 and 2409 cm⁻¹ are ascribed to the vibrational bending of O-H bonds, resulting from atmospheric moisture absorbed on the surface. The bands at 911 and 811cm⁻¹ are attributed to stretching vibration of O-Mo-O in MoO_4^{2-} [28]. Weak broad vibration peaks around 1128, 1041 and 1005 cm⁻¹ are due to SO₄²⁻ pointing to successful incorporation of SO₄ in the host lattice [29]. The absorption bands around 424 and 475 cm⁻¹ are associated with the bending vibration of MoO₄ and SO₄.

Fig. 4 (a): FTIR spectrum of CaMoO₄:*Eu*³⁺ 1.0 mol %, CaMoO₄-SO₄:*Eu*³⁺1.0 mol% and (*b*) *Schematic diagram of* MoO₄ *and* SO₄ *structural groups.*

3.4 X-ray Photoelectron Spectroscopy: Surface Chemical Composition analysis

The XPS survey spectrum shown in Fig. 5 displays the electronic and chemical composition of the 1.0 mol% Eu^{3+} doped CaMoO₄-SO₄ phosphor. All observed peaks in the spectrum confirmed the presence of Ca, Mo, O, Eu, S and C in the CaMoO₄-SO₄: Eu^{3+} phosphor. C was from adsorbed atmospheric hydrocarbons and/or from the carbon tape [30, 31] on which the samples were mounted. Fig. 6 (a) and (b) present the high resolution XPS spectrum of Ca before and after sputtering respectively. Before sputtering the XPS peak for the Ca (2p) has a core binding energies (BE) of 350.8 eV and 347.2 eV for the $2p_{1/2}$ and $2p_{3/2}$, respectively. These peaks have the FWHM of 3.0 and 2.5 eV, respectively, for the $2p_{1/2}$ and $2p_{3/2}$ doublets. These results show that the Ca oxidation state was stabilized into the +2 state. The XPS spectrum in Fig. 7 (a) shows the high resolution peaks of the Mo 3d with the

FWHM of 1.8 for the $3d_{5/2}$ and 1.8 eV for the $3d_{3/2}$ with the core BE of 233.3 eV and 235.5 eV respectively, consistent with similar peaks reported previously[30]. There is a significant change in the FWHM, peak positions, and intensity of the Mo 3d spectrum after sputtering as shown in Fig.7(b). Mo (3d) XPS peaks illustrates the BE shift of $3d_{3/2}$ for 2.1 eV and $3d_{5/2}$ for 1.4eV with the corresponding FWHM of 4.8 eV and 1.0 eV. A minor peak was observed at 229.2 eV, which is associated with the lower oxidation state or the Mo metallic peak for the Mo 3d [31]. Fig 8 shows the high resolution XPS spectra of O1s (a) before and (b) after sputerring. The spectra were fitted with three- peaks using a multipack software. The peaks are labelled O₁ (532.1eV) O₂ (530.4 eV) and O₃ (529.8eV) and they are respectively assigned to chemisorbed oxygen, oxygen ion vacancies in the lattice and adsorbed water molecules on the surface of the CaMoO₄-SO₄:Eu³⁺ phosphor [32-34]. After sputtering, the O₂peak became less intense and shifted to the higher binding energy side. The high resolution XPS spectrum for S 2p core-level shown in Fig. 9(a) consists of two peaks located at 162.1 and 166.5eV and they are attributed to the S $2p_{3/2}$ and S $2p_{1/2}$, respectively[35, 36]. The S 2p peak is acribed to S in the SO₄ ions as reported previously [37]. The high resolution XPS spectrum of the Eu3dis shown in Fig.9 (b). The high-signal-to-noise-ratio is due to relatively lower concentration levels of $Eu^{3+}[38]$. The peak around 1135 eV corresponds to $Eu^{3+}3d_{5/2}$ while the peak at 1165 eV corresponds to $Eu^{3+} 3d_{3/2}$ and these peaks are consistent with the reported values for the +3 oxidation states of the Eu ions [39]

Fig. 5: XPS spectra of the CaMoO₄-SO₄:Eu3⁺ phosphor before and after sputtering.

Fig. 6: (a) XPS Spectra of Ca 2p before and (b) after sputtering.

