

Journal of Molecular Structure 348 (1995) 183-186

Time-resolved UV/VIS Diode Array Absorption Spectroscopy of SO_X (x=3, 4, 5) Radical Anions in Aqueous Solution

H. Herrmann, A. Reese and R. Zellner

Institut für Physikalische und Theoretische Chemie, FB 8 Universität GH Essen Universitätsstr. 5, D-45117 Essen, Germany

1. BACKGROUND AND EXPERIMENTAL

In the present study radicals were generated by excimer-laser photolysis and monitored by time-resolved UV/VIS-broadband diode array absorption spectroscopy. The apparatus combines spectral sensitivity in the wavelength range 210-750 nm with time resolution down to 100 ns. It has been developed as a universal tool for the study of kinetics and spectroscopy of free radicals in solution. More details of the experimental methods applied for the investigations of the sulfur radical anions SO_x^- can be found elsewhere [1]. A schematic representation of the experimental set-up is shown in Fig. 1.

Figure 1. Schematic representation of the experimental set-up 0022-2860/95/\$09.50 © 1995 Elsevier Science B.V. All rights reserved SSDI 0022-2860(95)08619-6

184

2.1. Absolute decadic absorption coefficients for the sulfite (SO_3) and peroxymono-sulfate (SO_5) radical anions

To calculate the absolute decadic absorption coefficients of the above radical anions the measured absorption spectra of SO₃ and SO₅ were standardized by the absolute absorption coefficients published by Buxton et al. [2,3]. These authors obtained maximum absorption coefficients of ε_{250} = (1090±20) 1mol⁻¹cm⁻¹ for SO₃ and of ε_{260} = (740±18) 1mol⁻¹cm⁻¹ for SO₅. The absolute absorption coefficients derived from the current investigation are listed in Table 1 as a function of wavelength in intervals of 5 nm. An error of 5% is estimated for these data based on the errors of the literature data [2,3] and additional experimental errors in the present study. Absorption coefficients for smaller wavelength intervals are in preparation [4].

Table 1

λ [nm]	ϵ (SO ₃) [l/mol cm]	ϵ (SO ₅ ⁻) [l/mol ⁻ cm]
230 - 235		320
235 - 240	710	340
240 - 245	770	390
245 - 250	880	460
250 - 255	990	560
255 - 260	1070	660
260 - 265	1090	730
265 - 270	1060	740
270 - 275	990	710
275 - 280	900	650
280 - 285	790	560
285 - 290	680	460
290 - 295	590	360
295 - 300	500	270
300 - 305	440	190
305 - 310	390	130
310 - 315	340	90
315 - 320	300	70
320 - 325	270	50
325 - 330	240	30
330 - 335	220	20
335 - 340	190	10
340 - 345	160	
345 - 350	140	
350 - 355	130	
355 - 360	120	
360 - 365	110	
365 - 370	100	
370 - 375	80	
375 - 380	60	
380 - 385	40	
385 - 390	10	

Absolute decadic absorption coefficients for the sulfite radical anion (SO_3^-) and the peroxymonosulfate radical anion (SO_5^-) .

2.2 Results for the study of SO_4 - kinetics

In this part of the study the decay of SO_4^- due to reactions (R-1) and (R-2), viz.

$$SO_4^- + S_2O_8^{2-} \rightarrow SO_4^{2-} + S_2O_8^{-}$$

$$SO_4^- + H_2O \rightarrow HSO_4^- + OH$$
(R-1)
(R-2)

has been investigated as a function of the peroxodisulfate concentration which was varied in the range from $5 \cdot 10^{-5}$ to $5 \cdot 10^{-4}$ mol1⁻¹. At 293 K and pH=5 rate constants $k_1 = (6.3 \pm 1.5) \cdot 10^{-5}$ lmol⁻¹s⁻¹ (for I \rightarrow 0) and of $k_2 = (6.6 \pm 0.4) \cdot 10^2$ s⁻¹ have been determined. The obtained kinetic data are in good agreement with the available literature data. From T-dependent measurements the expression

$$k_2(T) = (4.7 \pm 0.2) 10^2 \exp[-(1110 \pm 60)/T] 1 \text{mol}^{-1} s^{-1}$$
 (1)

with $E_A = (9.2 \pm 0.5)$ kJ/mol was derived. Data on the T-dependence of reaction (R-2) are currently not available from the literature. For the recombination reaction (R-3):

$$SO_4^- + SO_4^- \rightarrow S_2O_8^{2-}$$
 (R-3)

a rate constant of $k_3 = (1.6\pm0.4) 10^8 1 \text{ mol}^{-1} \text{s}^{-1}$ has been obtained. The result is in good agreement with literature data by Huie et al. [5] and Tang et al. [6], whereas the rate constant published by McElroy et al. [7] is larger than our value by a factor 3.