Fig. 7: (a) XPS spectra of Mo 3d before and (b) after sputtering.

Fig. 8: The high resolution XPS scan spectrum of O 1s of CaMoO₄-SO₄: $Eu^{3+}(1.0 \text{ mol } \% \text{ of } Eu^{3+})$ before and after sputtering.

Fig. 9 The high resolution XPS scan spectra of (a)S 2p and (b)Eu3d for of CaMoO₄-SO₄: $Eu^{3+}(1.0 \text{ mol }\%)$ phosphors.

3.4 Ultraviolet-visible absorption spectroscopy:

Fig.10 shows the optical diffuse reflectance spectra (DRS) of the CaMoO₄host and CaMoO₄-SO₄:xEu³⁺ (x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol. %). All the DRS spectra of CaMoO₄ host and CaMoO₄-SO₄:xEu³⁺ showed similar pattern except additional absorption bands from CaMoO₄-SO₄:xEu³⁺ which are attributed to the f-f absorptions of Eu³⁺ dopants. The absorption of the CaMoO₄ host is located at ~450 nm, which has been associated with the O^{2-} \rightarrow Mo⁶⁺charge transfer absorption band [40]. This indicates that our phosphors were capable of absorbing in the near ultraviolet region efficiently. This broad absorption peak wavelengths shifted towards the shorter wavelengths with increasing Eu^{3+} concentration. Other than the MoO_6^{-6-} group absorption band, additional absorption bands attributed to the typical *f-f* transitions of the Eu³⁺ ion were detected at 457, 535, 1385, 1962, 2061 and 2200 nm. The optical band gap of the CaMoO₄ and CaMoO₄-SO₄:xEu³⁺(x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol.%) phosphor materials were calculated by using the Kubelka–Munk function (R) as shown in Fig. 11[41]. The optical band gap for these CaMoO₄, and CaMoO₄-SO₄ doped with 0.5, 1.0, 1.5, 2.0 and 2.5 mol% of Eu³⁺ were found to be 3.72, 4.66, 4.60, 4.34, 4.30 and 4.57 eV respectively. The increased bandgap were found in Eu³⁺ doped CaMoO₄-SO₄ phosphors and this attributed to incorporation of Eu^{3+} and SO_4^{2-} ions. As can be seen in Fig. 8, the energy band gap values were progressively suppressed with increasing Eu³⁺concentration. The variation in optical band gap energy values are associated with the changes in the local atomic structure or lattice. These band gap values were greater than those reported previously [42, 43].

Fig.10: Diffuse reflection spectra for $CaMoO_4$ -SO₄: $xEu^{3+}(x = 0.5, 1.0, 1.5, 2.0 \text{ and } 2.5 \text{ mol.}$ %) phosphor materials.

Fig.11: Optical band gap determination of the CaMoO₄-SO₄: xEu^{3+} (x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol. %) phosphor materials.

3.5 Photoluminescence properties of CaMoO₄-SO₄:Eu³⁺

Fig.12 shows the PL excitation spectra of the CaMoO₄ host and the CaMoO₄-SO₄:xEu³⁺ (x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol. %) phosphors recorded when monitoring the emission peak of Eu³⁺ (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$) at the wavelength of 615 nm. The excitation peaks located at 361, 382, 395 and 416 nm correspond to the ${}^{7}F_{0} \rightarrow {}^{5}G_{4}$, ${}^{7}F_{0} \rightarrow {}^{5}G_{2}$, ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$ and ${}^{7}F_{0} \rightarrow {}^{5}D_{3}$ transitions of Eu³⁺ ions, respectively. Under excitation at 395 nm, the emission spectra of CaMoO₄-SO₄:xEu³⁺ (x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol. %) phosphors were recorded and are shown in Fig. 13. The

emission peaks at 575 nm and 750 nm are due to the ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 1, 2, 3, 4) transitions of Eu³⁺ ions, respectively. The strongest emission peak at 615 nm is due to the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions of Eu³⁺. The weak emissions located at 592, 655 and 702 nm, are associated, respectively, with the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$, ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$, transitions of Eu³⁺[44]. The ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition is associated with the electric dipole, that is insensitive to the lattice site symmetry of the Eu³⁺ ions. The ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition is much stronger than the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition, indicating that the Eu^{3+} ion is placed in a distorted local environment [45]. Partially substituting Ti with SiO₂ reduced the density of defects and improve the crystal surroundings of Pr^{3+} which resulted in the increase of the rate of energy transfer from the CaTiO₂ to Pr^{3+} , and a subsequent increase in emission intensity from Pr^{3+} [46]. In this study, the same behavior was observed where the substitution of SO_4^{2-} anions and the defect densities were reduced as non-radiative centres and improved the local distortion of the crystal field surrounding the Eu³⁺in CaMoO₄ during calcination. This phenomenon has tendency to increase the rate of energy transfer from the CaMoO₄hostto Eu³⁺ ions. In addition, the SO₄²⁻ ion act as charge compensator or sensitizer [47]. Fig.14 (a) shows the PL maximum intensities of the CaMoO₄-SO₄:xEu³⁺ phosphor material as a function of different Eu³⁺ ion concentrations for the major emission peak associated with the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition. The PL intensity increased with increasing Eu³⁺ ion concentration from 0 mol%, maximized at 1.0 mol% and then decreased when the concentration was increased to 2.5 mol.%. The decrease of the PL intensity at Eu³⁺ concentrations above1.0 mol% is ascribed to concentration quenching effect [48]. By using the Van Uitert equation (5), the interaction type responsible for the energy transfer was determined [49].

$$\frac{l}{x} = \frac{k}{(1+\beta(x)^{\theta/3})'}$$
(5)

where I/x is the emission intensity per ion concentration (x), β and k are the constants for a given host lattice, and θ is a function of multipole-multipole interaction. When the values of θ are 6, 8, and 10, it shows respectively the d–d (dipole-dipole), d–q (dipole-quadrupole), and q–q (quadrupole-quadrupole) interactions. Fig. 14(b) shows a graph of the *I/x* versus x (where I is the emission intensity and x is the doping concentration) on the logarithmic scale. The graph is of a linear type with a slope of -2.024, which is equal to $-\theta/3$. Therefore, the value of θ is ~6, suggesting that the d–d is the type of interaction responsible for the quenching effect of the PL emission of Eu³⁺ ions in the CaMoO₄-SO₄ phosphors.

Fig. 12: PL excitation spectra of CaMoO₄-SO₄: $xEu^{3+}(x = 0.5, 1.0, 1.5, 2.0 \text{ and } 2.5mol. \%)$ monitored under 615 nm emission wavelength.

Fig. 13: PL emission spectra of CaMoO₄-SO₄: Eu^{3+} x mol%. (x = 0.5, 1.0, 1.5 2.0 and 2.5) monitored under 395 nm excitation wavelength.

Fig. 14: (a) Photoluminescence emission intensity as a function of Eu^{3+} ion concentration and (b) Log (I/x) versus log(x) plot of CaMoO₄-SO₄: Eu^{3+} phosphors

3.6. Energy transfer mechanism between MoO_4^{2-} to Eu³⁺ ion

Fig. 15 shows the schematic diagram explaining the mechanism of energy transfer from MoO_4^{2-} to the 4*f* ground level of Eu^{3+} . A similar mechanism was proposed by Lee et al.[50]. Under UV excitation, the host electrons make a transition from the ¹A₁ ground state to the ¹T₁ excited state. When the Eu^{3+} ions are incorporated in the CaMoO₄-SO₄, the energy is transferred from MoO_4^{2-} to the unexcited 4*f* levels of the Eu^{3+} ions. Therefore, an electron may relax non-radiactively as it makes a transition from the higher excited energy states to the lower energy states and multiple photon emission occur during this transition. This absorbed primary energy is transferred from the MoO_4^{2-} to the Eu^{3+} ion, resulting in the electronic transition from the ⁷F₀ ground state to the ⁵L₆ excited states of the Eu^{3+} ion. The ⁵L₆, and ⁵D_j (j= 1, 2, 3) levels decays non-radioactively to the ⁵D₀ to ⁷F_J (J=1, 2, 3, 4) levels of Eu^{3+} ions.

Fig. 15: The energy level diagram and the energy transfer process in $CaMoO_4$ -SO₄: Eu^{3+} phosphor.