In another part of our study the possible formation reaction (R-4) of OH-radicals in atmospheric droplets has been investigated

 $SO_4^- + OH^- \rightarrow SO_4^{2-} + OH$ (R-4)

By variation of the OH- concentration in the range $3 \, 10^{-6}$ to $1 \, 10^{-4}$ mol 1⁻¹ we investigated the dependence of the first-order rate coefficient for the decay of SO₄ on the OHconcentration for reaction (R-4). At 298 K a rate constant of k₄=(1.4±0.2) 10⁷ 1mol⁻¹s⁻¹ (for $I \rightarrow 0$) has been determined. This value is somewhat smaller than currently available literature data.

2.3. Results for the study of the SO₅⁻ - kinetics

For the self-reaction of the peroxymonosulfate radical anion, viz.

$$SO_5^- + SO_5^- \rightarrow 2SO_4^- + O_2$$
 (R-5a)
 $\rightarrow S_2O_8^{2-} + O_2$ (R-5b)

a rate constant of $k_5 = (1.3 \pm 0.3) 10^8 \text{ lmol}^{-1} \text{s}^{-1}$ (for $I \rightarrow 0$) was found at 298 K and pH=4. This result is in good agreement with currently available literature data, e.g. $k_5 = (9.3 \pm 0.1) 10^7 \text{ lmol}^{-1} \text{s}^{-1}$ [8] and $k_5 = 1.10^8 \text{ lmol}^{-1} \text{s}^{-1}$ [5]. The second order rate coefficient for reaction (R-5) has also been measured in the temperature range from 288 to 320 K. The temperature dependence is best described by

$$k_2(T) = (1.1 \pm 0.1) 10^{12} \exp[-(2600 \pm 1000)/T] 1 \text{mol}^{-1} \text{s}^{-1}$$
 (2)

corresponding to an activation energy of $E_A = (22\pm 9) \text{ kJ/mol.}$ To our knowledge, data on the temperature dependence of reaction (R-5) are currently not available from the literature.

From the direct detection of the formation of sulfate radical anions due to reaction (R-5a) an upper limit for the branching ratio of the two channels of reaction (R-5), viz.

$$\frac{\mathbf{k}_{5a}}{\mathbf{k}_{5a} + \mathbf{k}_{5b}} \leq 0.04 \tag{3}$$

could be established. This value is not inconsistent with a recent determination by Warneck [9], where a branching ratio of $k_{5a} / k_{5b} = 0.04$ has been determined.

The spectroscopic and kinetic data from the present investigation provide information for a better understanding of the oxidation of S(IV) in tropospheric aquatic systems where, according to present knowledge, reaction chains involving free-radical play a substantial role. Future work will apply modelling techniques to describe these chemical systems.

REFERENCES

- 1. H. Herrmann, A. Reese and R. Zellner in: Air Pollution Research Report No. 45, Ed. J. Peeters, p. 253, CEC, Brussels, 1993.
- 2. R. Zellner, H. Herrmann, M. Exner and A. Reese in: Annual EUROTRAC Report 1992, Part 6: GCE/HALIPP, Ed. P.Bórell, p. 70, Garmisch-Partenkirchen, 1993.
- G.V. Buxton, G.A. Salmon, S. Croft, and S. McGowan, in: Annual EUROTRAC Report 1991, Part 6: HALIPP, Ed. Borell, P., p.34, Garmisch-Partenkirchen, 1992.
- 4. H. Herrmann, A. Reese, and R. Zellner, to be published.
- 5. R.E. Huie, C.L. Clifton and N. Altstein, Radiat. Phys. Chem., 33 (1989) 361.
- 6. Y. Tang, R.P. Thorn, R.L. Mauldin III, P.H. Wine, Photochem. Photobiol., 44 (1988) 243.
- 7. W.J. McElroy and S.J. Waygood, J. Chem. Soc. Faraday Trans., 86 (1990) 2557
- 8. S.J. Waygood, in: Air Pollution Research Report No. 42, Ed. R.A. Cox, p. 23, CEC, Brussels, 1993.
- 9. J.Ziajka and P. Warneck, in: Annual EUROTRAC Report 1993, Part 6: HALIPP, Ed. Borell, P., p.67, Garmisch-Partenkirchen, 1994.