3.7. Phosphorescence decay time curves:

Fig. 16 depicts the decay behaviour of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition emission line for Eu³⁺ in the CaMoO₄:Eu³⁺ and the CaMoO₄-SO₄:Eu³⁺ samples. The experimental curves were fitted using a double-exponential function:

$$I(t) = A_1 \exp\left(-\frac{t}{\tau_1}\right) + A_2 \exp\left(-\frac{t}{\tau_2}\right),\tag{6}$$

where I(t) is the phosphorescence intensity, A_1 and A_2 are the constants, and τ_1 and τ_2 are the lifetimes or decay constants. The lifetime of CaMoO₄:Eu³⁺ is 430 ms, while that CaMoO₄-SO₄:Eu³⁺ is 442 ms (i.e. 12 ms longer than the former). These results provides direct evidence that SO₄²⁻ does have a positive effect on the PL intensity and lifetime of CaMoO₄:Eu³⁺ material. It is therefore reasonable to conclude that SO₄²⁻ ions acted toharvest and transfer

primary excitation energy to Eu^{3+} resulting in improved red photoluminescence of Eu^{3+} at the wavelength of 625 nm.

Fig. 16: The fluorescence decay curves of CaMoO₄:Eu³⁺(1mol%) and CaMoO₄-SO₄:Eu³⁺(1mol%) phosphors.

3.8. CIE-color-coordinates and CCT of CaMoO₄-SO₄:Eu³⁺ phosphors:

The CIE chromaticity coordinates diagram of $CaMoO_4$ - SO_4 : xEu^{3+} is shown in Fig. 17. The colour was tuned from orange-yellow to red, as we vary the molar concentration of Eu^{3+} . The CCT was determined using McCamy empirical formula: [51]

$$\mathbf{CCT} = -437n^3 + 3601n^2 + 6861n + 5514.1 \tag{7}$$

where $n = (x-x_e)/(y-y_e)$ and $x_e = 0.332$ and $y_e = 0.1858$

The CIE coordinates and the CCT values are presented in Table 1. The CIE coordinates show that our phosphors changed colour from orange-red to red colour with incorporation of the SO_4^{2-} anionic groups and different concentrations of Eu^{3+} . This confirmed that the emission colours were tunable. The CCT values of our phosphors were found in the range of 3879 K-7391 K for different Eu^{3+} ion concentrations. For the purpose of commercial lighting, the CCT value lower than 5000 K is certainly the cold red light. The obtained CCT values of CaMoO₄-SO₄: xEu^{3+} (x= 0.5, 1.0 and 1.5) are in close agreement with the CCT value of the at

noon (i.e. standard daylight at noon) (5000 - 5400 K) that is suitable for cold light emission [52]. The present results suggest that our materials are promising candidates for producing cool red light illumination. The colour purity is one of the important features for evaluating performance of phosphors, and it can be determined using equation (8):

Color purity =
$$\frac{\sqrt{(x-x_{ee})^2 + (y-y_{ee})^2}}{\sqrt{(x_d-x_{ee})^2 + (y_d-y_{ee})^2}} \times 100\%$$
, (8)

where (x, y), (x_{ee} , y_{ee}), and (x_d , y_d) are the CIE color chromaticity coordinates of the sample point, the standard equal-energy point (0.3333, 0.3333), and the dominant-wavelength point of the sample, respectively. The color purity values of the CaMoO₄-SO₄:Eu³⁺phosphorsare listed in table 1, and were found to be in the range of 89–97%, which is greater than the standard red emitting phosphor (CaMoO₄:Eu³⁺). The values shown in table 1 indicate that the phosphors having a composition of the CaMoO₄-SO₄: xEu^{3+} (0.5 and 1 mol. %) showed the maximum red color emission and an exceptional colour chromaticity coordinates with an improved colour purity.

Fig. 17: CIE chromaticity diagram of the CaMoO₄-SO₄: xEu^{3+} phosphors.

Journal Pre-proof					
Samples	CIE 1931 Coordinates		ССТ	Colour	Colour
	x	У	values (K)	purity (%)	
$CaMoO_4:1.0Eu^{3+}$	0.57	0.42	1805	68	Orange-red
CaMoO ₄ -SO ₄ :0.5Eu ³⁺	0.69	0.31	5194	97	Red
CaMoO ₄ -SO ₄ :1.0Eu ³⁺	0.69	0.31	5194	97	Red
CaMoO ₄ -SO ₄ :1.5Eu ³⁺	0.67	0.30	7391	92	Red
CaMoO ₄ -SO ₄ :2.0Eu ³⁺	0.66	0.32	3879	89	Red

Table 1: CIE1931 chromaticity coordinate, CCT and colour purity values of CaMoO₄-SO₄: $xEu^{3+}(x = 0.5, 1.0, 1.5, 2.0, and 2.5)$ and the corresponding colors.

Conclusion:

CaMoO₄-SO₄: xEu^{3+} (x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol. %) phosphor powders were successfully synthesized by the solid-state reaction method. The structural, morphological, and optical properties were investigated using different techniques. The XRD diffraction patterns were consistent with those reported in the standard JCPDS file no. 29-351 of the pure tetragonal phase of CaMoO₄. The DRS absorption spectra showed that the optical absorption band gap of our phosphors shifted toward the lower energies due to incorporation of the SO₄²⁻

. The PL properties showed the tunable emission from orange-red to red emission colour that was dependent on the Eu^{3+} concentration. Incorporation of the SO_4^{2-} into the host lattice improved the emission intensity of CaMoO₄:Eu³⁺, which confirms that SO_4^{2-} ions are excellent sensitizer of the red emission. The purity of the red emission was analysed and the CIE coordinates, CCT and color purity analysis results suggest that our materials are suitable for use as sources of red light in displays and light emitting devices of different types.

Acknowledgments

The South African National Nanoscience Postgraduate Teaching and Training Platform (NNPTTP) of the Department of Science and Technology support this work financially.OMN would like to acknowledge financial support from the Competitive Programme for Rated Researchers (CPRR) (Grant no. CPR20110724000021870) of the National Research Foundation (NRF)-South Africa. This research was also financially supported by PDRFs, Global Excellence and Stature Funding (GES) programme, University of Johannesburg and Faculty of Science, University of Johannesburg, South Africa. HCS acknowledge the Sarchi chair initiative of the Department of Science and Technology (84415) for equipment and financial support.

References

- [1] Y. Liu, G. Liu, J. Wang, X. Dong, W. Yu, Single-component and warm-white-emitting phosphor NaGd(WO₄)₂:Tm³⁺, Dy³⁺, Eu³⁺: synthesis, luminescence, energy transfer, and tunablecolor, *Inorg. Chem.* 53 (2014) 11457–11466.
- [2] M.E. Foley, R.W. Meulenberg, J.R. Mcbride, G.F. Strouse, Eu³⁺-doped ZnB₂O₄(B =Al³⁺, Ga³⁺) nanospinels: an efficient red phosphor, *Chem. Mater*.27 (2015) 8362–8374.
- [3] X. Huang, B. Li, H. Guo, D. Chen, Molybdenum-doping-induced photoluminescence enhancement in Eu³⁺-activated CaWO₄ red-emitting phosphors for white light-emitting diodes, *Dyes Pigm*. 143 (2017) 86–94.
- S.K. Gupta, P.S. Ghosh, A.K. Yadav, N. Pathak, A. Arya, S.N. Jha, D. Bhattacharyya,
 R.M. Kadam, Luminescence properties of SrZrO₃/Tb³⁺ perovskite: host-dopant energytransfer dynamics and local structure of Tb³⁺, *Inorg. Chem.* 55 (2016) 1728–1740.
- [5] Y. Zhai, X. Zhao, C. Liu, P. Song, X. Jing, Y. Han, J. Wang, CaMoO₄:Dy³⁺,Eu³⁺ phosphors: microwave synthesis, characterization, tunable luminescence properties and energy transfer mechanism, *Optik*, 164 (2018) 433-442
- [6] N. Narendran, Y. Gu, J. Freyssinier, H. Yu and L. Deng, Solid-state lighting: failure analysis of white LEDs, *J. Cryst. Growth*, 268 (2004) 449-456.
- [7] A. Parchur, A. Prasad, A. Ansari, S. Rai and R. Ningthoujam, Luminescence properties of Tb³⁺-doped CaMoO₄ nanoparticles: annealing effect, polar medium dispersible, polymer film and core-shell formation, *Dalton Trans*.41 (2012)11032.
- [8] E. Schubert, Solid-State Light Sources Getting Smart, *Science*, 308 (2005)1274-1278.
- [9] J. Park, H. Jung, G. Seeta Rama Raju, B. Moon, J. Jeong and J. Kim, Tunable luminescence and energy transfer process between Tb³⁺ and Eu³⁺ in GYAG:Bi³⁺, Tb³⁺, Eu³⁺ phosphors, *Solid State Sci.*, 12 (2010) 719-724.
- [10] H. Jang, Y. Won and D. Jeon, Improvement of the electroluminescent property of blue LED coated with highly luminescent yellow-emitting phosphors, *Applied Phys. B*, 95 (2009) 715-720.
- [11] S. Wang, Q. Sun. B. Devakumar, J. Liang, L. Sun,X. Huang, Novel highly efficient and thermally stable Ca₂GdTaO₆:Eu³⁺ red-emitting phosphors with high color purity for UV/blue-excited WLEDs, *J.AlloysCompd*.804 (2019) 93-99.
- [12] Y. He, M. Zhao, Y. Song, G. Zhao and X. Ai, Effect of Bi³⁺ on fluorescence properties of YPO₄:Dy³⁺ phosphors synthesized by a modified chemical co-precipitation method, *J. Lumin.*, 131 (2011) 1144-1148.

- [13] M. Piatkowska, E. Tomaszewicz Synthesis, structure, and thermal stability of new scheelite-type Pb_(1-3x)hxPr_{2x}(MoO₄)_{1-3x}(WO₄)_{3x} ceramic materials, *J Therm. Anal Calorim* 126 (2016) 111–119.
- [14] Y. Liu, H. Li, S. Tang, Q. Zhou, K. Wang, H. Tang, Z. Wang, A red-emitting phosphor K₂[MoO₂F₄] H₂O:Mn⁴⁺ for warm white light-emitting diodes with a high color rendering index, *Mater. Res. Bull.*, 122(2020) 110675.
- [15] F.A. Rabuffetti, S.P. Culver, L. Suescun, R.L. Brutchey, Structural disorder in AMoO₄(A=Ca, Sr, Ba) scheelite nanocrystals, *Inorg. Chem.* 53 (2014) 1056–1061.
- [16] S.K. Gupta, M. Sahu, P.S. Ghosh, D. Tyagi, M.K. Saxena, R.M. Kadam, Energy transfer dynamics and luminescence properties of Eu³⁺ in CaMoO₄ and SrMoO₄, *Dalton Trans.* 44 (2015) 18957–18969.
- [17] Y. Hatefi, N. Shahtahmasebi, A. Moghimi,andE.Attaran, Frequency-conversion properties of Eu³⁺ doped chlorophosphateglass ceramics containing CaCl₂nanocrystals, *J. Lumin*.131 (2011) 114-118.
- [18] A. Peter, Photoluminescence Studies of CaMoO₄: Eu³⁺ Phosphors, Asian J. Mater. Chem.1 (2016) 84-86..
- [19] Z. Wang, H. Liang, M. Gong and Q. Su, Novel red phosphor of Bi³⁺, Sm³⁺ co-activated NaEu(MoO₄)₂, *Opt. Mater.* 29 (2007) 896-900.
- [20] P. Jaffe, Eu²⁺ Luminescence in the Ternary EuO-Al₂O₃-SiO₂ System, *J.Electrochem. Soc.* 116(1969) 629-633.
- [21] Y. Zhang, S. Shi, J. Gao and J. Zhou, Effects of SO₂⁴⁻ or SiO₂³⁻ Doping on the Photoluminescence of NaEu(MoO₄)₂ Nanophosphors for Light-Emitting Diodes, J Nanosci.Nanotechno.10 (2010) 2156-2160.
- [22] K. Ariga and M. Aono, Supra-materials nanoarchitectonics. Oxford: William Andrew, 2017.
- [23] E. Gürmen, E. Daniels and J. King, Crystal Structure Refinement of SrMoO₄, SrWO₄, CaMoO₄, and BaWO₄ by Neutron Diffraction, *J. Chem. Phys.* 55 (1971) 1093-1097.
- [24] L.G. Van Uitert, Characterization of energy transfer interactions between rare earth ions, J. Electrochem. Soc. 114 (1967) 1048–1053.
- [25] W. Zhang, J. Li, Y. Wang, J. Long, and K. Qiu, Synthesis and luminescence properties $(MoO_4)_{2-x}AGx:Eu^{3+}(AG = SO_4^{2-}, BO_3^{3-})$ red phosphors for white light emitting diodes, *J. AlloysCompd*.635 (2015) 16–20.

- [26] O. Ntwaeaborwa, S. Mofokeng, V. Kumar and R. Kroon, Structural, optical and photoluminescence properties of Eu³⁺ doped ZnO nanoparticles, *Spectrochim. Acta A* 182 (2017) 42-49.
- [27] A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Solution combustion synthesis of nanoscale materials, *Chem. Rev.* 116 (2016,) 14493–14586.
- [28] Y. Huang, L. Zhou, L. Yang and Z. Tang, Self-assembled 3D flower-like NaY(MoO₄)₂:Eu³⁺ microarchitectures: Hydrothermal synthesis, formation mechanismand luminescence properties, *Opt. Mater*.33 (2011) 777-782.
- [29] Y. Wang, W. Zhang, J. Li, and J. Long, Effect of MoO₄²⁻ partial substitution on the optical enhancement of LaNa(MoO₄) _{2:} Dy³⁺ phosphors for white light-emitting diodes, *Mater. Sci. Semicond. Process.*41 (2016) 277-281.
- [30] B. Singh, A. Parchur, R. Ningthoujam, A. Ansari, P. Singh and S. Rai, Influence of Gd³⁺ co-doping on the structural property of CaMoO₄Eu nanoparticles, *Dalton Trans.*, 43 (2014) 4770-4778.
- [31] S. Gupta, M. Sahu, P. Ghosh, D. Tyagi, M. Saxenaand R. Kadam, Energy transfer dynamics and luminescence properties of Eu³⁺ in CaMoO₄ and SrMoO₄, *Dalton Trans.*,44 (2015) 18957-18969.
- [32] A. Parchur, A. Prasad, S. Rai, R. Tewari, R. Sahu, G. Okram, R. Singh and R. Ningthoujam, Observation of intermediate bands in Eu³⁺ doped YPO₄ host: Li+ ion effect and blue to pink light emitter, *AIP Advances*, 2 (2012) 032119.
- [33] B. Singh, M. Maheshwary, P. Ramakrishna, S. Singh, V. Sonu, S. Singh, P. Singh, A. Bahadur, R. Singh and S. Rai, Improved photoluminescencebehavior of Eu³⁺ activated CaMoO₄ nanoparticles via Zn²⁺ incorporation, *RSC Advances*5 (2015) 55977-55985.
- [34] R. Karthik, J. Kumar, S. Chen, T. Kokulnathan, H. Yang and V. Muthuraj, Design of novel ytterbium molybdate nanoflakes anchored carbon nanofibers: challenging sustainable catalyst for the detection and degradation of assassination weapon (Paraoxon-Ethyl), ACS Sustain. Chem. Eng. 6 (2018) 8615-8630.
- [35] X. Wang, Q. Xiang, B. Liu, L. Wang, T. Luo, D. Chen and G. Shen, TiO₂ modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries, *Sci. Rep.* 3 (2013).
- [36] G. Tai, T. Zeng, J. Yu, J. Zhou, Y. You are, X. Wang, H. Wu, X. Sun, T. Hu and W. Guo, Fast and large-area growth of uniform MoS₂ monolayers on molybdenum foils, *Nanoscale*, 8 (2016) 2234-2241.

- [37] A. Balakrishna, H. Swart, R. Ramaraghavulu, A. Bedyal, R. Kroon and O. Ntwaeaborwa, Structural evolution induced by substitution of designated molybdate sites (MoO_4^{-2}) with different anionic groups $(BO_3^{-3}, PO_4^{-3} \text{ and } SO_4^{-2})$ in CaMoO₄ :Sm³⁺ phosphors-A study on colortunable luminescent properties, *J. AlloysCompd.* 727 (2017) 224-237.
- [38] J. F. Moulder, W. F. Stickle, P. E. Sobel and K. D. Bomben, Handbook of X-ray photo electron spectroscopy, PerkinElmer Corporation, Eden Prairie, MN, USA, 1992.
- [39] S. Gupta, M. Sahu, P. Ghosh, D. Tyagi, M. Saxena, and R. Kadam, Energy transfer dynamics and luminescence properties of Eu³⁺ in CaMoO₄ and SrMoO₄, *Dalton Trans*. 44 (2015) 18957-18969.
- [40] Y. Zhai, X. Zhao, C. Liu, P. Song, X. Jing, Y. Han and J. Wang, CaMoO₄ Dy³⁺, Eu³⁺ phosphors: microwave synthesis, characterization, tunable luminescence properties and energy transfer mechanism, *Optik*164 (2018) 433-442.
- [41] H. Philipp, Optical properties of non-crystalline Si, SiO, SiO_xand SiO₂, J. Phys. Chem. Solids32 (1971) 1935-1945.
- [42] S. Dutta, S. Som, A. Kunti, S. Sharma, V. Kumar, H. Swart and H. Visser, Ag⁷⁺ ion induced modification of morphology, optical and luminescence behavior of charge compensated CaMoO₄nanophosphor, *Nucl. Instrum. Meth. B* 384 (2016) 76-85.
- [43] C. Bouzidi, K. Horchani-Naifer, Z. Khadraoui, H. Elhouichetand M. Ferid, Synthesis, characterization and DFT calculations of electronic and optical properties of CaMoO₄, *Physica B*497 (2016) 34-38.
- [44] A. K. Parchura and R. S. Ningthoujam, Behaviour of electric and magnetic dipole transitions of Eu^{3+} , ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ and Eu–O charge transfer band in Li⁺ co-doped YPO₄:Eu³⁺, RSC Advances 2 (2012) 10859–10868.
- [45] C. Chiu, C. Liu, S. Huang and T. Chen, White-Light-Emitting Diodes Using Red-Emitting LiEu(WO₄)_{2-x}(MoO₄)_x Phosphors, *J. Electrochem. Soc.* 154 (2007) J181-J184.
- [46] X. Zhang, C. Cao, C. Zhang, L. Chen, J. Zhang, X.J. Wang, Improved photoluminescence and afterglow in CaTiO₃:Pr³⁺ with addition of nanosized SiO₂, *Physica B*406 (2011) 3891–3895.
- [47] X. Zhang et al., Photoluminescence and energy storage traps in CaTiO₃:Pr³⁺, *Mater. Res. Bull.* 45 (2010) 1832-1836.
- [48] G. Mhlongo, M. Dhlamini, H. Swart, O. Ntwaeaborwa and K. Hillie, Dependence of photoluminescence (PL) emission intensity on Eu³⁺ and ZnO concentrations in Y₂O₃Eu³⁺andZnO·Y₂O₃Eu³⁺nanophosphors, *Opt. Mater.* 33 (2011) 1495-1499.

- [49] L.G. Van Uitert, Characterization of energy transfer interactions between rare earth ions, J. Electrochem. Soc. 114 (1967) 1048–1053.
- [50] G. Lee and S. Kang, Solid-solution red phosphors for white LEDs, J. Lumin. 131 (2011) 2582-2588.
- [51] C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates, Color Res. Appl. 17 (2) (1992) 142–144.
- [52] J. Han, W. Im, G. Lee and D. Jeon, Near UV-pumped yellow-emitting Eu^{2+} -doped Na₃K(Si_{1-x}Alx)₈O_{16±δ} phosphor for white-emitting LEDs, *J. Mater. Chem.* 22 (2012) 8793.

- CaMoO₄:Eu³⁺ phosphors substituted with SO₄²⁻ groups were prepared via solid state reaction method.
- ▶ Photoluminescence (PL)properties of CaMoO₄:Eu³⁺ were improved by SO₄²⁻ ions
- > The energy transfer from MoO_4^{2-} to Eu^{3+} was showed in CaMoO₄ host.
- > $CaMoO_4$ -SO₄:Eu³⁺ (1 mol %) phosphor reported the strongest PL emission.
- > Orange-red to red color tuneable emission has been achieved by the SO_4^{2-} substitution.
- ➤ CaMoO₄-SO₄:Eu³⁺ are potential candidates for UV excited red emission LED applications.

Declaration of interests

(X)The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: